封面
市場調查報告書
商品編碼
1880469

菌絲混合建築材料市場預測至2032年:按類型、製造流程、應用、最終用戶和地區分類的全球分析

Mycelium-Hybrid Construction Materials Market Forecasts to 2032 - Global Analysis By Type, Manufacturing Process, Application, End User, and By Geography.

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的一項研究,預計到 2025 年,全球菌絲混合建築材料市場價值將達到 17 億美元,到 2032 年將達到 29 億美元,在預測期內複合年成長率為 7.9%。

菌絲體混合建築材料將真菌生質能與農業廢棄物或聚合物結合,製成可生物分解、耐火的建築構件。這些材料具有隔熱、結構支撐和聲波阻尼,同時還能減少碳排放。它們在模板中生長,形成磚塊、板材和複合材料,適用於永續建築。菌絲體的再生特性和低能耗使其對具有環保意識的開發商極具吸引力。研究機構和Start-Ups公司正在探索其在臨時住所、室內設計和循環建築系統中的應用,重新定義綠色建築的材料科學。

根據代爾夫特理工大學的一項研究,與許多傳統的合成隔熱材料相比,菌絲基複合材料表現出更優異的吸音性和耐火性。

生物基複合複合材料日益普及

對永續材料日益成長的需求正在推動生物基複合複合材料的應用,其中菌絲體作為一種極具潛力的塑膠和合成複合材料替代品脫穎而出。由於其可生物分解、低碳的特性以及源自農業廢棄物的優勢,菌絲體複合材料在包裝、建材和家具等領域引起了廣泛關注。菌絲體的可再生性和低能耗生產特性,正助力市場拓展,以滿足各產業對環保解決方案的需求。政府推出的綠色材料推廣政策以及消費者環保意識的不斷提高,也進一步加速了對生物基複合複合材料的轉型。

結構強度和耐久性低

儘管菌絲複合材料具有環境優勢,但其結構強度和長期耐久性仍有其限制。與塑膠和工程木材等傳統材料相比,菌絲在潮濕、高溫和機械應力作用下更容易劣化。這些性能缺陷限制了其在承重應用和戶外場所的使用。製造商必須投資研發混合配方、塗層和增強技術以提高其耐久性。在耐久性問題解決之前,菌絲複合材料的應用可能仍將局限於低衝擊、裝飾性或短期用途。

混合菌絲複合材料的開發

材料科學的進步使得混合菌絲複合材料的開發成為可能,這種複合材料將菌絲生質能與天然纖維、樹脂和生物聚合物結合。這些混合材料在保持生物分解性的同時,也具有更優異的機械性質。其應用範圍正在不斷擴大,涵蓋汽車內裝、吸音板和模組化建築等領域。研究機構和Start-Ups公司正在探索可擴展的生產方法和性能最佳化方案。混合化帶來的強度、耐火性和耐水性的提升,為尋求永續創新的各行各業開闢了菌絲基材料的新商業性途徑。

大規模生產可擴展性的局限性

由於生物生長週期、基材差異性和易受黴菌侵染等因素,菌絲複合複合材料的規模化生產仍面臨挑戰。與合成材料不同,菌絲需要受控環境和耗時的培養,這限制了其產量。品質差異和污染風險進一步加劇了工業化規模生產的困難。目前,自動化、標準化基材和模組化生長系統的研究正在進行,以應對這些挑戰。在實現可靠的大規模生產之前,菌絲複合材料在主流製造業中的大規模應用將受到限制,這將對市場成長構成威脅。

新冠疫情的影響:

新冠疫情擾亂了全球供應鏈,並引發了人們對本地永續材料的關注。菌絲複合材料作為環保的包裝和室內設計替代品,尤其是在非接觸式環境中,備受矚目。遠距辦公和電子商務的蓬勃發展也增加了對可生物分解包裝解決方案的需求。然而,由於實驗室關閉和資金限制,研發和試生產進程有所延誤。疫情過後,隨著人們對循環經濟原則和永續材料採購的日益關注,市場正在復甦,菌絲複合複合材料有望繼續保持其長期重要性。

預計在預測期內,菌絲複合材料細分市場將佔據最大的市場佔有率。

在預測期內,菌絲複合複合材料預計將佔據最大的市場佔有率,這主要得益於其多功能性、可生物分解性以及在各行業日益成長的認可度。這些複合材料廣泛應用於包裝、家具、隔熱材料和設計等領域。它們可模製成各種形狀,且對環境影響小,因此是永續產品開發的理想選擇。隨著人們對塑膠污染的認知不斷提高,企業正在採用菌絲基替代品來實現其環境、社會和治理 (ESG) 目標。在質地、強度和美觀性方面的持續創新將鞏固該領域的領先地位。

預計在預測期內,模具培養成型細分市場將呈現最高的複合年成長率。

由於其擴充性和設計靈活性,預計在預測期內,模培養製造領域將實現最高的成長率。此方法在預先設計的模具中培養菌絲體,從而獲得客製化形狀和穩定的品質。其應用領域包括包裝、建築和消費品。模培養技術可減少廢棄物和人工成本,使其在商業化生產上極具吸引力。隨著自動化程度的提高和基質最佳化,模培養有望成為大規模、永續生產菌絲體產品的首選方法。

佔比最大的地區:

由於快速的工業化進程、環境法規的實施以及對永續材料日益成長的需求,亞太地區預計將在預測期內佔據最大的市場佔有率。中國、印度和日本等國家正在加大對生物複合材料研究和綠色基礎設施的投入。該地區的農業基礎設施為菌絲體培養提供了豐富的原料。政府推行的循環經濟和生態包裝措施將進一步促進市場成長。本地Start-Ups公司和學術機構正在推動創新,使亞太地區成為生物基材料研發中心。

預計年複合成長率最高的地區:

由於北美地區高度重視永續性、擁有先進的研發生態系統,並率先採用菌絲體基產品,預計該地區在預測期內將實現最高的複合年成長率。美國和加拿大擁有眾多大型Start-Ups和設計公司,它們正致力於將菌絲體應用於包裝、家具和建築領域。消費者對環保產品的需求以及企業ESG(環境、社會和管治)措施正在加速市場滲透。扶持政策、創業投資和大學資金籌措已使北美成為菌絲體複合材料領域的成長引擎。

免費客製化服務:

購買此報告的客戶可以選擇以下免費自訂選項之一:

  • 公司概況
    • 對其他市場公司(最多 3 家公司)進行全面分析
    • 主要企業SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶要求,提供主要國家的市場估算和預測以及複合年成長率(註:可行性需確認)。
  • 競爭基準化分析
    • 根據主要企業的產品系列、地理覆蓋範圍和策略聯盟基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 原始研究資料
    • 次級研究資訊來源
    • 先決條件

第3章 市場趨勢分析

  • 介紹
  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球菌絲混合建築材料市場(按類型分類)

  • 介紹
  • 菌絲複合體
  • 菌絲混凝土混合物
  • 菌絲體和生質塑膠混合物
  • 菌絲體和木材混合物

6. 全球菌絲混合建築材料市場(依製造流程分類)

  • 介紹
  • 黴菌生長製造
  • 層狀複合物的形成
  • 射出成型整合
  • 積層製造技術

7. 全球菌絲混合建築材料市場(依應用領域分類)

  • 介紹
  • 保溫板
  • 結構部件
  • 室內家具
  • 吸音板
  • 裝飾建築

8. 全球菌絲混合建築材料市場(依最終用戶分類)

  • 介紹
  • 住宅
  • 商業建築
  • 工業建築
  • 綠建築計劃

9. 全球菌絲混合建築材料市場(按地區分類)

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第10章:重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與併購
  • 新產品上市
  • 業務拓展
  • 其他關鍵策略

第11章 企業概況

  • Ecovative
  • MycoWorks
  • Mogu
  • Biohm
  • Bolt Threads
  • Zeoform
  • Mycelium Materials Europe
  • Grown Bio
  • MycoComposite
  • Ecovative GIY
  • BiofabriQ
  • Paradise Packaging
  • Livin Studio
  • Loop Biotech
  • Mycotech Lab
  • Nature's Fynd
Product Code: SMRC32462

According to Stratistics MRC, the Global Mycelium-Hybrid Construction Materials Market is accounted for $1.7 billion in 2025 and is expected to reach $2.9 billion by 2032 growing at a CAGR of 7.9% during the forecast period. Mycelium-Hybrid Construction Materials combine fungal biomass with agricultural waste or polymers to create biodegradable, fire-resistant building components. These materials offer insulation, structural support, and acoustic dampening while reducing carbon footprint. Cultivated in molds, they form bricks, panels, and composites suitable for sustainable architecture. Mycelium's regenerative properties and low-energy production make it attractive for eco-conscious developers. Research institutions and startups are exploring its use in temporary shelters, interior design, and circular construction systems, redefining material science in green building.

According to research from the Delft University of Technology, mycelium-based composites demonstrate superior acoustic absorption and fire-resistant properties compared to many traditional synthetic insulation materials.

Market Dynamics:

Driver:

Rising adoption of bio-based composites

The growing demand for sustainable materials is driving adoption of bio-based composites, with mycelium emerging as a viable alternative to plastics and synthetic foams. Mycelium composites are biodegradable, low-carbon, and derived from agricultural waste, making them attractive for packaging, construction, and furniture. As industries seek eco-friendly solutions, mycelium's renewability and low energy production footprint support its market expansion. Government regulations promoting green materials and rising consumer awareness further accelerate the shift toward bio-based composite adoption.

Restraint:

Low structural strength and durability

Despite environmental advantages, mycelium composites face limitations in structural strength and long-term durability. Compared to conventional materials like plastics or engineered wood, mycelium may degrade faster under moisture, heat, or mechanical stress. These performance constraints restrict its use in load-bearing or outdoor applications. Manufacturers must invest in hybrid formulations, coatings, and reinforcement techniques to improve resilience. Until durability challenges are resolved, adoption will remain concentrated in low-impact, decorative, or short-term use cases.

Opportunity:

Development of hybrid mycelium composites

Advancements in material science are enabling the development of hybrid mycelium composites that combine fungal biomass with natural fibers, resins, or bio-polymers. These hybrids enhance mechanical properties while retaining biodegradability. Applications are expanding into automotive interiors, acoustic panels, and modular architecture. Research institutions and startups are exploring scalable fabrication methods and performance optimization. As hybridization improves strength, fire resistance, and water tolerance, it opens new commercial pathways for mycelium-based materials across industries seeking sustainable innovation.

Threat:

Limited scalability in mass production

Scaling mycelium composite production remains a challenge due to biological growth cycles, substrate variability, and mold sensitivity. Unlike synthetic materials, mycelium requires controlled environments and time-intensive cultivation, limiting throughput. Inconsistent quality and contamination risks further complicate industrial scaling. Automation, standardized substrates, and modular growth systems are being explored to address these issues. Until reliable mass production is achieved, large-scale adoption in mainstream manufacturing will be constrained, posing a threat to market growth.

Covid-19 Impact:

The COVID-19 pandemic disrupted global supply chains and heightened interest in local, sustainable materials. Mycelium composites gained attention as eco-friendly substitutes for packaging and interior design, especially in low-contact environments. Remote work and e-commerce growth increased demand for biodegradable packaging solutions. However, R&D and pilot production faced delays due to lab closures and funding constraints. Post-pandemic, the market is rebounding with renewed focus on circular economy principles and resilient material sourcing, positioning mycelium composites for long-term relevance.

The mycelium-composites segment is expected to be the largest during the forecast period

The mycelium-composites segment is expected to account for the largest market share during the forecast period, due to its versatility, biodegradability, and growing acceptance across industries. These composites are used in packaging, furniture, insulation, and design applications. Their ability to be molded into various shapes and their low environmental impact make them ideal for sustainable product development. As awareness of plastic pollution rises, companies are adopting mycelium-based alternatives to meet ESG goals. Continued innovation in texture, strength, and aesthetics will sustain segment leadership.

The mold-grown fabrication segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the mold-grown fabrication segment is predicted to witness the highest growth rate, driven by its scalability and design flexibility. This method involves growing mycelium into predefined molds, enabling customized shapes and consistent quality. It supports applications in packaging, architecture, and consumer goods. Mold-grown techniques reduce waste and labor, making them attractive for commercial production. As automation and substrate optimization improve, mold-grown fabrication will become the preferred method for high-volume, sustainable manufacturing of mycelium-based products.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, fueled by rapid industrialization, environmental regulations, and growing demand for sustainable materials. Countries like China, India, and Japan are investing in bio-composite research and green infrastructure. The region's agricultural base provides abundant feedstock for mycelium cultivation. Government initiatives promoting circular economy and eco-packaging further support market growth. Local startups and academic institutions are driving innovation, making Asia Pacific a hub for bio-based material development.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR due to its strong sustainability focus, advanced R&D ecosystem, and early adoption of mycelium-based products. The U.S. and Canada are home to leading startups and design firms experimenting with mycelium in packaging, furniture, and construction. Consumer demand for eco-friendly goods and corporate ESG commitments are accelerating market penetration. Supportive policies, venture capital funding, and collaborations with universities position North America as a growth engine for mycelium composites.

Key players in the market

Some of the key players in Mycelium-Hybrid Construction Materials Market include Ecovative, MycoWorks, Mogu, Biohm, Bolt Threads, Zeoform, Mycelium Materials Europe, Grown Bio, MycoComposite, Ecovative GIY, BiofabriQ, Paradise Packaging, Livin Studio, Loop Biotech, Mycotech Lab and Nature's Fynd.

Key Developments:

In October 2025, Ecovative announced the launch of its "Foria Hearth" mycelium-insulated wall panel, a fire-retardant bio-material designed for interior residential construction that sequesters carbon and improves indoor air quality.

In September 2025, Biohm introduced the new "Orb" mycelium-based acoustic ceiling tile system, which utilizes agricultural waste and is fully compostable at end-of-life, targeting the commercial office and architectural markets for its superior sound absorption.

In August 2025, MycoWorks launched its "Reishi Structural" mycelium composite, a high-density, load-bearing block for use in semi-structural applications and interior design features, offering an alternative to traditional masonry and wood.

Types Covered:

  • Mycelium-Composites
  • Mycelium-Concrete Hybrids
  • Mycelium-Bioplastic Hybrids
  • Mycelium-Wood Blends

Manufacturing Processes Covered:

  • Mold-Grown Fabrication
  • Layered Composite Formation
  • Injection Molding Integration
  • Additive Manufacturing Techniques

Applications Covered:

  • Insulation Panels
  • Structural Components
  • Interior Furnishings
  • Acoustic Panels
  • Decorative Architecture

End Users Covered:

  • Residential Buildings
  • Commercial Buildings
  • Industrial Construction
  • Green Building Projects

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Mycelium-Hybrid Construction Materials Market, By Type

  • 5.1 Introduction
  • 5.2 Mycelium-Composites
  • 5.3 Mycelium-Concrete Hybrids
  • 5.4 Mycelium-Bioplastic Hybrids
  • 5.5 Mycelium-Wood Blends

6 Global Mycelium-Hybrid Construction Materials Market, By Manufacturing Process

  • 6.1 Introduction
  • 6.2 Mold-Grown Fabrication
  • 6.3 Layered Composite Formation
  • 6.4 Injection Molding Integration
  • 6.5 Additive Manufacturing Techniques

7 Global Mycelium-Hybrid Construction Materials Market, By Application

  • 7.1 Introduction
  • 7.2 Insulation Panels
  • 7.3 Structural Components
  • 7.4 Interior Furnishings
  • 7.5 Acoustic Panels
  • 7.6 Decorative Architecture

8 Global Mycelium-Hybrid Construction Materials Market, By End User

  • 8.1 Introduction
  • 8.2 Residential Buildings
  • 8.3 Commercial Buildings
  • 8.4 Industrial Construction
  • 8.5 Green Building Projects

9 Global Mycelium-Hybrid Construction Materials Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Ecovative
  • 11.2 MycoWorks
  • 11.3 Mogu
  • 11.4 Biohm
  • 11.5 Bolt Threads
  • 11.6 Zeoform
  • 11.7 Mycelium Materials Europe
  • 11.8 Grown Bio
  • 11.9 MycoComposite
  • 11.10 Ecovative GIY
  • 11.11 BiofabriQ
  • 11.12 Paradise Packaging
  • 11.13 Livin Studio
  • 11.14 Loop Biotech
  • 11.15 Mycotech Lab
  • 11.16 Nature's Fynd

List of Tables

  • Table 1 Global Mycelium-Hybrid Construction Materials Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Mycelium-Hybrid Construction Materials Market Outlook, By Type (2024-2032) ($MN)
  • Table 3 Global Mycelium-Hybrid Construction Materials Market Outlook, By Mycelium-Composites (2024-2032) ($MN)
  • Table 4 Global Mycelium-Hybrid Construction Materials Market Outlook, By Mycelium-Concrete Hybrids (2024-2032) ($MN)
  • Table 5 Global Mycelium-Hybrid Construction Materials Market Outlook, By Mycelium-Bioplastic Hybrids (2024-2032) ($MN)
  • Table 6 Global Mycelium-Hybrid Construction Materials Market Outlook, By Mycelium-Wood Blends (2024-2032) ($MN)
  • Table 7 Global Mycelium-Hybrid Construction Materials Market Outlook, By Manufacturing Process (2024-2032) ($MN)
  • Table 8 Global Mycelium-Hybrid Construction Materials Market Outlook, By Mold-Grown Fabrication (2024-2032) ($MN)
  • Table 9 Global Mycelium-Hybrid Construction Materials Market Outlook, By Layered Composite Formation (2024-2032) ($MN)
  • Table 10 Global Mycelium-Hybrid Construction Materials Market Outlook, By Injection Molding Integration (2024-2032) ($MN)
  • Table 11 Global Mycelium-Hybrid Construction Materials Market Outlook, By Additive Manufacturing Techniques (2024-2032) ($MN)
  • Table 12 Global Mycelium-Hybrid Construction Materials Market Outlook, By Application (2024-2032) ($MN)
  • Table 13 Global Mycelium-Hybrid Construction Materials Market Outlook, By Insulation Panels (2024-2032) ($MN)
  • Table 14 Global Mycelium-Hybrid Construction Materials Market Outlook, By Structural Components (2024-2032) ($MN)
  • Table 15 Global Mycelium-Hybrid Construction Materials Market Outlook, By Interior Furnishings (2024-2032) ($MN)
  • Table 16 Global Mycelium-Hybrid Construction Materials Market Outlook, By Acoustic Panels (2024-2032) ($MN)
  • Table 17 Global Mycelium-Hybrid Construction Materials Market Outlook, By Decorative Architecture (2024-2032) ($MN)
  • Table 18 Global Mycelium-Hybrid Construction Materials Market Outlook, By End User (2024-2032) ($MN)
  • Table 19 Global Mycelium-Hybrid Construction Materials Market Outlook, By Residential Buildings (2024-2032) ($MN)
  • Table 20 Global Mycelium-Hybrid Construction Materials Market Outlook, By Commercial Buildings (2024-2032) ($MN)
  • Table 21 Global Mycelium-Hybrid Construction Materials Market Outlook, By Industrial Construction (2024-2032) ($MN)
  • Table 22 Global Mycelium-Hybrid Construction Materials Market Outlook, By Green Building Projects (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.