封面
市場調查報告書
商品編碼
1876705

2032年離岸風力發電市場預測:按組件、安裝類型、渦輪機容量、位置、應用和區域分類的全球分析

Offshore Wind Power Market Forecasts to 2032 - Global Analysis By Component, Installation Type, Turbine Capacity, Location/Water Depth, Application, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的一項研究,預計到 2025 年,全球離岸風力發電市場規模將達到 551 億美元,到 2032 年將達到 1,354 億美元。

預計在預測期內,離岸風電市場將以13.7%的複合年成長率高速成長。離岸風力發電是指利用固定式和浮體式風力渦輪機技術在海上開發風電場,以利用更強勁、更穩定的風能。更大的渦輪機和改進的基礎結構提高了運轉率,使離岸風力發電成為大規模可再生能源發電領域的重要力量。計劃開發需要海洋許可、併網許可和大量資本投資,並且通常需要購電協議或政府競標系統的支援。

強而有力的政府政策與可再生能源目標

強而有力的政府政策和可再生能源目標透過提供明確的市場訊號和財政支持,加速了離岸風力發電的部署。國家和地區競標、補貼以及長期購電協議降低了開發商的收入不確定性,並吸引了機構投資者。此外,海洋空間規劃和協調一致的輸電網升級為大型計劃位置提供了便利,而北海和亞洲的多邊合作則促進了跨境基礎設施建設。這些措施降低了計劃風險,促進了供應鏈的擴展,並刺激了成本的降低。

高額資本支出及計劃開發成本

高昂的資本支出和計劃開發成本正在限制離岸風力發電的發展,因為它們提高了進入門檻並延長了投資回收期。渦輪機、基礎結構、專用安裝船、港口改造和電網連接的成本推高了初始預算,而近期供應鏈的壓力進一步增加了材料和物流成本。此外,不斷上漲的資金籌措成本和複雜的核准程序增加了計劃風險,並嚇退了一些投資者。這些成本壓力正在減緩計劃推進速度,並可能導致策略性終止或縮減專案規模。

深海域浮體式海上風電技術的發展

浮體式海上風電技術的發展蘊藏著巨大的機遇,使得在傳統固定式風力渦輪機無法觸及的深海域中計劃成為可能。浮體式平台能夠利用更遠海域更強勁、更穩定的風力資源,進而提高容量係數和發電量。歐洲和亞洲的先導計畫已證實了該技術的可行性,並透過規模化和設計改進降低了成本。此外,將海上製氫與其他再生能源來源結合,預計將為開發商開闢新的收入來源,並加速這些技術走向全球市場的進程。

與其他再生能源來源的競爭

來自陸上風電和太陽能光電等其他可再生能源的競爭,因其更低的資本成本和更快的部署速度,對離岸風電構成了挑戰。這些優勢吸引了優先考慮近期產能擴張的政策制定者和投資者的注意。太陽能和陸上風電平準化度電成本(LCOE)的下降,以及儲能技術的快速普及,可能會降低對資本密集離岸風計劃的迫切需求。此外,混合系統和靈活發電方式也會影響電力系統的經濟性,迫使離岸風電開發商贏得競爭性契約,並證明其系統的價值。

新冠疫情的感染疾病:

新冠疫情對離岸風力發電造成了衝擊,供應鏈延誤、勞動力短缺和港口臨時關閉導致專案延期和成本增加。封鎖和旅行限制阻礙了海上船舶作業,而衛生通訊協定則增加了物流複雜性和保險方面的考量。然而,政府採取的有針對性的經濟措施、靈活的計劃管理以及對關鍵供應鏈的優先保障,有效限制了疫情造成的長期損害。數位化協作和加速的緊急時應對計畫幫助產業復甦,維持了投資者信心和策略部署計畫的順利進行。

預計在預測期內,風力發電機細分市場將佔據最大的市場佔有率。

預計在預測期內,風力發電機領域將佔據最大的市場佔有率,其提供的核心發電設備決定了計劃的容量、成本和性能。渦輪機訂單佔資本支出的很大一部分,而諸如更大轉子直徑和更高容量機艙等技術進步提高了能源產量並降低了平準化能源成本。原始設備製造商 (OEM)、渦輪機資金籌措模式以及較長的前置作業時間使得渦輪機成為計劃經濟效益的核心。這導致對下一代渦輪機和服務合約的需求不斷成長,有力地支持了全球長期脫碳目標的實現。

預計在預測期內,浮體式結構物領域將實現最高的複合年成長率。

預計在預測期內,浮體式結構領域將實現最高成長率,這主要得益於亞太地區、日本和歐洲西海岸等深海域計劃儲備的不斷擴大。該技術憑藉其部署大規模計劃、在更強風力條件下作業以及提供選址靈活性的潛力,正吸引眾多開發商。工業化進程正在降低單位成本,並推動供應鏈的成熟,從而提高融資方的風險接受度,促進技術的更快普及和更廣泛地進入全球市場。

佔比最大的地區:

在預測期內,歐洲預計將保持最大的市場佔有率,這得益於其成熟的供應鏈、廣闊的淺海大陸棚以及歐盟和英國強力的政策承諾。長期以來對港口、安裝船舶和本地製造業的投資,有助於計劃快速推進和成本降低。圍繞北海基礎設施和競標項目的區域合作,確保了管道建設的穩定性。此外,雄心勃勃的可再生能源目標和既定的市場規則,也為專案的持續部署和相關技術的出口提供了支持。

複合年成長率最高的地區:

預計亞太地區在預測期內將實現最高的複合年成長率,沿海國家正加速擴大可再生能源裝置容量,以滿足其氣候和能源安全目標。快速成長的電力需求、中國、台灣、韓國和日本沿海豐富的風能資源以及不斷提升的國內製造業能力將推動成長。此外,政策獎勵、競標機制和在地採購要求將促進供應鏈發展。加之國內外企業投資不斷增加,該地區正積極推動國際夥伴關係。

免費客製化服務:

購買此報告的客戶可享有以下免費自訂選項之一:

  • 公司概況
    • 對其他市場公司(最多 3 家公司)進行全面分析
    • 主要企業SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶要求,對主要國家的市場規模和複合年成長率進行估算和預測(註:可行性需確認)。
  • 競爭基準化分析
    • 根據主要企業的產品系列、地理覆蓋範圍和策略聯盟基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 原始研究資料
    • 次級研究資訊來源
    • 先決條件

第3章 市場趨勢分析

  • 介紹
  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 應用分析
  • 新興市場
  • 新冠疫情的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球離岸風力發電市場(依組件分類)

  • 介紹
  • 風力發電機
    • 葉輪
    • 短艙
  • 電力基礎設施
    • 陣列電纜和出口電纜
    • 海上變電站(交流/直流)
    • 陸上變電站
  • 其他部件

6. 全球離岸風力發電市場依安裝類型分類

  • 介紹
  • 固定結構
    • 單樁
    • 夾克
    • 基於重力的結構(GBS)
    • 三腳架/三腳架
  • 浮體結構
    • 半潛式
    • 浮標
    • 張力腳平臺(TLP)
    • 駁船

7. 全球離岸風力發電市場(依渦輪機容量分類)

  • 介紹
  • 最高可達5兆瓦
  • 5MW~10MW
  • 超過10兆瓦

8. 全球離岸風力發電市場(依地區分類)

  • 介紹
  • 淺水區(水深小於30公尺)
  • 過渡水域(水深30公尺至60公尺)
  • 深海(水深60公尺或以上 - 主要用於浮動式風力發電)

第9章 全球離岸風力發電市場依應用領域分類

  • 介紹
  • 大規模發電
  • 商業和工業 (C&I)計劃
  • 綠色氫氣生產

第10章 全球離岸風力發電市場(按地區分類)

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與併購
  • 新產品上市
  • 業務拓展
  • 其他關鍵策略

第12章:企業概況

  • Orsted A/S
  • Vestas Wind Systems A/S
  • Siemens Gamesa Renewable Energy SA
  • GE Renewable Energy
  • Equinor ASA
  • RWE AG
  • Iberdrola SA
  • SSE plc
  • Vattenfall AB
  • EnBW Energie Baden-Wurttemberg AG
  • China Three Gorges Corporation
  • Mingyang Smart Energy Group Co., Ltd.
  • Goldwind Science & Technology Co., Ltd.
  • BP plc
  • Shell plc
  • Northland Power Inc.
  • Jan De Nul Group
  • Royal Van Oord NV
Product Code: SMRC32452

According to Stratistics MRC, the Global Offshore Wind Power Market is accounted for $55.1 billion in 2025 and is expected to reach $135.4 billion by 2032, growing at a CAGR of 13.7% during the forecast period. Offshore wind power develops wind farms located at sea using fixed-bottom and floating turbine technologies to capture stronger, steadier winds. Larger turbine sizes and improved foundations drive higher capacity factors, making offshore attractive for utility-scale renewable generation. Project development requires marine permitting, grid connection, and substantial capital investment, often supported by power purchase agreements and government auctions.

Market Dynamics:

Driver:

Strong government policies and renewable energy targets

Strong government policies and renewable energy targets have accelerated offshore wind deployment by providing clear market signals and financial backing. National and regional auctions, subsidies, and long-term power purchase agreements reduce revenue uncertainty for developers and attract institutional investment. Moreover, maritime spatial planning and coordinated grid upgrades enable large-scale project siting, while multi-country cooperation in the North Sea and Asia unlocks cross-border infrastructure. These measures lower project risk, incentivize supply chain expansion, and stimulate cost reductions.

Restraint:

High capital expenditure and project development costs

High capital expenditure and project development costs constrain offshore wind growth by raising barriers to entry and prolonging payback periods. Costs for turbines, foundations, specialized installation vessels, port upgrades, and grid connection inflate upfront budgets, and recent supply chain pressures have driven material and logistic expenses higher. Furthermore, elevated financing costs and complex permitting processes amplify project risk, deterring some investors. Such cost pressures slow project pipelines and can prompt strategic pauses or scope reductions.

Opportunity:

Development of floating offshore wind technology for deep-water sites

Development of floating offshore wind technology presents significant opportunity by enabling projects in deep-water locations previously inaccessible to fixed-bottom turbines. Floating platforms allow access to stronger and more consistent wind resources farther offshore, improving capacity factors and energy yields. Pilot projects in Europe and Asia have validated technical feasibility and are driving cost reductions through scale and design improvements. Also, combining offshore hydrogen production with other renewable energy sources can open up new ways for developers to make money and speed up the process of bringing these technologies to market around the world.

Threat:

Competition from other renewable energy sources

Competition from other renewables, notably onshore wind and solar PV, challenges offshore wind by offering lower capital costs and faster deployment timelines, which appeal to policymakers and investors prioritizing near-term capacity. Declining levelized costs for solar and onshore wind, combined with rapid deployment of energy storage, can reduce the urgency for more capital-intensive offshore projects. Additionally, hybrid systems and flexible generation affect the economics of the power grid, making it necessary for offshore developers to obtain competitive contracts and show the value of their systems.

Covid-19 Impact:

COVID-19 disrupted offshore wind through supply-chain delays, workforce restrictions, and temporary port closures that postponed construction and increased costs. Lockdowns and travel limits hampered offshore vessel operations, while health protocols raised logistical complexity and insurance considerations. Nonetheless, targeted government stimulus, resilient project management, and prioritization of critical supply chains limited long-term damage. By accelerating digital collaboration and contingency planning, the industry recovered, preserving investor confidence and maintaining strategic deployment pipelines.

The wind turbines segment is expected to be the largest during the forecast period

The wind turbines segment is expected to account for the largest market share during the forecast period by supplying the core generation assets that determine project capacity, cost, and performance. Turbine orders drive major portions of capital expenditure, while technological advances in larger rotor diameters and higher-capacity nacelles improve energy yield and lower levelized costs. OEMs, turbine financing models, and long lead times make turbines central to project economics. Consequently, demand for next-generation turbines and a service contract grow and underpin long-term decarbonization objectives worldwide securely.

The floating structure segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the floating structure segment is predicted to witness the highest growth rate owing to expanding project pipelines in areas with deep waters, such as parts of Asia Pacific, Japan, and the western coasts of Europe. The technology allows larger project footprints, stronger wind regimes, and siting flexibility that attract developers. As industrialization reduces unit costs and supply chains mature, financiers become more comfortable, prompting faster deployment and broadening global market access.

Region with largest share:

During the forecast period, the Europe region is expected to hold the largest market share due to its mature supply chain, extensive shallow continental shelves, and strong policy commitments across the EU and UK. Longstanding investments in ports, installation vessels, and local manufacturing support rapid project execution and cost reductions. Regional cooperation around North Sea infrastructure and auction programs provides steady pipeline visibility. In addition, ambitious renewables targets and established market rules support sustained deployment and export expertise.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR as coastal nations accelerate renewable capacity additions to meet climate goals and energy security objectives. Rapidly expanding electricity demand, favorable wind resources off China, Taiwan, South Korea, and Japan, and rising domestic manufacturing capacity drive growth. Moreover, policy incentives, auctions, and local content requirements stimulate supply chain development. Combined with increased investment from domestic and international players, the region is fostering international partnerships.

Key players in the market

Some of the key players in Offshore Wind Power Market include Orsted A/S, Vestas Wind Systems A/S, Siemens Gamesa Renewable Energy S.A., GE Renewable Energy, Equinor ASA, RWE AG, Iberdrola S.A., SSE plc, Vattenfall AB, EnBW Energie Baden-Wurttemberg AG, China Three Gorges Corporation, Mingyang Smart Energy Group Co., Ltd., Goldwind Science & Technology Co., Ltd., BP plc, Shell plc, Northland Power Inc., Jan De Nul Group, and Royal Van Oord N.V.

Key Developments:

In November 2025, Vestas is proud to have received orders for 347 MW in the USA and Canada for undisclosed projects.

In November 2025, Orsted announced it will commercialise its low-noise "Osonic" monopile installation method, following deployment at its Gode Wind 3 offshore wind farm.

In July 2025, Siemens Gamesa was selected by Ocean Winds as turbine supplier for its BC-Wind offshore-wind project in Poland (26 turbines) under agreement.

In June 2025, EnBW announced it will build the He Dreiht offshore-wind farm (900 MW) using Vestas 15 MW turbines, Germany's first subsidy-free offshore wind farm.

Components Covered:

  • Wind Turbines
  • Electrical Infrastructure
  • Other Components

Installation Types Covered:

  • Fixed Structure
  • Floating Structure

Turbine Capacities Covered:

  • Up to 5 MW
  • 5 MW to 10 MW
  • Above 10 MW

Locations Covered:

  • Shallow Water (< 30m Depth)
  • Transitional Water (30m - 60m Depth)
  • Deep Water (> 60m Depth - Primarily Floating Wind)

Applications Covered:

  • Utility-Scale Power Generation
  • Commercial & Industrial (C&I) Projects
  • Green Hydrogen Production

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Offshore Wind Power Market, By Component

  • 5.1 Introduction
  • 5.2 Wind Turbines
    • 5.2.1 Rotor Blades
    • 5.2.2 Nacelle
    • 5.2.3 Tower
  • 5.3 Electrical Infrastructure
    • 5.3.1 Array Cables and Export Cables
    • 5.3.2 Offshore Substation (AC/DC)
    • 5.3.3 Onshore Substation
  • 5.4 Other Components

6 Global Offshore Wind Power Market, By Installation Type

  • 6.1 Introduction
  • 6.2 Fixed Structure
    • 6.2.1 Monopile
    • 6.2.2 Jacket
    • 6.2.3 Gravity-Based Structures (GBS)
    • 6.2.4 Tripod/Tripile
  • 6.3 Floating Structure
    • 6.3.1 Semi-Submersible
    • 6.3.2 Spar-Buoy
    • 6.3.3 Tension-Leg Platform (TLP)
    • 6.3.4 Barge

7 Global Offshore Wind Power Market, By Turbine Capacity

  • 7.1 Introduction
  • 7.2 Up to 5 MW
  • 7.3 5 MW to 10 MW
  • 7.4 Above 10 MW

8 Global Offshore Wind Power Market, By Location (Water Depth)

  • 8.1 Introduction
  • 8.2 Shallow Water (< 30m Depth)
  • 8.3 Transitional Water (30m - 60m Depth)
  • 8.4 Deep Water (> 60m Depth - Primarily Floating Wind)

9 Global Offshore Wind Power Market, By Application

  • 9.1 Introduction
  • 9.2 Utility-Scale Power Generation
  • 9.3 Commercial & Industrial (C&I) Projects
  • 9.4 Green Hydrogen Production

10 Global Offshore Wind Power Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Orsted A/S
  • 12.2 Vestas Wind Systems A/S
  • 12.3 Siemens Gamesa Renewable Energy S.A.
  • 12.4 GE Renewable Energy
  • 12.5 Equinor ASA
  • 12.6 RWE AG
  • 12.7 Iberdrola S.A.
  • 12.8 SSE plc
  • 12.9 Vattenfall AB
  • 12.10 EnBW Energie Baden-Wurttemberg AG
  • 12.11 China Three Gorges Corporation
  • 12.12 Mingyang Smart Energy Group Co., Ltd.
  • 12.13 Goldwind Science & Technology Co., Ltd.
  • 12.14 BP plc
  • 12.15 Shell plc
  • 12.16 Northland Power Inc.
  • 12.17 Jan De Nul Group
  • 12.18 Royal Van Oord N.V.

List of Tables

  • 1 Global Offshore Wind Power Market Outlook, By Region (2024-2032) ($MN)
  • 2 Global Offshore Wind Power Market Outlook, By Component (2024-2032) ($MN)
  • 3 Global Offshore Wind Power Market Outlook, By Wind Turbines (2024-2032) ($MN)
  • 4 Global Offshore Wind Power Market Outlook, By Rotor Blades (2024-2032) ($MN)
  • 5 Global Offshore Wind Power Market Outlook, By Nacelle (2024-2032) ($MN)
  • 6 Global Offshore Wind Power Market Outlook, By Tower (2024-2032) ($MN)
  • 7 Global Offshore Wind Power Market Outlook, By Electrical Infrastructure (2024-2032) ($MN)
  • 8 Global Offshore Wind Power Market Outlook, By Array Cables and Export Cables (2024-2032) ($MN)
  • 9 Global Offshore Wind Power Market Outlook, By Offshore Substation (AC/DC) (2024-2032) ($MN)
  • 10 Global Offshore Wind Power Market Outlook, By Onshore Substation (2024-2032) ($MN)
  • 11 Global Offshore Wind Power Market Outlook, By Other Components (2024-2032) ($MN)
  • 12 Global Offshore Wind Power Market Outlook, By Installation Type (2024-2032) ($MN)
  • 13 Global Offshore Wind Power Market Outlook, By Fixed Structure (2024-2032) ($MN)
  • 14 Global Offshore Wind Power Market Outlook, By Monopile (2024-2032) ($MN)
  • 15 Global Offshore Wind Power Market Outlook, By Jacket (2024-2032) ($MN)
  • 16 Global Offshore Wind Power Market Outlook, By Gravity-Based Structures (GBS) (2024-2032) ($MN)
  • 17 Global Offshore Wind Power Market Outlook, By Tripod/Tripile (2024-2032) ($MN)
  • 18 Global Offshore Wind Power Market Outlook, By Floating Structure (2024-2032) ($MN)
  • 19 Global Offshore Wind Power Market Outlook, By Semi-Submersible (2024-2032) ($MN)
  • 20 Global Offshore Wind Power Market Outlook, By Spar-Buoy (2024-2032) ($MN)
  • 21 Global Offshore Wind Power Market Outlook, By Tension-Leg Platform (TLP) (2024-2032) ($MN)
  • 22 Global Offshore Wind Power Market Outlook, By Barge (2024-2032) ($MN)
  • 23 Global Offshore Wind Power Market Outlook, By Turbine Capacity (2024-2032) ($MN)
  • 24 Global Offshore Wind Power Market Outlook, By Up to 5 MW (2024-2032) ($MN)
  • 25 Global Offshore Wind Power Market Outlook, By 5 MW to 10 MW (2024-2032) ($MN)
  • 26 Global Offshore Wind Power Market Outlook, By Above 10 MW (2024-2032) ($MN)
  • 27 Global Offshore Wind Power Market Outlook, By Location (Water Depth) (2024-2032) ($MN)
  • 28 Global Offshore Wind Power Market Outlook, By Shallow Water (<30m Depth) (2024-2032) ($MN)
  • 29 Global Offshore Wind Power Market Outlook, By Transitional Water (30m-60m Depth) (2024-2032) ($MN)
  • 30 Global Offshore Wind Power Market Outlook, By Deep Water (>60m Depth - Primarily Floating Wind) (2024-2032) ($MN)
  • 31 Global Offshore Wind Power Market Outlook, By Application (2024-2032) ($MN)
  • 32 Global Offshore Wind Power Market Outlook, By Utility-Scale Power Generation (2024-2032) ($MN)
  • 33 Global Offshore Wind Power Market Outlook, By Commercial & Industrial (C&I) Projects (2024-2032) ($MN)
  • 34 Global Offshore Wind Power Market Outlook, By Green Hydrogen Production (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.