封面
市場調查報告書
商品編碼
1871889

能源採集設備市場預測至2032年:按產品類型、功率輸出、能源來源、技術、應用、最終用戶和地區分類的全球分析

Energy Harvesting Devices Market Forecasts to 2032 - Global Analysis By Product Type, Power Output, Source, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,預計 2025 年全球能源採集設備市場規模將達到 6.807 億美元,到 2032 年將達到 13.098 億美元,預測期內複合年成長率為 9.8%。

能源採集裝置是一種能夠捕捉環境能量(例如光、熱、振動和無線電波)並將其轉換為電能,供低功耗電子設備使用的系統。這些裝置無需電池或外部電源,即可實現感測器、穿戴式裝置和物聯網節點的自主運作。它們正日益廣泛應用於遠端監控、生物醫學植入和工業自動化領域,為需要在難以到達或移動環境中長期自主運作的應用提供了一種永續、免維護的能源解決方案。

穿戴式裝置和生物醫學醫療設備的應用日益廣泛

能源採集技術在穿戴式裝置和生物醫學醫療設備中的日益普及,正顯著推動市場成長。這些設備受益於自供電運行,減少了對頻繁更換電池的依賴,並實現了長期穩定運行。健身追蹤器、智慧型手錶和植入式醫療感測器等應用程式利用了人體熱量和運動等環境能源來源。微型感測器和超低功耗電子技術的進步也為此趨勢提供了有力支撐。

低功率和效率限制

環境能量(例如熱能、振動能和射頻能量)的轉換效率通常較低,這限制了其在超低功耗系統中的應用。這種限制影響了擴充性,並限制了其在能源供應不穩定的環境中的部署。此外,將這些設備整合到現有基礎設施中需要精心設計和最佳化,這會增加開發成本並延長產品上市時間。這些限制對主流消費和工業應用的廣泛普及構成了挑戰。

與低功耗半導體和電源管理積體電路的整合

能源採集系統與低功耗半導體和電源管理積體電路(PMIC)的融合,為市場帶來了變革性的機會。這種整合使得在緊湊型電子系統中實現高效的能量採集、儲存和分配成為可能。超低功耗微控制器和自適應PMIC的創新,正在提升能源採集在物聯網節點、智慧紡織品和環境感測器等領域的實用性。這種協同效應正在開闢遙感探測、預測性維護和智慧農業等新的應用領域。

缺乏標準化和互通性

製造商通常開發專有系統,導致相容性問題和生態系統碎片化。這種互通性的缺失阻礙了與現有平台的無縫整合,並減緩了在多供應商環境中的推廣應用。此外,關於性能基準和安全標準的監管不確定性也會抑制投資和創新。如果缺乏協調一致的努力來建立產業框架,市場將面臨停滯和跨產業應用受限的風險。

新冠疫情的影響:

新冠疫情對能源採集設備市場產生了雙重影響。一方面,供應鏈中斷和產能下降暫時減緩了生產和應用。另一方面,疫情也加速了醫療、物流和智慧基礎設施領域對非接觸式、自主技術的需求。遠端監控系統和穿戴式健康設備的普及推動了人們對自供電解決方案的興趣。向分散式、容錯系統的轉變凸顯了能源採集在免維護運作方面的價值。

預計在預測期內,能源採集轉換器細分市場將佔據最大的市場佔有率。

由於能源採集轉換器在將環境能量轉化為可用電能方面發揮著至關重要的作用,預計在預測期內,該細分市場將佔據最大的市場佔有率。這些組件涵蓋壓電、熱電和光伏技術,對於實現低功耗設備的自主運作至關重要。它們在結構健康監測、智慧建築和穿戴式電子設備等各種應用中的多功能性,正推動著它們的廣泛應用。

預計在預測期內,壓電能源採集領域將呈現最高的複合年成長率。

由於壓電能源採集技術能夠有效率地從振動和運動中獲取機械能,預計在預測期內,該領域將保持最高的成長率。這項技術尤其適用於動能豐富的工業環境、運輸系統和生物醫學穿戴設備。軟性壓電材料的進步及其與微機電系統(MEMS)裝置的整合正在拓展其應用範圍。該領域的快速成長反映了動態環境中對緊湊、耐用和高效能源解決方案日益成長的需求。

佔比最大的地區:

在預測期內,北美預計將佔據最大的市場佔有率,這主要得益於其強大的研發基礎設施、早期的技術應用以及主要行業參與者的強大影響力。該地區對智慧城市、工業自動化和醫療保健創新的重視,正在推動對能源採集解決方案的需求。政府為促進永續技術發展和為先進電子產品提供資金支持而採取的舉措,也進一步推動了市場成長。此外,物聯網設備在各個領域的普及,也推動了對自供電系統的需求,從而鞏固了北美的主導地位。

複合年成長率最高的地區:

亞太地區預計將在預測期內實現最高的複合年成長率,這主要得益於快速的工業化進程、不斷擴大的家用電子電器市場以及對智慧基礎設施投資的持續成長。中國、印度、韓國和日本等國家正積極將能源採集技術應用於運輸、農業和環境監測等領域。政府的支持性政策、日益增強的節能意識以及穿戴式科技的普及,都推動了該地區的成長動能。

免費客製化服務:

購買此報告的客戶可享有以下免費自訂選項之一:

  • 公司概況
    • 對其他市場參與者(最多 3 家公司)進行全面分析
    • 主要企業SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶興趣和複合年成長率對主要國家進行市場估算和預測(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據主要參與者的產品系列、地理覆蓋範圍和策略聯盟基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 原始研究資料
    • 次級研究資訊來源
    • 先決條件

第3章 市場趨勢分析

  • 介紹
  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 產品分析
  • 技術分析
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球能源採集設備市場(依產品類型分類)

  • 介紹
  • 能源採集能器
  • 能源採集體電路/電源管理單元
  • 儲能裝置(超級電容、薄膜電池)
  • 振動能源採集
  • 太陽能收集模組
  • 能源採集
  • 射頻(RF)能源採集
  • 混合能源採集系統
  • 具有整合採集功能的無線感測器節點
  • 開發套件和原型製作模組
  • 其他產品類型

6. 全球能源採集設備市場(依產量分類)

  • 介紹
  • 超低功耗(<100µW)
  • 極低功率(100µW-1mW)
  • 低功率(1毫瓦-10毫瓦)
  • 中功率(10毫瓦-100毫瓦)
  • 高功率(>100 mW)

7. 全球能源採集設備市場(依能源來源)

  • 介紹
  • 太陽的
  • 機器
  • 電磁
  • 其他資訊來源

8. 全球能源採集設備市場(依技術分類)

  • 介紹
  • 壓電式能量採集
  • 熱電(TEG)能源採集
  • 電磁/動態能源採集
  • 光伏/薄膜光電能源採集
  • 射頻(RF)能源採集
  • 摩擦奈米發電機(TENG)
  • 靜電能源採集
  • 混合能源採集技術
  • 其他技術

9. 全球能源採集設備市場(按應用分類)

  • 介紹
  • 穿戴式電子產品和健康監測
  • 物聯網 (IoT) 感測器和資產追蹤
  • 工業監測與預測性維護
  • 智慧建築與家庭自動化
  • 農業和環境監測
  • 智慧城市和路燈
  • 智慧建築與家庭自動化
  • 其他用途

第10章 全球能源採集設備市場(依最終用戶分類)

  • 介紹
  • 住宅
  • 商業
  • 產業
  • 軍事/國防
  • 其他最終用戶

第11章 全球能源採集設備市場(按地區分類)

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲國家
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第12章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與併購
  • 新產品上市
  • 業務拓展
  • 其他關鍵策略

第13章:企業概況

  • STMicroelectronics
  • Texas Instruments
  • EnOcean GmbH
  • Cymbet Corporation
  • Microchip Technology Inc.
  • Analog Devices Inc.
  • Fujitsu Limited
  • ABB Ltd.
  • Schneider Electric
  • Lord MicroStrain
  • Powercast Corporation
  • Linear Technology Corporation
  • Silicon Labs
  • IXYS Corporation
  • Voltree Power Inc.
  • Bionic Power Inc.
  • Kinergizer
  • Energy Partners
  • Thermo Life Energy
  • GreenPeak Technologies
Product Code: SMRC32259

According to Stratistics MRC, the Global Energy Harvesting Devices Market is accounted for $680.7 million in 2025 and is expected to reach $1,309.8 million by 2032 growing at a CAGR of 9.8% during the forecast period. Energy harvesting devices are systems that capture ambient energy from sources such as light, heat, vibration, or radio frequency and convert it into electrical power for low-energy electronics. These devices enable self-sustaining operation of sensors, wearables, and IoT nodes by eliminating the need for batteries or external power. They are increasingly used in remote monitoring, biomedical implants, and industrial automation, offering sustainable and maintenance-free energy solutions for applications requiring long-term, autonomous functionality in inaccessible or mobile environments.

Market Dynamics:

Driver:

Rising adoption in wearable and biomedical devices

The increasing integration of energy harvesting technologies into wearable and biomedical devices is significantly boosting market growth. These devices benefit from self-powered operation, reducing reliance on frequent battery replacements and enabling long-term functionality. Applications such as fitness trackers, smartwatches, and implantable medical sensors are leveraging ambient energy sources like body heat and motion. This trend is supported by advancements in miniaturized transducers and ultra-low-power electronics.

Restraint:

Low energy output and efficiency limitations

The conversion efficiency of ambient energy whether thermal, vibrational, or RF is typically low, limiting their use to ultra-low-power systems. This constraint affects scalability and restricts deployment in environments with inconsistent energy availability. Moreover, integrating these devices into existing infrastructure requires careful design and optimization, which can increase development costs and delay commercialization. These limitations pose challenges for widespread adoption across mainstream consumer and industrial sectors.

Opportunity:

Integration with low-power semiconductors and PMICs

The convergence of energy harvesting systems with low-power semiconductors and power management ICs (PMICs) presents a transformative opportunity for the market. These integrations enable efficient energy capture, storage, and distribution within compact electronic systems. Innovations in ultra-low-power microcontrollers and adaptive PMICs are enhancing the viability of energy harvesting in IoT nodes, smart textiles, and environmental sensors. This synergy is unlocking new applications in remote sensing, predictive maintenance, and smart agriculture.

Threat:

Lack of standardization and interoperability

Manufacturers often develop proprietary systems, leading to compatibility issues and fragmented ecosystems. This lack of interoperability hinders seamless integration with existing platforms and slows down adoption in multi-vendor environments. Additionally, regulatory ambiguity around performance benchmarks and safety standards can deter investment and innovation. Without coordinated efforts to establish industry-wide frameworks, the market risks stagnation and limited cross-sector deployment.

Covid-19 Impact:

The COVID-19 pandemic had a dual impact on the Energy Harvesting Devices Market. On one hand, supply chain disruptions and reduced manufacturing capacity temporarily slowed production and deployment. On the other hand, the crisis accelerated demand for contactless, autonomous technologies in healthcare, logistics, and smart infrastructure. Remote monitoring systems and wearable health devices saw increased adoption, driving interest in self-powered solutions. The shift toward decentralized and resilient systems highlighted the value of energy harvesting in enabling maintenance-free operation.

The energy harvesting transducers segment is expected to be the largest during the forecast period

The energy harvesting transducers segment is expected to account for the largest market share during the forecast period due to its foundational role in converting ambient energy into usable electrical power. These components spanning piezoelectric, thermoelectric, and photovoltaic technologies are critical to enabling autonomous operation in low-power devices. Their versatility across applications such as structural health monitoring, smart buildings, and wearable electronics contributes to their widespread adoption.

The piezoelectric energy harvesting segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the piezoelectric energy harvesting segment is predicted to witness the highest growth rate driven by its effectiveness in capturing mechanical energy from vibrations and motion. This technology is particularly suited for industrial environments, transportation systems, and biomedical wearables where kinetic energy is abundant. Advances in flexible piezoelectric materials and integration with MEMS devices are expanding its application scope. The segment's rapid growth reflects increasing demand for compact, durable, and efficient energy solutions in dynamic settings.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share by robust R&D infrastructure, early technology adoption, and strong presence of key industry players. The region's emphasis on smart cities, industrial automation, and healthcare innovation drives demand for energy harvesting solutions. Government initiatives promoting sustainable technologies and funding for advanced electronics further bolster market growth. Additionally, the proliferation of IoT devices across sectors enhances the need for self-powered systems, reinforcing North America's leadership position.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by rapid industrialization, expanding consumer electronics market, and growing investments in smart infrastructure. Countries such as China, India, South Korea, and Japan are actively deploying energy harvesting technologies in transportation, agriculture, and environmental monitoring. Supportive government policies, rising awareness of energy efficiency, and increasing adoption of wearable tech contribute to regional momentum.

Key players in the market

Some of the key players in Energy Harvesting Devices Market include STMicroelectronics, Texas Instruments, EnOcean GmbH, Cymbet Corporation, Microchip Technology Inc., Analog Devices Inc., Fujitsu Limited, ABB Ltd., Schneider Electric, Lord MicroStrain, Powercast Corporation, Linear Technology Corporation, Silicon Labs, IXYS Corporation, Voltree Power Inc., Bionic Power Inc., Kinergizer, Energy Partners, Thermo Life Energy, and GreenPeak Technologies.

Key Developments:

In October 2025, ADI signed a strategic agreement with ASE to sell its Penang facility and enter a long-term supply partnership. The deal enhances global manufacturing resilience and co-investment in advanced packaging.

In September 2025, Fujitsu, 1Finity, and Arrcus formed a strategic alliance to deliver next-gen network solutions for AI infrastructure. The partnership addresses rising AI data traffic and supports global scalability.

In August 2025, Schneider Electric acquired Temasek's 35% stake in Schneider Electric India for ₹55,880 crore ($6.4B), securing full ownership. The deal reinforces India's role as a strategic hub.

Product Types Covered:

  • Energy Harvesting Transducers
  • Energy Harvesting ICs / Power Management Units
  • Energy Storage Devices (Supercapacitors, Thin-Film Batteries)
  • Vibration Energy Harvesters
  • Solar Energy Harvesting Modules
  • Thermal Energy Harvesters
  • Radio Frequency (RF) Energy Harvesters
  • Hybrid Energy Harvesting Systems
  • Wireless Sensor Nodes with Integrated Harvesting
  • Development Kits & Prototyping Modules
  • Other Product Types

Power Outputs Covered:

  • Ultra-low Power (<100 µW)
  • Very Low Power (100 µW - 1 mW)
  • Low Power (1 mW - 10 mW)
  • Medium Power (10 mW - 100 mW)
  • High Power (>100 mW)

Sources Covered:

  • Solar
  • Mechanical
  • Thermal
  • Electromagnetic
  • Other Sources

Technologies Covered:

  • Piezoelectric Energy Harvesting
  • Thermoelectric (TEG) Energy Harvesting
  • Electromagnetic / Electrodynamic Energy Harvesting
  • Photovoltaic / Thin-film Photovoltaic Energy Harvesting
  • Radio Frequency (RF) Energy Harvesting
  • Triboelectric Nanogenerators (TENG)
  • Electrostatic Energy Harvesting
  • Hybrid Energy Harvesting Technologies
  • Other Technologies

Applications Covered:

  • Wearable Electronics & Health Monitoring
  • Internet of Things (IoT) Sensors & Asset Tracking
  • Industrial Monitoring & Predictive Maintenance
  • Smart Buildings & Home Automation
  • Agricultural & Environmental Monitoring
  • Smart Cities & Streetlight
  • Smart Buildings & Home Automation
  • Other Applications

End Users Covered:

  • Residential
  • Commercial
  • Industrial
  • Military & Defense
  • Automotive
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Technology Analysis
  • 3.8 Application Analysis
  • 3.9 End User Analysis
  • 3.10 Emerging Markets
  • 3.11 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Energy Harvesting Devices Market, By Product Type

  • 5.1 Introduction
  • 5.2 Energy Harvesting Transducers
  • 5.3 Energy Harvesting ICs / Power Management Units
  • 5.4 Energy Storage Devices (Supercapacitors, Thin-Film Batteries)
  • 5.5 Vibration Energy Harvesters
  • 5.6 Solar Energy Harvesting Modules
  • 5.7 Thermal Energy Harvesters
  • 5.8 Radio Frequency (RF) Energy Harvesters
  • 5.9 Hybrid Energy Harvesting Systems
  • 5.10 Wireless Sensor Nodes with Integrated Harvesting
  • 5.11 Development Kits & Prototyping Modules
  • 5.12 Other Product Types

6 Global Energy Harvesting Devices Market, By Power Output

  • 6.1 Introduction
  • 6.2 Ultra-low Power (<100 µW)
  • 6.3 Very Low Power (100 µW - 1 mW)
  • 6.4 Low Power (1 mW - 10 mW)
  • 6.5 Medium Power (10 mW - 100 mW)
  • 6.6 High Power (>100 mW)

7 Global Energy Harvesting Devices Market, By Source

  • 7.1 Introduction
  • 7.2 Solar
  • 7.3 Mechanical
  • 7.4 Thermal
  • 7.5 Electromagnetic
  • 7.6 Other Sources

8 Global Energy Harvesting Devices Market, By Technology

  • 8.1 Introduction
  • 8.2 Piezoelectric Energy Harvesting
  • 8.3 Thermoelectric (TEG) Energy Harvesting
  • 8.4 Electromagnetic / Electrodynamic Energy Harvesting
  • 8.5 Photovoltaic / Thin-film Photovoltaic Energy Harvesting
  • 8.6 Radio Frequency (RF) Energy Harvesting
  • 8.7 Triboelectric Nanogenerators (TENG)
  • 8.8 Electrostatic Energy Harvesting
  • 8.9 Hybrid Energy Harvesting Technologies
  • 8.10 Other Technologies

9 Global Energy Harvesting Devices Market, By Application

  • 9.1 Introduction
  • 9.2 Wearable Electronics & Health Monitoring
  • 9.3 Internet of Things (IoT) Sensors & Asset Tracking
  • 9.4 Industrial Monitoring & Predictive Maintenance
  • 9.5 Smart Buildings & Home Automation
  • 9.6 Agricultural & Environmental Monitoring
  • 9.7 Smart Cities & Streetlight
  • 9.8 Smart Buildings & Home Automation
  • 9.9 Other Applications

10 Global Energy Harvesting Devices Market, By End User

  • 10.1 Introduction
  • 10.2 Residential
  • 10.3 Commercial
  • 10.4 Industrial
  • 10.5 Military & Defense
  • 10.6 Automotive
  • 10.7 Other End Users

11 Global Energy Harvesting Devices Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 STMicroelectronics
  • 13.2 Texas Instruments
  • 13.3 EnOcean GmbH
  • 13.4 Cymbet Corporation
  • 13.5 Microchip Technology Inc.
  • 13.6 Analog Devices Inc.
  • 13.7 Fujitsu Limited
  • 13.8 ABB Ltd.
  • 13.9 Schneider Electric
  • 13.10 Lord MicroStrain
  • 13.11 Powercast Corporation
  • 13.12 Linear Technology Corporation
  • 13.13 Silicon Labs
  • 13.14 IXYS Corporation
  • 13.15 Voltree Power Inc.
  • 13.16 Bionic Power Inc.
  • 13.17 Kinergizer
  • 13.18 Energy Partners
  • 13.19 Thermo Life Energy
  • 13.20 GreenPeak Technologies

List of Tables

  • Table 1 Global Energy Harvesting Devices Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Energy Harvesting Devices Market Outlook, By Product Type (2024-2032) ($MN)
  • Table 3 Global Energy Harvesting Devices Market Outlook, By Energy Harvesting Transducers (2024-2032) ($MN)
  • Table 4 Global Energy Harvesting Devices Market Outlook, By Energy Harvesting ICs / Power Management Units (2024-2032) ($MN)
  • Table 5 Global Energy Harvesting Devices Market Outlook, By Energy Storage Devices (Supercapacitors, Thin-Film Batteries) (2024-2032) ($MN)
  • Table 6 Global Energy Harvesting Devices Market Outlook, By Vibration Energy Harvesters (2024-2032) ($MN)
  • Table 7 Global Energy Harvesting Devices Market Outlook, By Solar Energy Harvesting Modules (2024-2032) ($MN)
  • Table 8 Global Energy Harvesting Devices Market Outlook, By Thermal Energy Harvesters (2024-2032) ($MN)
  • Table 9 Global Energy Harvesting Devices Market Outlook, By Radio Frequency (RF) Energy Harvesters (2024-2032) ($MN)
  • Table 10 Global Energy Harvesting Devices Market Outlook, By Hybrid Energy Harvesting Systems (2024-2032) ($MN)
  • Table 11 Global Energy Harvesting Devices Market Outlook, By Wireless Sensor Nodes with Integrated Harvesting (2024-2032) ($MN)
  • Table 12 Global Energy Harvesting Devices Market Outlook, By Development Kits & Prototyping Modules (2024-2032) ($MN)
  • Table 13 Global Energy Harvesting Devices Market Outlook, By Other Product Types (2024-2032) ($MN)
  • Table 14 Global Energy Harvesting Devices Market Outlook, By Power Output (2024-2032) ($MN)
  • Table 15 Global Energy Harvesting Devices Market Outlook, By Ultra-low Power (<100 µW) (2024-2032) ($MN)
  • Table 16 Global Energy Harvesting Devices Market Outlook, By Very Low Power (100 µW - 1 mW) (2024-2032) ($MN)
  • Table 17 Global Energy Harvesting Devices Market Outlook, By Low Power (1 mW - 10 mW) (2024-2032) ($MN)
  • Table 18 Global Energy Harvesting Devices Market Outlook, By Medium Power (10 mW - 100 mW) (2024-2032) ($MN)
  • Table 19 Global Energy Harvesting Devices Market Outlook, By High Power (>100 mW) (2024-2032) ($MN)
  • Table 20 Global Energy Harvesting Devices Market Outlook, By Source (2024-2032) ($MN)
  • Table 21 Global Energy Harvesting Devices Market Outlook, By Solar (2024-2032) ($MN)
  • Table 22 Global Energy Harvesting Devices Market Outlook, By Mechanical (2024-2032) ($MN)
  • Table 23 Global Energy Harvesting Devices Market Outlook, By Thermal (2024-2032) ($MN)
  • Table 24 Global Energy Harvesting Devices Market Outlook, By Electromagnetic (2024-2032) ($MN)
  • Table 25 Global Energy Harvesting Devices Market Outlook, By Other Sources (2024-2032) ($MN)
  • Table 26 Global Energy Harvesting Devices Market Outlook, By Technology (2024-2032) ($MN)
  • Table 27 Global Energy Harvesting Devices Market Outlook, By Piezoelectric Energy Harvesting (2024-2032) ($MN)
  • Table 28 Global Energy Harvesting Devices Market Outlook, By Thermoelectric (TEG) Energy Harvesting (2024-2032) ($MN)
  • Table 29 Global Energy Harvesting Devices Market Outlook, By Electromagnetic / Electrodynamic Energy Harvesting (2024-2032) ($MN)
  • Table 30 Global Energy Harvesting Devices Market Outlook, By Photovoltaic / Thin-film Photovoltaic Energy Harvesting (2024-2032) ($MN)
  • Table 31 Global Energy Harvesting Devices Market Outlook, By Radio Frequency (RF) Energy Harvesting (2024-2032) ($MN)
  • Table 32 Global Energy Harvesting Devices Market Outlook, By Triboelectric Nanogenerators (TENG) (2024-2032) ($MN)
  • Table 33 Global Energy Harvesting Devices Market Outlook, By Electrostatic Energy Harvesting (2024-2032) ($MN)
  • Table 34 Global Energy Harvesting Devices Market Outlook, By Hybrid Energy Harvesting Technologies (2024-2032) ($MN)
  • Table 35 Global Energy Harvesting Devices Market Outlook, By Other Technologies (2024-2032) ($MN)
  • Table 36 Global Energy Harvesting Devices Market Outlook, By Application (2024-2032) ($MN)
  • Table 37 Global Energy Harvesting Devices Market Outlook, By Wearable Electronics & Health Monitoring (2024-2032) ($MN)
  • Table 38 Global Energy Harvesting Devices Market Outlook, By Internet of Things (IoT) Sensors & Asset Tracking (2024-2032) ($MN)
  • Table 39 Global Energy Harvesting Devices Market Outlook, By Industrial Monitoring & Predictive Maintenance (2024-2032) ($MN)
  • Table 40 Global Energy Harvesting Devices Market Outlook, By Smart Buildings & Home Automation (2024-2032) ($MN)
  • Table 41 Global Energy Harvesting Devices Market Outlook, By Agricultural & Environmental Monitoring (2024-2032) ($MN)
  • Table 42 Global Energy Harvesting Devices Market Outlook, By Smart Cities & Streetlight (2024-2032) ($MN)
  • Table 43 Global Energy Harvesting Devices Market Outlook, By Smart Buildings & Home Automation (2024-2032) ($MN)
  • Table 44 Global Energy Harvesting Devices Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 45 Global Energy Harvesting Devices Market Outlook, By End User (2024-2032) ($MN)
  • Table 46 Global Energy Harvesting Devices Market Outlook, By Residential (2024-2032) ($MN)
  • Table 47 Global Energy Harvesting Devices Market Outlook, By Commercial (2024-2032) ($MN)
  • Table 48 Global Energy Harvesting Devices Market Outlook, By Industrial (2024-2032) ($MN)
  • Table 49 Global Energy Harvesting Devices Market Outlook, By Military & Defense (2024-2032) ($MN)
  • Table 50 Global Energy Harvesting Devices Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 51 Global Energy Harvesting Devices Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.