封面
市場調查報告書
商品編碼
1880500

先進材料市場預測(適用於電池回收)至2032年:按材料、電池來源、技術、最終用戶和地區分類的全球分析

Advanced Materials for Battery Recycling Market Forecasts to 2032 - Global Analysis By Material (Lithium, Cobalt, Nickel, Manganese, Graphite and Rare Earth Elements), Battery Source, Technology, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球電池回收先進材料市場預計到 2025 年價值 28.7 億美元,到 2032 年達到 76.4 億美元,預測期內複合年成長率為 15.0%。

先進材料在現代電池回收中變得至關重要,它們能夠提高回收效率、降低成本並支援永續資源管理。這些材料透過先進的吸附劑、選擇性薄膜、創新溶劑和最佳化的催化體系,能夠更有效率地提取和純化鋰、鈷、鎳和其他關鍵金屬。這有助於減少製程排放、提高金屬純度並最大限度地減少廢棄物產生。隨著電動車的日益普及、全球永續性的推進以及減少對礦產資源依賴的壓力不斷增加,這些材料的應用正在加速發展。隨著回收技術的不斷進步,這些材料將增強電池生態系統的循環性,從而實現更清潔、更擴充性的回收作業。

據美國能源局(DOE) 稱,截至 2023 年,美國將有可回收超過 35,500 噸電池材料的回收設施,這表明先進材料的回收已大規模展開。

擴大電動車(EV)的使用

全球電動車的日益普及是推動電池回收先進材料市場成長的關鍵因素。隨著電動車製造規模的擴大,廢棄鋰離子電池的累積速度也正在加快,這增加了對先進回收技術的需求。高效材料,例如先進薄膜、客製化催化劑和選擇性萃取化合物,有助於提高回收率,同時最大限度地減少對環境的影響和處理成本。扶持政策、政府獎勵和強力的碳中和目標進一步推動了回收技術的創新。由於電動車電池對關鍵礦物的依賴性日益增強,先進材料能夠確保資源的穩定供應,並促進電池組件的循環利用。技術和監管因素的共同作用,鞏固了電動車作為市場關鍵驅動力的地位。

先進材料和技術高成本

先進材料和配套技術的高成本是阻礙因素。高性能催化劑、選擇性分離膜和專用溶劑的生產流程複雜,推高了價格。這些材料相關成本顯著增加了回收企業的營運成本,為預算有限的小規模企業帶來了挑戰。升級回收系統以採用這些材料也需要額外的資本投資、專業的員工培訓和持續的設備維護。電池回收的利潤率通常很低,資金限制阻礙了其廣泛應用。這種成本壁壘減緩了先進回收材料的普及應用,並限制了整體市場的擴張。

直接回收和下一代技術的推廣

直接回收和新興電池回收技術的日益普及,為先進材料製造商創造了巨大的機會。直接回收需要專有的再生化學品、精密溶劑、先進塗層和客製化粘合劑,以保持正極的完整性。隨著業界向更清潔、更低能耗的回收模式轉型,對支援這些技術的專用材料的需求將會增加。這些技術有助於提高金屬回收率、降低成本並增強永續性。活性化的研究活動、政府資助和試點規模的創新正在進一步加速這些技術的應用。這種轉型使先進材料供應商能夠與技術開發商合作,推出創新解決方案,並在不斷變化的回收領域中獲得競爭優勢。

來自低成本、傳統回收方法的競爭

低成本、成熟的回收方法對先進材料構成了強而有力的競爭。許多回收企業仍依賴傳統的濕式冶金和火法冶金系統,這些系統資本投入低、操作簡便。相較之下,先進材料需要升級設備、受控環境和更高的成本,因此其應用吸引力較低。結果,回收企業往往選擇較便宜的傳統方法,即使這些方法效率較低、永續性。這減緩了向先進材料主導解決方案的轉型,並限制了市場滲透。對傳統回收技術的持續偏好扼殺了創新,限制了下一代材料的應用,並降低了先進材料供應商的長期成長潛力。

新冠疫情的影響:

新冠疫情為電池回收用先進材料市場帶來了挑戰和成長機會。初期,全球物流中斷、工廠停工和勞動力短缺導致高性能催化劑、薄膜和特殊萃取材料的生產放緩。這種供應限制影響了回收作業,並延緩了現代化進程。然而,疫情也增強了長期發展勢頭,因為許多國家採取了綠色復甦策略,並強調循環資源管理。疫情後電動車的普及擴大了廢棄電池的供應來源,並提振了對高效能回收材料的需求。儘管遭遇了暫時的挫折,但新冠疫情最終提高了人們對永續電池處理的認知,並凸顯了該市場的戰略重要性。

預計在預測期內,鋰市場將佔據最大的市場佔有率。

預計在預測期內,鋰領域將佔據最大的市場佔有率。鋰幾乎用於所有主流電動車和攜帶式設備的電池化學體系中,因此其回收價值極高。為此,諸如高選擇性溶劑、專用薄膜和客製化吸附劑等先進材料的設計往往以鋰回收為目標。由於鋰的廣泛應用和重要的經濟價值,回收商優先考慮鋰的回收,這意味著先進再生材料產業中很大一部分都致力於高效回收鋰。

預計在預測期內,直接回收領域將實現最高的複合年成長率。

預計在預測期內,直接回收領域將呈現最高的成長率。這是因為該方法能夠保持原有正極材料的成分,從而實現材料的修復而非完全再加工。這種方法依賴先進材料,例如再生化學品、精密溶劑、工程塗層和特殊黏合劑,這些材料用於重建可用的電池組件。直接回收能耗更低、排放更少,且產出價值更高,因此越來越受到尋求永續且經濟的回收途徑的製造商的青睞。不斷擴大的調查計畫、技術創新和產業合作正在進一步加速其應用。因此,直接回收的成長速度超過了濕式冶金、火法冶金和機械加工方法。

佔比最大的地區:

預計亞太地區將在預測期內佔據最大的市場佔有率。這一主導地位可歸功於該地區強大的電池製造基礎、電動車的快速成長以及雄心勃勃的環境政策。中國、日本、韓國和印度等主要國家正大力投資回收基礎設施和尖端材料回收技術。這些國家在生產大量電池的同時,也產生了大量可回收的廢棄電池。該地區對先進吸附劑、工程膜和高效催化劑的需求尤其旺盛,這些產品正在推動該地區的創新,並有助於實現電池價值鏈中循環經濟的更廣泛目標。

預計年複合成長率最高的地區:

在預測期內,由於電動車需求不斷成長、政府政策支持以及回收業務的快速擴張,北美預計將實現最高的複合年成長率。美國和加拿大都在投資先進的材料回收技術,以提高提取精度並降低加工成本。該地區為減少對進口關鍵礦物的依賴所做的努力,推動了高性能膜、催化劑、選擇性溶劑和分離材料的應用。回收商、原始設備製造商 (OEM) 和研究機構之間的密切合作正在推動技術進步。隨著電動車的日益普及和循環經濟目標的日益嚴格,北美有望成為市場成長最快的地區。

免費客製化服務:

購買此報告的客戶可以選擇以下免費自訂選項之一:

  • 公司概況
    • 對其他市場公司(最多 3 家公司)進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶要求,提供主要國家的市場估算、預測和複合年成長率(註:可行性需確認)。
  • 競爭基準化分析
    • 根據主要企業的產品系列、地理覆蓋範圍和策略聯盟基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 原始研究資料
    • 次級研究資訊來源
    • 先決條件

第3章 市場趨勢分析

  • 介紹
  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

第5章 全球先進材料市場(依材料分類)

  • 介紹
  • 石墨
  • 稀土元素

6. 全球電池回收先進材料市場(依電池來源分類)

  • 介紹
  • 電動車(EV)電池
  • 可攜式電子設備電池
  • 固定式/工業電池

7. 全球電池回收先進材料市場(依技術分類)

  • 介紹
  • 濕式冶金
  • 火法冶金
  • 機器
  • 直接回收

8. 全球電池回收先進材料市場(依最終用戶分類)

  • 介紹
  • 汽車OEM廠商
  • 儲能供應商
  • 家用電器製造商
  • 工業設備和機器人

9. 全球電池回收先進材料市場(按地區分類)

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第10章:重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與併購
  • 新產品上市
  • 業務拓展
  • 其他關鍵策略

第11章 企業概況

  • Contemporary Amperex Technology Co., Limited(CATL)
  • GEM Co., Ltd.
  • Umicore
  • Glencore
  • Fortum
  • Aqua Metals, Inc.
  • DOE Run Company
  • East Penn Manufacturing Company
  • Redwood Materials
  • Li-Cycle
  • American Battery Technology Company
  • Ganfeng Lithium Group Co., Ltd
  • Attero Recycling Pvt. Ltd.
  • Nickel Asia Corporation
  • Retriev Technologies
Product Code: SMRC32529

According to Stratistics MRC, the Global Advanced Materials for Battery Recycling Market is accounted for $2.87 billion in 2025 and is expected to reach $7.64 billion by 2032 growing at a CAGR of 15.0% during the forecast period. Advanced materials are becoming essential in modern battery recycling by elevating recovery efficiency, reducing costs, and supporting sustainable resource management. These materials streamline the extraction and refinement of lithium, cobalt, nickel, and other key metals through advanced sorbents, selective membranes, innovative solvents, and optimized catalytic systems. Their contribution helps lower processing emissions, boost metal purity, and minimize waste generation. Growing EV adoption, global sustainability commitments, and pressure to decrease dependence on raw mineral mining are accelerating their use. With continuous advancements in recycling technologies, these materials strengthen circularity within the battery ecosystem and pave the way for cleaner, more scalable recycling operations.

According to the U.S. Department of Energy (DOE), in 2023 the United States had domestic battery recycling facilities capable of reclaiming more than 35,500 tons of battery materials, underscoring the scale of advanced material recovery already underway.

Market Dynamics:

Driver:

Growing adoption of electric vehicles (EVs)

Surging electric vehicle deployment worldwide is a major factor accelerating the Advanced Materials for Battery Recycling Market. As EV manufacturing expands, used lithium-ion batteries are accumulating faster, increasing the need for advanced recycling technologies. High-efficiency materials-such as advanced membranes, tailored catalysts, and selective extraction compounds-help raise recovery rates while minimizing environmental effects and processing expenses. Supportive policies, government incentives, and strong carbon-neutrality goals further encourage recycling innovation. With rising dependence on critical minerals for EV batteries, advanced materials ensure consistent resource availability and promote a circular flow of battery components. This combination of technological and regulatory forces solidifies EV growth as a key market driver.

Restraint:

High cost of advanced materials and technologies

The elevated cost of advanced materials and the technologies needed to support them represents a key limitation for the market. High-performance catalysts, selective separation membranes, and specialized solvents require complex production processes that drive up prices. These material-related expenses significantly increase operating costs for recycling companies, creating challenges for smaller facilities with limited budgets. Upgrading recycling systems to incorporate these materials also demands additional capital investment, specialized workforce training, and ongoing equipment upkeep. Since profit margins in battery recycling are often tight, financial constraints hinder widespread adoption. This cost-related obstacle delays broader use of advanced recycling materials and limits overall market expansion.

Opportunity:

Growing adoption of direct recycling and next-generation technologies

Expanding use of direct recycling and emerging battery recovery technologies creates strong opportunities for advanced material manufacturers. Direct recycling maintains cathode integrity, requiring unique rejuvenation chemicals, high-precision solvents, advanced coatings, and tailored binding agents. As the industry shifts toward cleaner, lower-energy recycling models, demand for specialized materials that support these techniques will grow. These technologies help improve metal recovery, reduce costs, and enhance sustainability performance. Increasing research activity, government funding, and pilot-scale innovations further accelerate adoption. This transition allows advanced material providers to collaborate with technology developers, introduce novel solutions, and secure competitive advantages in the evolving recycling landscape.

Threat:

Competition from low-cost conventional recycling methods

Low-cost, established recycling approaches represent a strong competitive threat to advanced materials. Many recyclers continue to rely on traditional hydrometallurgical or pyrometallurgical systems because they involve lower capital requirements and simpler operational setups. In contrast, advanced materials require upgraded machinery, controlled environments, and higher spending, making adoption less appealing. Consequently, recyclers often choose cheaper conventional methods even if they offer lower efficiency or sustainability benefits. This slows the shift toward advanced, material-driven solutions and restricts market penetration. Continued preference for older recycling technologies undermines innovation, limits adoption of next-generation materials, and reduces long-term growth potential for advanced material providers.

Covid-19 Impact:

The COVID-19 pandemic produced both challenges and growth pathways for the Advanced Materials for Battery Recycling Market. During early phases, global logistics disruptions, factory shutdowns, and labor shortages slowed production of high-performance catalysts, membranes, and specialized extraction materials. This limited availability affected recycling operations and delayed modernization efforts. Yet, the crisis also strengthened long-term momentum as many countries adopted green recovery strategies and emphasized circular resource management. Post-pandemic surges in electric vehicle adoption expanded the pool of end-of-life batteries, boosting demand for efficient recycling materials. Despite the temporary setbacks, COVID-19 ultimately increased awareness of sustainable battery processing and highlighted the market's strategic importance.

The lithium segment is expected to be the largest during the forecast period

The lithium segment is expected to account for the largest market share during the forecast period. Lithium features in virtually all major battery chemistries for EVs and portable devices, making its reclamation extremely valuable. As a result, cutting-edge materials such as high-selectivity solvents, specialized membranes, and tailored adsorbents are often designed with lithium recovery in mind. Recycling companies prioritize lithium because of its widespread use and economic importance, meaning a substantial share of the advanced recycling-material industry is dedicated to recovering lithium efficiently.

The direct recycling segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the direct recycling segment is predicted to witness the highest growth rate because it enables retention of the original cathode composition, allowing materials to be restored rather than fully reprocessed. This method depends on advanced materials including rejuvenation chemicals, precision-grade solvents, engineered coatings, and specialized binders that rebuild usable battery components. Since direct recycling uses less energy, produces fewer emissions, and generates higher-value output, it is increasingly preferred by manufacturers seeking sustainable and economical recycling pathways. Growing research programs, technological innovation, and industry partnerships further accelerate its adoption. As a result, direct recycling expands more rapidly than hydrometallurgical, pyrometallurgical, and mechanical methods.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share. This leadership arises from the region's strong battery production base, rapid EV growth, and ambitious environmental policies. Key countries - notably China, Japan, South Korea, and India - are investing heavily in recycling infrastructure and cutting-edge material recovery technologies. As they produce vast quantities of batteries, they also generate abundant end-of-life units for recycling. Demand for advanced sorbents, engineered membranes, and high-efficiency catalysts are particularly high in this region, fueling both local innovation and contributing to broader circular-economy goals in the battery value chain.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR due to rising electric vehicle demand, supportive government policies, and rapid scaling of recycling operations. Both the U.S. and Canada are channeling investments into advanced material-recovery technologies that improve extraction precision and reduce processing costs. The region's push to cut reliance on imported critical minerals heightens adoption of high-performance membranes, catalysts, selective solvents, and separation materials. Strong partnerships among recyclers, OEMs, and research bodies stimulate technological progress. With expanding EV deployment and stricter circular-economy targets, North America is positioned as the market's most rapidly growing region.

Key players in the market

Some of the key players in Advanced Materials for Battery Recycling Market include Contemporary Amperex Technology Co., Limited (CATL), GEM Co., Ltd., Umicore, Glencore, Fortum, Aqua Metals, Inc., DOE Run Company, East Penn Manufacturing Company, Redwood Materials, Li-Cycle, American Battery Technology Company, Ganfeng Lithium Group Co., Ltd, Attero Recycling Pvt. Ltd., Nickel Asia Corporation and Retriev Technologies.

Key Developments:

In November 2025, Contemporary Amperex Technology Co., Limited and Beijing HyperStrong Technology Co., Ltd. have signed a Strategic Cooperation Agreement, marking a new milestone in their long-term partnership. According to the agreement, HyperStrong will procure no less than 200 GWh of battery cells from CATL, laying a solid foundation for the large-scale deployment of its global energy storage business.

In March 2025, Umicore has entered into two separate agreements for the supply of precursor cathode active materials (pCAM) for electric vehicle batteries with CNGR and Eco&Dream Co. (E&D). The pCAM, a critical component of EV batteries, will cater to Umicore's customer contracts in North America and Asia.

In November 2024, GEM Co and Vale's Indonesian unit signed an agreement to build a $1.42-billion nickel plant in the Southeast Asian nation, highlighting the country's drive to boost processing. The two companies signed a framework agreement for a high-pressure acid leach facility on Sunday, GEM said in a filing. The project on Sulawesi island will process nickel laterite ore from the Vale unit into 66,000 tons of mixed hydroxide precipitate annually. That's a form of nickel aimed at automakers.

Materials Covered:

  • Lithium
  • Cobalt
  • Nickel
  • Manganese
  • Graphite
  • Rare Earth Elements

Battery Sources Covered:

  • Electric Vehicle (EV) Batteries
  • Portable Electronics Batteries
  • Stationary / Industrial Batteries

Technologies Covered:

  • Hydrometallurgical
  • Pyrometallurgical
  • Mechanical
  • Direct Recycling

End Users Covered:

  • Automotive OEMs
  • Energy Storage Providers
  • Consumer Electronics Manufacturers
  • Industrial Equipment & Robotics

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Advanced Materials for Battery Recycling Market, By Material

  • 5.1 Introduction
  • 5.2 Lithium
  • 5.3 Cobalt
  • 5.4 Nickel
  • 5.5 Manganese
  • 5.6 Graphite
  • 5.7 Rare Earth Elements

6 Global Advanced Materials for Battery Recycling Market, By Battery Source

  • 6.1 Introduction
  • 6.2 Electric Vehicle (EV) Batteries
  • 6.3 Portable Electronics Batteries
  • 6.4 Stationary / Industrial Batteries

7 Global Advanced Materials for Battery Recycling Market, By Technology

  • 7.1 Introduction
  • 7.2 Hydrometallurgical
  • 7.3 Pyrometallurgical
  • 7.4 Mechanical
  • 7.5 Direct Recycling

8 Global Advanced Materials for Battery Recycling Market, By End User

  • 8.1 Introduction
  • 8.2 Automotive OEMs
  • 8.3 Energy Storage Providers
  • 8.4 Consumer Electronics Manufacturers
  • 8.5 Industrial Equipment & Robotics

9 Global Advanced Materials for Battery Recycling Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Contemporary Amperex Technology Co., Limited (CATL)
  • 11.2 GEM Co., Ltd.
  • 11.3 Umicore
  • 11.4 Glencore
  • 11.5 Fortum
  • 11.6 Aqua Metals, Inc.
  • 11.7 DOE Run Company
  • 11.8 East Penn Manufacturing Company
  • 11.9 Redwood Materials
  • 11.10 Li-Cycle
  • 11.11 American Battery Technology Company
  • 11.12 Ganfeng Lithium Group Co., Ltd
  • 11.13 Attero Recycling Pvt. Ltd.
  • 11.14 Nickel Asia Corporation
  • 11.15 Retriev Technologies

List of Tables

  • Table 1 Global Advanced Materials for Battery Recycling Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Advanced Materials for Battery Recycling Market Outlook, By Material (2024-2032) ($MN)
  • Table 3 Global Advanced Materials for Battery Recycling Market Outlook, By Lithium (2024-2032) ($MN)
  • Table 4 Global Advanced Materials for Battery Recycling Market Outlook, By Cobalt (2024-2032) ($MN)
  • Table 5 Global Advanced Materials for Battery Recycling Market Outlook, By Nickel (2024-2032) ($MN)
  • Table 6 Global Advanced Materials for Battery Recycling Market Outlook, By Manganese (2024-2032) ($MN)
  • Table 7 Global Advanced Materials for Battery Recycling Market Outlook, By Graphite (2024-2032) ($MN)
  • Table 8 Global Advanced Materials for Battery Recycling Market Outlook, By Rare Earth Elements (2024-2032) ($MN)
  • Table 9 Global Advanced Materials for Battery Recycling Market Outlook, By Battery Source (2024-2032) ($MN)
  • Table 10 Global Advanced Materials for Battery Recycling Market Outlook, By Electric Vehicle (EV) Batteries (2024-2032) ($MN)
  • Table 11 Global Advanced Materials for Battery Recycling Market Outlook, By Portable Electronics Batteries (2024-2032) ($MN)
  • Table 12 Global Advanced Materials for Battery Recycling Market Outlook, By Stationary / Industrial Batteries (2024-2032) ($MN)
  • Table 13 Global Advanced Materials for Battery Recycling Market Outlook, By Technology (2024-2032) ($MN)
  • Table 14 Global Advanced Materials for Battery Recycling Market Outlook, By Hydrometallurgical (2024-2032) ($MN)
  • Table 15 Global Advanced Materials for Battery Recycling Market Outlook, By Pyrometallurgical (2024-2032) ($MN)
  • Table 16 Global Advanced Materials for Battery Recycling Market Outlook, By Mechanical (2024-2032) ($MN)
  • Table 17 Global Advanced Materials for Battery Recycling Market Outlook, By Direct Recycling (2024-2032) ($MN)
  • Table 18 Global Advanced Materials for Battery Recycling Market Outlook, By End User (2024-2032) ($MN)
  • Table 19 Global Advanced Materials for Battery Recycling Market Outlook, By Automotive OEMs (2024-2032) ($MN)
  • Table 20 Global Advanced Materials for Battery Recycling Market Outlook, By Energy Storage Providers (2024-2032) ($MN)
  • Table 21 Global Advanced Materials for Battery Recycling Market Outlook, By Consumer Electronics Manufacturers (2024-2032) ($MN)
  • Table 22 Global Advanced Materials for Battery Recycling Market Outlook, By Industrial Equipment & Robotics (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.