封面
市場調查報告書
商品編碼
1876708

2032年電網級儲能市場預測:按技術、所有權模式、經營模式、應用、最終用戶和區域分類的全球分析

Grid-Scale Energy Storage Market Forecasts to 2032 - Global Analysis By Technology, Ownership Model, Business Model, Application, End User, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的一項研究,預計到 2025 年,全球電網級儲能市場價值將達到 325 億美元,到 2032 年將達到 1,545 億美元。

預計在預測期內,電網級儲能將以24.9%的複合年成長率成長。電網級儲能整合了大型電池、抽水蓄能和熱能儲存技術,以平衡整個電網的供需。這提高了可再生能源的調度能力,改善了電網穩定性,並減少了對調峰電廠的依賴。電力公司、獨立發電企業和電網營運商正在利用儲能技術進行頻率穩定、降低尖峰需求和提供備用電源。電池成本下降、扶持政策以及可再生能源滲透率的提高正在推動相關投資。

根據國際能源總署(IEA)的數據,到 2022 年底,電網級電池儲能設施的總裝置容量將達到約 28GW,預計電池將繼續推動儲能設施的成長。

更廣泛地整合間歇性再生能源來源

間歇性再生能源來源併網程度的不斷提高,推動了對電網級儲能的需求,以平抑供電波動並穩定電網。電池和其他儲能系統在可再生發電高峰期儲存過剩電能,並在發電量較低時釋放,從而提高系統可靠性並減少棄風棄光。這種併網方式有助於提高可再生滲透率,支持輔助服務,並延緩基礎設施升級,使儲能成為公用事業公司和電網營運商在經濟上極具吸引力的選擇。此外,政策獎勵和技術成本的下降也進一步加速了儲能技術的部署。

初始投資成本高,投資回收期長

儘管電網級儲能具有許多營運優勢,但其高昂的初始資本成本和較長的投資回收期限制了其普及應用。電池、安裝和併網都需要大量投資,而收益則取決於市場結構、收費系統和運轉率。不明確的法規結構和分散的獎勵機制延長了投資回收期,並可能阻礙保守的電力公司和投資者。資金籌措機制和價值疊加策略正在不斷發展,但各地區之間仍存在不平衡,這導致成本敏感型市場的計劃推進進程受阻。

隨著能源需求的成長,業務拓展至新興市場

快速電氣化、可再生能源裝置容量的成長以及電網現代化改造的需求,正在推動對靈活性和可靠性服務的需求。在許多地區,老化的基礎設施和輸電限制使得社區儲能成為抑低尖峰負載和延緩資本密集升級改造的理想選擇。本地夥伴關係、客製化資金籌措和模組化技術降低了市場准入門檻,使供應商能夠獲得長期合約並支持永續能源轉型。優惠融資和補貼將進一步推動市場成長。

關鍵物資供應鏈中斷

關鍵材料供應鏈中斷對電網級儲能市場構成重大威脅,導致生產受限和成本上升。電池化學體系對某些礦物的依賴使製造商面臨地緣政治風險、出口限制和原物料價格波動。物流瓶頸和加工能力集中在少數國家可能導致計劃延期和資金需求增加。製造商正在努力實現供應來源多元化、實施回收計劃並採用替代化學體系,但這些措施需要時間和投資才能有效擴大規模。

新冠疫情的感染疾病:

關鍵材料供應鏈中斷對電網級儲能市場構成重大威脅,因為這會限制生產並增加成本。電池化學體系對某些礦物的依賴使製造商面臨地緣政治風險、出口限制和原物料價格波動。物流瓶頸和加工能力集中在少數國家會導致計劃延期和資金需求增加。製造商正在尋求供應來源多元化、回收計劃和替代化學體系,但這些措施需要時間和投資才能有效擴大規模。

預計在預測期內,公共產業所有權部門將佔據最大的市場佔有率。

預計在預測期內,公共產業公司擁有的儲能系統將佔據最大的市場佔有率,因為整合大規模儲能系統能夠幫助公用事業公司最佳化電網運作並滿足公共產業要求。公共產業允許其進行協調運行,從而實現頻率調節、抑低尖峰負載並延緩輸電投資,最終帶來多元化的收入來源。公共產業能夠大量採購、有效利用財務資源並進行長期規劃,這有助於其降低成本,並使儲能計劃與整體系統需求保持一致。隨著法規結構朝著有利於靈活性的方向發展,公共產業正在主導各地區的儲能系統應用。

預計在預測期內,儲能即服務(ESaaS)細分市場將呈現最高的複合年成長率。

預計在預測期內,儲能即服務 (ESaaS) 領域將呈現最高的成長率,因為客戶對營運靈活性和前期成本的需求日益成長。 ESaaS 使聚合商能夠匯集資產並參與市場,從而實現頻率響應和需求費用管理等服務的商業化。技術標準化、先進的控制軟體和不斷發展的收費系統增強了基於服務的產品的商業價值。因此,ESaaS 可以透過客製化的商業合約和效能保證,開拓新的客戶群和地理市場。

佔比最大的地區:

亞太地區預計將在預測期內保持最大的市場佔有率,這主要得益於可再生能源的快速普及、工業電氣化以及公共產業的強勁投資。中國、日本、韓國和澳洲在容量擴張和採購計畫方面處於主導,這些計畫優先考慮儲能以整合可變發電。大規模的輸電網升級和配套的政策框架,包括容量市場和獎勵機制,正在吸引國內外供應商。不斷擴大的製造能力和本地計劃儲備進一步鞏固了該地區的市場主導地位。

複合年成長率最高的地區:

預計亞太地區在預測期內將實現最高的複合年成長率,不斷成長的能源需求和政策支持將推動儲能技術的快速普及。電氣化率的提高、可再生能源的增加以及對電網韌性的投資,正在為東南亞、印度和中國市場帶來強勁的利多因素。電池成本的下降和本地製造業的發展正在改善計劃的經濟效益,而國際供應商正與當地企業合作,擴大部署規模。與成熟市場相比,這些趨勢使該地區有望實現更快的成長。

免費客製化服務資訊:

購買此報告的客戶可享有以下免費自訂選項之一:

  • 公司概況
    • 對其他市場公司(最多 3 家公司)進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶要求,對主要國家的市場規模進行估算和預測,併計算複合年成長率(註:可行性需確認)。
  • 競爭基準化分析
    • 根據主要企業的產品系列、地理覆蓋範圍和策略聯盟基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 原始研究資料
    • 次級研究資訊來源
    • 先決條件

第3章 市場趨勢分析

  • 介紹
  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球電網級儲能市場(依技術分類)

  • 介紹
  • 電化學儲能
    • 鋰離子電池
    • 液流電池
    • 先進的鉛酸電池
    • 鈉基電池
    • 其他新興化學品
  • 機械能存儲
    • 抽水蓄能發電(PHS)
    • 壓縮空氣儲能(CAES)
    • 飛輪儲能(FES)
    • 重力儲存
  • 化學儲能
    • 氫氣(電能轉氣)
    • 合成天然氣(SNG)
  • 熱能儲存
    • 熔鹽
    • 冰庫
    • 其他顯熱和潛熱儲存

6. 全球電網級儲能市場(依所有權模式分類)

  • 介紹
  • 公共產業所有權
  • 獨立電力生產商(IPP)/開發商所有
  • 第三方所有

7. 全球電網級儲能市場(依經營模式分類)

  • 介紹
  • 建造-擁有-營運(BOO)
  • 建設-移交-運作(BTO)
  • 儲能即服務(ESaaS)
  • 租賃模式

8. 全球電網級儲能市場(依應用領域分類)

  • 介紹
  • 能源轉移和套利
  • 頻率調整(FR)
  • 尖峰容量/容量提升
  • 駭啟動服務
  • 電力傳輸和分配(T&D)延期
  • 可再生能源併網
  • 微電網和自用
  • 電力能量時移(EETS)
  • 電壓支撐/無功功率控制

9. 全球電網級儲能市場(依最終用戶分類)

  • 介紹
  • 公共產業
    • 投資者所有的公共產業(IOU)
    • 公共產業區 (PUD) 和地方政府公共產業
    • 電力合作社
  • 獨立電力生產商(IPP)和可再生能源開發商
  • 商業和工業(C&I)營業單位
  • 社區儲能和微電網聚合商
  • 系統營運商(ISO/RTO)
  • 住宅

10. 全球電網級儲能市場(按地區分類)

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與併購
  • 新產品上市
  • 業務拓展
  • 其他關鍵策略

第12章 企業概況

  • Fluence
  • Tesla, Inc.
  • LG Energy Solution, Ltd.
  • Contemporary Amperex Technology Co. Limited
  • BYD Company Limited
  • Siemens Energy AG
  • ABB Ltd
  • General Electric Company
  • Wartsila Corporation
  • Hitachi Energy
  • Mitsubishi Power, Ltd.
  • Toshiba Energy Systems & Solutions Corporation
  • TotalEnergies SE
  • Eos Energy Enterprises, Inc.
  • ESS Inc.
  • Invinity Energy Systems plc
  • Enel X Global Retail(Enel X)
  • NextEra Energy, Inc.
  • Black & Veatch Corporation
  • NEC Corporation
Product Code: SMRC32436

According to Stratistics MRC, the Global Grid-Scale Energy Storage Market is accounted for $32.5 billion in 2025 and is expected to reach $154.5 billion by 2032, growing at a CAGR of 24.9% during the forecast period. Grid-scale energy storage integrates large batteries, pumped hydro, thermal storage, and other technologies to balance supply and demand across electricity networks. It enables renewables to be dispatchable, improves grid stability, and reduces reliance on peaker plants. Utilities, independent power producers, and system operators use storage to keep the frequency stable, cut down on peak demand, and provide backup power. Falling battery costs, supportive policies, and rising renewable penetration drive investment.

According to the IEA, total installed grid-scale battery storage capacity was close to 28 GW at the end of 2022, with batteries projected to lead storage growth.

Market Dynamics:

Driver:

Rising integration of intermittent renewable energy sources

Rising integration of intermittent renewable energy sources drives demand for grid-scale energy storage by balancing supply variability and stabilizing grids. When renewable energy output is at its highest, batteries and other storage systems store the extra energy and release it when output drops. This makes the system more reliable and cuts down on curtailment. This integration enables higher renewable penetration, supports ancillary services, and defers infrastructure upgrades, making storage economically attractive for utilities and system operators. Additionally, policy incentives and falling technology costs further accelerate deployments.

Restraint:

High upfront capital costs and long payback periods

High upfront capital costs and long payback periods limit the adoption of energy storage systems at a grid scale despite operational benefits. Significant investment is required for batteries, installation, and grid interconnection, while revenue streams depend on market structures, tariffs, and capacity factors. Uncertain regulatory frameworks and fragmented incentive schemes can extend payback timelines, deterring conservative utility and investor appetite. Financing mechanisms and value-stacking strategies are evolving but remain uneven across regions, slowing project pipelines in cost-sensitive markets.

Opportunity:

Expansion into emerging markets with growing energy demand

Rapid electrification, rising renewable installations and grid modernization needs create demand for flexibility and reliability services. In many regions, aging infrastructure and transmission constraints make localized storage attractive for peak shaving and deferral of capital-intensive upgrades. Local partnerships, tailored financing, and modular technologies can lower entry barriers, enabling vendors to capture long-term contracts and support sustainable energy transitions. Concessional finance and subsidies will support market growth.

Threat:

Supply chain disruptions for critical materials

Supply chain disruptions for critical materials pose a significant threat to the market for grid-scale energy storage by constraining production and raising costs. Dependence on specific minerals for battery chemistries exposes manufacturers to geopolitical risks, export controls, and raw material volatility. Logistics bottlenecks and concentration of processing capacity in a few countries can delay project timelines and increase capital requirements. Manufacturers are diversifying supply sources, recycling initiatives, and alternative chemistries, but these responses require time and investment to scale effectively.

Covid-19 Impact:

Supply chain disruptions for critical materials pose a significant threat to the market for grid-scale energy storage by constraining production and raising costs. Dependence on specific minerals for battery chemistries exposes manufacturers to geopolitical risks, export controls, and raw material volatility. Logistics bottlenecks and concentration of processing capacity in a few countries can delay project timelines and increase capital requirements. Manufacturers are diversifying supply sources, recycling initiatives, and alternative chemistries, but these responses require time and investment to scale effectively.

The utility-owned segment is expected to be the largest during the forecast period

The utility-owned segment is expected to account for the largest market share during the forecast period because utilities can integrate large-scale storage to optimize grid operations and meet regulatory obligations. Utility ownership enables coordinated dispatch for frequency regulation, peak shaving, and deferred transmission investments, capturing multiple revenue streams. Utilities can buy in bulk, use their financial resources effectively, and plan for the long term, which helps them save money and align storage projects with their overall system needs As regulatory frameworks evolve to value flexibility, utilities lead deployments across regions.

The energy storage-as-a-service (ESaaS) segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the energy storage-as-a-service (ESaaS) segment is predicted to witness the highest growth rate as customers increasingly prefer operational flexibility and lower upfront costs. ESaaS allows aggregators to pool assets for market participation, monetizing services like frequency response and demand charge management. Technology standardization, sophisticated control software, and evolving tariff structures enhance the business case for service-based offerings. Consequently, ESaaS can unlock new customer segments and geographic markets with tailored commercial arrangements and managed performance guarantees.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by rapid renewable deployment, industrial electrification, and strong utility investment. China, Japan, South Korea, and Australia lead in capacity additions and procurement programs that prioritize storage to integrate variable generation. Large-scale grid upgrades and supportive policy frameworks, including capacity markets and incentive schemes, attract both domestic and international suppliers. Growing manufacturing capability and localized project pipelines further consolidate the region's market dominance.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, as expanding energy demand and policy support drive rapid storage uptake. Rising electrification, increasing renewables, and investment in grid resilience create strong market tailwinds across Southeast Asia, India, and China. Cost reductions in batteries and growing local manufacturing improve project economics, while international vendors partner with local players to scale deployments. These dynamics position the region for accelerated growth relative to mature markets.

Key players in the market

Some of the key players in Grid-Scale Energy Storage Market include Fluence, Tesla, Inc., LG Energy Solution, Ltd., Contemporary Amperex Technology Co. Limited, BYD Company Limited, Siemens Energy AG, ABB Ltd, General Electric Company, Wartsila Corporation, Hitachi Energy, Mitsubishi Power, Ltd., Toshiba Energy Systems & Solutions Corporation, TotalEnergies SE, Eos Energy Enterprises, Inc., ESS Inc., Invinity Energy Systems plc, Enel X Global Retail (Enel X), NextEra Energy, Inc., Black & Veatch Corporation, and NEC Corporation.

Key Developments:

In August 2025, Global energy storage technology and energy software services provider Fluence and ACE Engineering have opened a new automated battery storage manufacturing facility in Vietnam's Bac Giang Province. The facility, which boasts an annual manufacturing capacity of 35GWh, will produce Fluence's Gridstack Pro and Smartstack energy storage systems using fully automated production processes designed to enhance productivity and quality control.

In August 2025, CATL, a global leader in innovative energy storage solutions, unveiled its latest technologies in its debut at the Smarter E South America 2025, the largest energy storage exhibition on the continent. TENER Stack currently the World's first stackable, 9MWh ultra-large capacity energy storage system is adaptable to CATL's different cell technologies, offering either up to five years of zero degradation or high-temperature resistance. It is suitable for South America's varied climates, underscoring CATL's commitment to sustainable energy development throughout the region.

In March 2025, LG Energy Solution announced today that it has signed an agreement with PGE, Poland's largest energy sector company, to supply 981MWh of grid-scale ESS batteries between 2026 and 2027. Both companies will collaborate to establish a battery energy storage facility in zarnowiec, Poland. PGE plans to commence the project's commercial operation in 2027.

Technologies Covered:

  • Electrochemical Energy Storage
  • Mechanical Energy Storage
  • Chemical Energy Storage
  • Thermal Energy Storage

Ownership Models Covered:

  • Utility-Owned
  • Independent Power Producer (IPP) / Developer-Owned
  • Third-Party Owned

Business Models Covered:

  • Build-Own-Operate (BOO)
  • Build-Transfer-Operate (BTO)
  • Energy Storage-as-a-Service (ESaaS)
  • Leasing Models

Applications Covered:

  • Energy Shifting & Arbitrage
  • Frequency Regulation (FR)
  • Peak Capacity / Capacity Firming
  • Black Start Services
  • Transmission & Distribution (T&D) Deferral
  • Renewables Integration
  • Microgrids and Self-Consumption
  • Electric Energy Time-Shift (EETS)
  • Voltage Support / Reactive Power Control

End Users Covered:

  • Utilities
  • Independent Power Producers (IPPs) & Renewable Energy Developers
  • Commercial & Industrial (C&I) Entities
  • Community Storage & Microgrid Aggregators
  • System Operators (ISOs/RTOs)
  • Residential

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Grid-Scale Energy Storage Market, By Technology

  • 5.1 Introduction
  • 5.2 Electrochemical Energy Storage
    • 5.2.1 Lithium-Ion Batteries
    • 5.2.2 Flow Batteries
    • 5.2.3 Advanced Lead-Acid Batteries
    • 5.2.4 Sodium-Based Batteries
    • 5.2.5 Other Emerging Chemistries
  • 5.3 Mechanical Energy Storage
    • 5.3.1 Pumped Hydro Storage (PHS)
    • 5.3.2 Compressed Air Energy Storage (CAES)
    • 5.3.3 Flywheel Energy Storage (FES)
    • 5.3.4 Gravity-based Storage
  • 5.4 Chemical Energy Storage
    • 5.4.1 Hydrogen (Power-to-Gas)
    • 5.4.2 Synthetic Natural Gas (SNG)
  • 5.5 Thermal Energy Storage
    • 5.5.1 Molten Salt
    • 5.5.2 Ice Storage
    • 5.5.3 Other Sensible and Latent Heat Storage

6 Global Grid-Scale Energy Storage Market, By Ownership Model

  • 6.1 Introduction
  • 6.2 Utility-Owned
  • 6.3 Independent Power Producer (IPP) / Developer-Owned
  • 6.4 Third-Party Owned

7 Global Grid-Scale Energy Storage Market, By Business Model

  • 7.1 Introduction
  • 7.2 Build-Own-Operate (BOO)
  • 7.3 Build-Transfer-Operate (BTO)
  • 7.4 Energy Storage-as-a-Service (ESaaS)
  • 7.5 Leasing Models

8 Global Grid-Scale Energy Storage Market, By Application

  • 8.1 Introduction
  • 8.2 Energy Shifting & Arbitrage
  • 8.3 Frequency Regulation (FR)
  • 8.4 Peak Capacity / Capacity Firming
  • 8.5 Black Start Services
  • 8.6 Transmission & Distribution (T&D) Deferral
  • 8.7 Renewables Integration
  • 8.8 Microgrids and Self-Consumption
  • 8.9 Electric Energy Time-Shift (EETS)
  • 8.10 Voltage Support / Reactive Power Control

9 Global Grid-Scale Energy Storage Market, By End User

  • 9.1 Introduction
  • 9.2 Utilities
    • 9.2.1 Investor-Owned Utilities (IOUs)
    • 9.2.2 Public Utility Districts (PUDs) & Municipal Utilities
    • 9.2.3 Electric Cooperatives
  • 9.3 Independent Power Producers (IPPs) & Renewable Energy Developers
  • 9.4 Commercial & Industrial (C&I) Entities
  • 9.5 Community Storage & Microgrid Aggregators
  • 9.6 System Operators (ISOs/RTOs)
  • 9.7 Residential

10 Global Grid-Scale Energy Storage Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Fluence
  • 12.2 Tesla, Inc.
  • 12.3 LG Energy Solution, Ltd.
  • 12.4 Contemporary Amperex Technology Co. Limited
  • 12.5 BYD Company Limited
  • 12.6 Siemens Energy AG
  • 12.7 ABB Ltd
  • 12.8 General Electric Company
  • 12.9 Wartsila Corporation
  • 12.10 Hitachi Energy
  • 12.11 Mitsubishi Power, Ltd.
  • 12.12 Toshiba Energy Systems & Solutions Corporation
  • 12.13 TotalEnergies SE
  • 12.14 Eos Energy Enterprises, Inc.
  • 12.15 ESS Inc.
  • 12.16 Invinity Energy Systems plc
  • 12.17 Enel X Global Retail (Enel X)
  • 12.18 NextEra Energy, Inc.
  • 12.19 Black & Veatch Corporation
  • 12.20 NEC Corporation

List of Tables

  • Table 1 Global Grid-Scale Energy Storage Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Grid-Scale Energy Storage Market Outlook, By Technology (2024-2032) ($MN)
  • Table 3 Global Grid-Scale Energy Storage Market Outlook, By Electrochemical Energy Storage (2024-2032) ($MN)
  • Table 4 Global Grid-Scale Energy Storage Market Outlook, By Lithium-Ion Batteries (2024-2032) ($MN)
  • Table 5 Global Grid-Scale Energy Storage Market Outlook, By Flow Batteries (2024-2032) ($MN)
  • Table 6 Global Grid-Scale Energy Storage Market Outlook, By Advanced Lead-Acid Batteries (2024-2032) ($MN)
  • Table 7 Global Grid-Scale Energy Storage Market Outlook, By Sodium-Based Batteries (2024-2032) ($MN)
  • Table 8 Global Grid-Scale Energy Storage Market Outlook, By Other Emerging Chemistries (2024-2032) ($MN)
  • Table 9 Global Grid-Scale Energy Storage Market Outlook, By Mechanical Energy Storage (2024-2032) ($MN)
  • Table 10 Global Grid-Scale Energy Storage Market Outlook, By Pumped Hydro Storage (PHS) (2024-2032) ($MN)
  • Table 11 Global Grid-Scale Energy Storage Market Outlook, By Compressed Air Energy Storage (CAES) (2024-2032) ($MN)
  • Table 12 Global Grid-Scale Energy Storage Market Outlook, By Flywheel Energy Storage (FES) (2024-2032) ($MN)
  • Table 13 Global Grid-Scale Energy Storage Market Outlook, By Gravity-based Storage (2024-2032) ($MN)
  • Table 14 Global Grid-Scale Energy Storage Market Outlook, By Chemical Energy Storage (2024-2032) ($MN)
  • Table 15 Global Grid-Scale Energy Storage Market Outlook, By Hydrogen (Power-to-Gas) (2024-2032) ($MN)
  • Table 16 Global Grid-Scale Energy Storage Market Outlook, By Synthetic Natural Gas (SNG) (2024-2032) ($MN)
  • Table 17 Global Grid-Scale Energy Storage Market Outlook, By Thermal Energy Storage (2024-2032) ($MN)
  • Table 18 Global Grid-Scale Energy Storage Market Outlook, By Molten Salt (2024-2032) ($MN)
  • Table 19 Global Grid-Scale Energy Storage Market Outlook, By Ice Storage (2024-2032) ($MN)
  • Table 20 Global Grid-Scale Energy Storage Market Outlook, By Other Sensible and Latent Heat Storage (2024-2032) ($MN)
  • Table 21 Global Grid-Scale Energy Storage Market Outlook, By Ownership Model (2024-2032) ($MN)
  • Table 22 Global Grid-Scale Energy Storage Market Outlook, By Utility-Owned (2024-2032) ($MN)
  • Table 23 Global Grid-Scale Energy Storage Market Outlook, By Independent Power Producer (IPP) / Developer-Owned (2024-2032) ($MN)
  • Table 24 Global Grid-Scale Energy Storage Market Outlook, By Third-Party Owned (2024-2032) ($MN)
  • Table 25 Global Grid-Scale Energy Storage Market Outlook, By Business Model (2024-2032) ($MN)
  • Table 26 Global Grid-Scale Energy Storage Market Outlook, By Build-Own-Operate (BOO) (2024-2032) ($MN)
  • Table 27 Global Grid-Scale Energy Storage Market Outlook, By Build-Transfer-Operate (BTO) (2024-2032) ($MN)
  • Table 28 Global Grid-Scale Energy Storage Market Outlook, By Energy Storage-as-a-Service (ESaaS) (2024-2032) ($MN)
  • Table 29 Global Grid-Scale Energy Storage Market Outlook, By Leasing Models (2024-2032) ($MN)
  • Table 30 Global Grid-Scale Energy Storage Market Outlook, By Application (2024-2032) ($MN)
  • Table 31 Global Grid-Scale Energy Storage Market Outlook, By Energy Shifting & Arbitrage (2024-2032) ($MN)
  • Table 32 Global Grid-Scale Energy Storage Market Outlook, By Frequency Regulation (FR) (2024-2032) ($MN)
  • Table 33 Global Grid-Scale Energy Storage Market Outlook, By Peak Capacity / Capacity Firming (2024-2032) ($MN)
  • Table 34 Global Grid-Scale Energy Storage Market Outlook, By Black Start Services (2024-2032) ($MN)
  • Table 35 Global Grid-Scale Energy Storage Market Outlook, By Transmission & Distribution (T&D) Deferral (2024-2032) ($MN)
  • Table 36 Global Grid-Scale Energy Storage Market Outlook, By Renewables Integration (2024-2032) ($MN)
  • Table 37 Global Grid-Scale Energy Storage Market Outlook, By Microgrids and Self-Consumption (2024-2032) ($MN)
  • Table 38 Global Grid-Scale Energy Storage Market Outlook, By Electric Energy Time-Shift (EETS) (2024-2032) ($MN)
  • Table 39 Global Grid-Scale Energy Storage Market Outlook, By Voltage Support / Reactive Power Control (2024-2032) ($MN)
  • Table 40 Global Grid-Scale Energy Storage Market Outlook, By End User (2024-2032) ($MN)
  • Table 41 Global Grid-Scale Energy Storage Market Outlook, By Utilities (2024-2032) ($MN)
  • Table 42 Global Grid-Scale Energy Storage Market Outlook, By Investor-Owned Utilities (IOUs) (2024-2032) ($MN)
  • Table 43 Global Grid-Scale Energy Storage Market Outlook, By Public Utility Districts (PUDs) & Municipal Utilities (2024-2032) ($MN)
  • Table 44 Global Grid-Scale Energy Storage Market Outlook, By Electric Cooperatives (2024-2032) ($MN)
  • Table 45 Global Grid-Scale Energy Storage Market Outlook, By Independent Power Producers (IPPs) & Renewable Energy Developers (2024-2032) ($MN)
  • Table 46 Global Grid-Scale Energy Storage Market Outlook, By Commercial & Industrial (C&I) Entities (2024-2032) ($MN)
  • Table 47 Global Grid-Scale Energy Storage Market Outlook, By Community Storage & Microgrid Aggregators (2024-2032) ($MN)
  • Table 48 Global Grid-Scale Energy Storage Market Outlook, By System Operators (ISOs/RTOs) (2024-2032) ($MN)
  • Table 49 Global Grid-Scale Energy Storage Market Outlook, By Residential (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.