封面
市場調查報告書
商品編碼
1871872

全球生物基氣凝膠市場:預測至2032年-按材料類型、應用、最終使用者和地區分類的分析

Bio-based Aerogels Market Forecasts to 2032 - Global Analysis By Material Type, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的一項研究,預計到 2025 年,全球生物基氣凝膠市場價值將達到 11 億美元,到 2032 年將達到 28.2 億美元,在預測期內的複合年成長率為 14.4%。

生物基氣凝膠是由纖維素、澱粉、幾丁聚醣和木質素等天然資源製成的超輕、高孔隙結構。它們具有優異的隔熱性、輕質特性和較大的內表面積,使其優於石油基氣凝膠。其可生物分解且安全的成分符合全球永續性舉措,因此在建築、包裝、化妝品和藥物過濾等領域中得到了廣泛應用。這些氣凝膠還具有出色的液體吸收和污染物過濾性能,滿足了環境保護和工業淨化的需求。目前的技術創新旨在提高其耐久性並降低製造成本,使其商業化應用更具可行性。

根據 2023 年發表在《今日材料永續性》上的一項研究,由纖維素、木質素和幾丁聚醣衍生的生物基氣凝膠的熱導率極低,為 0.025 W/m·K,與合成二氧化矽氣凝膠相當,同時具有生物可分解性,並且來自可再生原料。

對永續和環保材料的需求日益成長

日益增強的環保意識和更嚴格的永續性目標正推動各行業從合成材料轉向可再生材料,從而強勁地推動了生物基氣凝膠市場的發展。由於這些氣凝膠源自天然,與傳統聚合物和合成氣凝膠相比,它們具有可生物分解性、低毒性和較小的生態學足跡。建築、包裝、化妝品和醫療保健行業的公司越來越傾向於選擇支持循環經濟實踐的安全材料。旨在減少碳排放和推廣塑膠替代品的政策舉措也在加速這一趨勢。隨著消費者和品牌環保意識的增強,生物基氣凝膠正獲得廣泛認可並吸引投資。

製造成本高,商業規模有限

生物基氣凝膠領域面臨成本的挑戰,因為其生產需要專門的加工技術、可控的乾燥過程以及高品質的生質能原料。即使原料來自天然,氣凝膠合成的預處理也需要昂貴的設備和熟練的勞動力。因此,最終產品的價格高於許多石油基氣凝膠和發泡體。目前,生物基氣凝膠的大規模工業生產仍有限,導致產量低、市場價格高。預算有限的公司難以大量採用這些材料。除非技術進步能夠降低成本並實現大規模生產,否則高成本將繼續阻礙市場擴張。

拓展節能建築與隔熱材料領域

節能建材為生物基氣凝膠提供了巨大的商業性潛力。這些氣凝膠具有優異的隔熱性能、輕質結構和較低的環境風險,可以取代建築中傳統的發泡體隔熱材料,有助於維持舒適的室內溫度、降低電力消耗量並獲得永續設計認證。建築商和建築師正在尋求性能卓越且不增加碳足跡的替代方案,這推動了人們對天然氣凝膠隔熱材料日益成長的興趣。嵌入氣凝膠的板材、抹灰層、屋頂和其他產品顯著提高了住宅和商業計劃的能源效率。隨著生物基氣凝膠獲得認可和廣泛應用,以及綠色建築相關監管獎勵的推動,這一市場領域有望迅速擴張。

來自合成氣凝膠和替代材料的激烈競爭

生物基氣凝膠產業面臨來自現有合成氣凝膠和已廣泛應用於市場的傳統隔熱材料的競爭壓力。二氧化矽和聚合物氣凝膠憑藉其優異的機械性能和可大規模生產的特性,展現出競爭優勢。許多行業更傾向於使用熟悉的材料,不願冒險更換成熟的解決方案。此外,價格適中的替代品,例如玻璃纖維和發泡隔熱材料,也吸引了注重成本的買家。如果生物基氣凝膠價格昂貴且耐久性較差,它們可能會落後於競爭對手。為了應對這項威脅,生產商必須強調其在品質、價格和永續性方面的提升,以贏得用戶的信任。

新冠疫情的影響:

新冠疫情為生物基氣凝膠產業帶來了挑戰和機會。疫情初期,限制措施擾亂了交通運輸、勞動力供應和生質能採購,導致生產延誤,市場擴張放緩。建築和工業保溫計劃被迫延期,暫時降低了消費量。同時,醫療保健和包裝產業對安全、無菌和環保解決方案的需求不斷成長,推動了創新。在醫療物流領域,天然氣凝膠在藥物傳輸、創傷護理和防護包裝應用方面獲得了廣泛關注。隨著經濟的重啟,永續性目標和循環經濟策略正在推動產業採用綠色材料。這些趨勢不僅有助於經濟復甦,也激發了人們對生物基氣凝膠未來應用的興趣。

預計在預測期內,纖維素基氣凝膠細分市場將佔據最大的市場佔有率。

預計在預測期內,纖維素基氣凝膠將佔據最大的市場佔有率。這主要歸功於纖維素的永續、永續性以及易於轉化為輕質多孔材料的特性。這類氣凝膠具有優異的隔熱性能、低密度和完全生物分解性,使其在包裝、建築、醫療保健和化妝品等眾多行業中廣泛使用。其機械強度和與天然聚合物的相容性,使製造商能夠以具有競爭力的成本設計環保解決方案。纖維素可從木纖維、農作物廢棄物和再生紙等可再生資源中獲得,從而確保了大規模生產的穩定供應。這些優勢使得纖維素基氣凝膠成為生物基氣凝膠類別中最受歡迎且商業性最被認可的選擇。

預計在預測期內,醫療保健產業的複合年成長率將最高。

預計在預測期內,醫療保健產業將迎來最高的成長率,因為這些材料能夠為現代臨床需求提供安全、清潔且高效能的解決方案。天然氣凝膠因其可生物分解性、優異的孔隙率以及與人體組織的溫和相互作用,在藥物輸送、創傷護理、植入支架和吸收墊片等領域引起了廣泛關注。其促進癒合、維持治療藥物和維持無菌等特性,使其成為合成醫用材料的理想替代品。隨著醫療保健系統採用更環保、更人性化的技術,生物基氣凝膠正獲得更多資金籌措、研究關注和監管支持。這種發展勢頭正在推動該領域的快速成長和未來的商業化潛力。

佔比最大的地區:

在預測期內,由於大力推廣永續製造、循環經濟實踐和環保產品開發,歐洲地區預計將佔據最大的市場佔有率。許多歐洲國家正積極以可再生材料取代包裝、建築、醫療保健和交通運輸等領域的石油化學材料。全部區域的研究機構和產業創新者正在攜手合作,以提高性能、降低生產成本並推出新的商業應用。支持性的環境法律、碳減排措施以及可生物分解材料的獎勵正在推動其穩步普及。憑藉成熟的技術生態系統和消費者對綠色產品日益成長的偏好,歐洲仍然是生物基氣凝膠生產、研究和市場拓展的領先中心。

複合年成長率最高的地區:

預計亞太地區在預測期內將實現最高的複合年成長率,這主要得益於永續性項目、工業成長以及對可再生材料的旺盛需求。中國、印度、日本和韓國等國家正在探索將天然氣凝膠應用於建築隔熱材料、醫療產品、環保包裝和水處理等領域。環境法規、日益嚴重的污染問題以及減少塑膠消耗的努力,正推動企業採用可生物分解的替代品。不斷擴大的生產能力、增加的研發投入以及經濟實惠的生產資源,使該地區成為大規模氣凝膠開發的理想之地。強大的市場意識和政府的支持,使亞太地區成為生物基氣凝膠的前沿中心。

免費客製化服務

訂閱本報告的用戶可從以下免費自訂選項中選擇一項:

  • 公司簡介
    • 對最多三家其他公司進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域分類
    • 根據客戶興趣對主要國家進行市場估算、預測和複合年成長率分析(註:基於可行性檢查)
  • 競爭基準化分析
    • 基於產品系列、地域覆蓋和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 引言

  • 概述
  • 相關利益者
  • 分析範圍
  • 分析方法
  • 分析材料

第3章 市場趨勢分析

  • 介紹
  • 促進要素
  • 抑制因素
  • 市場機遇
  • 威脅
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的感染疾病

第4章 波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代產品的威脅
  • 新參與企業的威脅
  • 公司間的競爭

5. 全球生物基氣凝膠市場(依材料類型分類)

  • 介紹
  • 纖維素基氣凝膠
  • 木質素基氣凝膠
  • 幾丁聚醣基氣凝膠
  • 澱粉基氣凝膠
  • 果膠基氣凝膠
  • 其他材料類型

6. 全球生物基氣凝膠市場(依應用分類)

  • 介紹
  • 溫度控管
  • 環境清理
  • 醫療設備
  • 食品接觸解決方案
  • 催化劑和反應介質
  • 分離/過濾
  • 聲波阻尼

7. 全球生物基氣凝膠市場(以最終用戶分類)

  • 介紹
  • 建築/施工
  • 汽車與運輸
  • 航太/國防
  • 醫療保健
  • 食品和飲料製造
  • 環境服務
  • 能源系統和公用事業

8. 全球生物基氣凝膠市場(按地區分類)

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲國家
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第9章:主要趨勢

  • 合約、商業夥伴關係和合資企業
  • 企業合併(M&A)
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第10章:公司簡介

  • Aspen Aerogels
  • Cabot Corporation
  • Aerogel Technologies
  • Nano High-Tech
  • Active Aerogels
  • JIOS Aerogel
  • BASF
  • Green Earth Aerogel Technologies
  • ThermoDynamic Solutions
  • Cellutech AB
  • Aerogel Core Ltd.
  • Plant Aerogel Innovations
  • Blue Planet Eco Materials
  • Biolytix Solutions
  • EcoNano Materials
Product Code: SMRC32242

According to Stratistics MRC, the Global Bio-based Aerogels Market is accounted for $1.10 billion in 2025 and is expected to reach $2.82 billion by 2032 growing at a CAGR of 14.4% during the forecast period. Bio-based aerogels are ultra-light, highly porous structures produced from natural sources like cellulose, starch, chitosan, and lignin. They combine superior insulation, low weight, and large internal surface area, giving them an advantage over petroleum-based aerogels. Their biodegradability and safe composition fit global sustainability initiatives, encouraging adoption in construction, packaging, cosmetics, and drug delivery. These aerogels also excel at absorbing liquids and filtering pollutants, supporting demand in environmental protection and industrial cleanup. Current innovations aim to improve durability while reducing manufacturing expenses, making commercial scaling more viable.

According to a 2023 study published in Materials Today Sustainability, bio-based aerogels derived from cellulose, lignin, and chitosan show thermal conductivities as low as 0.025 W/m*K, rivaling synthetic silica aerogels while offering biodegradability and renewable sourcing.

Market Dynamics:

Driver:

Growing demand for sustainable and eco-friendly materials

Growing environmental awareness and stricter sustainability goals are encouraging industries to shift from synthetic to renewable materials, strongly driving the bio-based aerogels market. Since these aerogels come from natural sources, they offer biodegradability, low toxicity, and a smaller ecological footprint compared to traditional polymers and synthetic aerogels. Companies in construction, packaging, cosmetics, and healthcare increasingly prefer safe materials that support circular economy practices. Policy initiatives targeting carbon reduction and plastic alternatives also accelerate adoption. With buyers and brands becoming more environmentally conscious, bio-based aerogels are gaining wide acceptance and investment.

Restraint:

High production costs and limited commercial scale

The bio-based aerogels sector faces cost-related challenges because manufacturing them requires specialized processing, controlled drying techniques, and high-quality biomass inputs. Even though the raw materials are natural, preparing them for aerogel synthesis involves costly equipment and skilled labor. As a result, the final product is more expensive than many petroleum-based aerogels and foams. Large-scale industrial plants for bio-based aerogels are still limited, leading to low production volumes and higher market prices. Companies with small budgets struggle to adopt these materials in bulk. Unless technological improvements reduce expenses and allow mass manufacturing, high costs will continue to hold back broader market expansion.

Opportunity:

Expansion in energy-efficient construction and insulation

Energy-saving construction materials offer strong commercial potential for bio-based aerogels. Featuring high insulation performance, low weight, and reduced environmental risk, these aerogels can replace conventional foam-based insulators in buildings. They help maintain comfortable indoor temperatures, lower electricity consumption, and support sustainable design certifications. Builders and architects are seeking alternatives that perform well without increasing carbon footprints, boosting interest in natural aerogel insulation. Products such as aerogel-embedded panels, plasters, and roofing layers can significantly improve efficiency in residential and commercial projects. With regulatory incentives encouraging green architecture, this market segment can expand rapidly as bio-based aerogels gain credibility and wider usage.

Threat:

Strong competition from synthetic aerogels and alternative materials

The bio-based aerogels sector faces pressure from existing synthetic aerogels and conventional insulation materials that are already widely used in the market. Silica and polymer aerogels provide stronger mechanical properties and are available at larger scales, giving them a competitive advantage. Many industries prefer familiar materials and are unwilling to risk replacing proven solutions. In addition, affordable alternatives like fiberglass and foam insulators attract cost-sensitive buyers. If bio-based aerogels remain expensive and less durable, they could fall behind competing products. To counter this threat, producers must improve quality, enhance affordability, and highlight sustainability benefits to gain user confidence.

Covid-19 Impact:

COVID-19 created both challenges and opportunities for the bio-based aerogels industry. Initial restrictions caused disruptions in shipping, workforce availability, and biomass sourcing, which slowed production and delayed market expansion. Construction and industrial insulation projects faced postponements, temporarily lowering consumption. On the other hand, heightened demand for safe, sterile, and eco-friendly solutions in healthcare and packaging boosted innovation. Natural aerogels gained attention for drug delivery, wound care, and protective packaging during medical logistics. As economies reopened, sustainability targets and circular-economy strategies encouraged industries to adopt greener materials. These trends supported gradual recovery and increased interest in bio-based aerogels for future applications.

The cellulose-based aerogels segment is expected to be the largest during the forecast period

The cellulose-based aerogels segment is expected to account for the largest market share during the forecast period because cellulose is widely available, sustainable, and easily converted into lightweight porous materials. These aerogels provide strong insulation performance, low density, and full biodegradability, which make them useful across industries ranging from packaging and construction to healthcare and cosmetics. Their mechanical strength and compatibility with natural polymers enable manufacturers to design environmentally friendly solutions at competitive cost. Cellulose is obtained from renewable sources such as wood fibers, crop waste, and recycled paper, ensuring reliable supply for large-scale production. These advantages make cellulose-based aerogels the most popular and commercially accepted option among bio-derived aerogel categories.

The medical & healthcare segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the medical & healthcare segment is predicted to witness the highest growth rate because these materials provide safe, clean, and high-performance solutions for modern clinical needs. Natural aerogels are gaining strong interest in drug delivery, wound care, implant scaffolds, and absorbent pads owing to their biodegradability, excellent porosity, and gentle interaction with human tissue. Their ability to support healing, hold therapeutic compounds, and maintain sterile conditions makes them attractive substitutes for synthetic medical materials. As healthcare systems adopt greener and patient-friendly technologies, bio-based aerogels receive more funding, research attention, and regulatory support. This momentum drives the segment's rapid growth and future commercialization potential.

Region with largest share:

During the forecast period, the Europe region is expected to hold the largest market share because it strongly encourages sustainable manufacturing, circular-economy practices, and eco-friendly product development. Many European nations actively replace petrochemical materials with renewable alternatives in sectors such as packaging, buildings, medical care, and transportation. Research centers and industrial innovators across the region work together to improve performance, lower production costs, and introduce new commercial uses. Supportive environmental laws, carbon-reduction commitments, and incentives for biodegradable materials drive steady adoption. With a mature technological ecosystem and rising consumer preference for green products, Europe remains the main hub for production, research, and market expansion of bio-derived aerogels.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, supported by sustainability programs, industrial growth, and high demand for renewable materials. Nations such as China, India, Japan, and South Korea are exploring natural aerogels for construction insulation, medical products, eco-packaging, and water treatment. Environmental regulations, rising pollution concerns, and efforts to minimize plastic consumption are driving companies to adopt biodegradable alternatives. Expanding manufacturing capabilities, increasing research investments, and affordable production resources make the region attractive for large-scale aerogel development. With strong market awareness and government support, Asia-Pacific is emerging as the fastest-advancing hub for bio-based aerogels.

Key players in the market

Some of the key players in Bio-based Aerogels Market include Aspen Aerogels, Cabot Corporation, Aerogel Technologies, Nano High-Tech, Active Aerogels, JIOS Aerogel, BASF, Green Earth Aerogel Technologies, ThermoDynamic Solutions, Cellutech AB, Aerogel Core Ltd., Plant Aerogel Innovations, Blue Planet Eco Materials, Biolytix Solutions and EcoNano Materials.

Key Developments:

In August 2025, Cabot Corporation has announced its entry into a definitive agreement to acquire Mexico Carbon Manufacturing S.A. de C.V. from Bridgestone Corporation. This strategic acquisition involves a reinforcing carbons manufacturing plant that began operations in 2005. Located near Cabot's existing reinforcing carbons facility in Altamira, Mexico-which has been in successful operation since 1990-this acquisition will further solidify Cabot's presence in the region.

In July 2025, BASF and Equinor have signed a long-term strategic agreement for the annual delivery of up to 23 terawatt hours of natural gas over a ten-year period. The contract secures a substantial share of BASF's natural gas needs in Europe. This agreement further strengthens our partnership with BASF. Natural gas not only provides energy security to Europe but also critical feedstock to European industries.

Material Types Covered:

  • Cellulose-based Aerogels
  • Lignin-based Aerogels
  • Chitosan-based Aerogels
  • Starch-based Aerogels
  • Pectin-based Aerogels
  • Other Material Types

Applications Covered:

  • Thermal Management
  • Environmental Cleanup
  • Biomedical Devices
  • Food Contact Solutions
  • Catalysis & Reaction Media
  • Separation & Filtration
  • Acoustic Damping

End Users Covered:

  • Building & Construction
  • Automotive & Transportation
  • Aerospace & Defense
  • Medical & Healthcare
  • Food & Beverage Manufacturing
  • Environmental Services
  • Energy Systems & Utilities

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Bio-based Aerogels Market, By Material Type

  • 5.1 Introduction
  • 5.2 Cellulose-based Aerogels
  • 5.3 Lignin-based Aerogels
  • 5.4 Chitosan-based Aerogels
  • 5.5 Starch-based Aerogels
  • 5.6 Pectin-based Aerogels
  • 5.7 Other Material Types

6 Global Bio-based Aerogels Market, By Application

  • 6.1 Introduction
  • 6.2 Thermal Management
  • 6.3 Environmental Cleanup
  • 6.4 Biomedical Devices
  • 6.5 Food Contact Solutions
  • 6.6 Catalysis & Reaction Media
  • 6.7 Separation & Filtration
  • 6.8 Acoustic Damping

7 Global Bio-based Aerogels Market, By End User

  • 7.1 Introduction
  • 7.2 Building & Construction
  • 7.3 Automotive & Transportation
  • 7.4 Aerospace & Defense
  • 7.5 Medical & Healthcare
  • 7.6 Food & Beverage Manufacturing
  • 7.7 Environmental Services
  • 7.8 Energy Systems & Utilities

8 Global Bio-based Aerogels Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 Aspen Aerogels
  • 10.2 Cabot Corporation
  • 10.3 Aerogel Technologies
  • 10.4 Nano High-Tech
  • 10.5 Active Aerogels
  • 10.6 JIOS Aerogel
  • 10.7 BASF
  • 10.8 Green Earth Aerogel Technologies
  • 10.9 ThermoDynamic Solutions
  • 10.10 Cellutech AB
  • 10.11 Aerogel Core Ltd.
  • 10.12 Plant Aerogel Innovations
  • 10.13 Blue Planet Eco Materials
  • 10.14 Biolytix Solutions
  • 10.15 EcoNano Materials

List of Tables

  • Table 1 Global Bio-based Aerogels Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Bio-based Aerogels Market Outlook, By Material Type (2024-2032) ($MN)
  • Table 3 Global Bio-based Aerogels Market Outlook, By Cellulose-based Aerogels (2024-2032) ($MN)
  • Table 4 Global Bio-based Aerogels Market Outlook, By Lignin-based Aerogels (2024-2032) ($MN)
  • Table 5 Global Bio-based Aerogels Market Outlook, By Chitosan-based Aerogels (2024-2032) ($MN)
  • Table 6 Global Bio-based Aerogels Market Outlook, By Starch-based Aerogels (2024-2032) ($MN)
  • Table 7 Global Bio-based Aerogels Market Outlook, By Pectin-based Aerogels (2024-2032) ($MN)
  • Table 8 Global Bio-based Aerogels Market Outlook, By Other Material Types (2024-2032) ($MN)
  • Table 9 Global Bio-based Aerogels Market Outlook, By Application (2024-2032) ($MN)
  • Table 10 Global Bio-based Aerogels Market Outlook, By Thermal Management (2024-2032) ($MN)
  • Table 11 Global Bio-based Aerogels Market Outlook, By Environmental Cleanup (2024-2032) ($MN)
  • Table 12 Global Bio-based Aerogels Market Outlook, By Biomedical Devices (2024-2032) ($MN)
  • Table 13 Global Bio-based Aerogels Market Outlook, By Food Contact Solutions (2024-2032) ($MN)
  • Table 14 Global Bio-based Aerogels Market Outlook, By Catalysis & Reaction Media (2024-2032) ($MN)
  • Table 15 Global Bio-based Aerogels Market Outlook, By Separation & Filtration (2024-2032) ($MN)
  • Table 16 Global Bio-based Aerogels Market Outlook, By Acoustic Damping (2024-2032) ($MN)
  • Table 17 Global Bio-based Aerogels Market Outlook, By End User (2024-2032) ($MN)
  • Table 18 Global Bio-based Aerogels Market Outlook, By Building & Construction (2024-2032) ($MN)
  • Table 19 Global Bio-based Aerogels Market Outlook, By Automotive & Transportation (2024-2032) ($MN)
  • Table 20 Global Bio-based Aerogels Market Outlook, By Aerospace & Defense (2024-2032) ($MN)
  • Table 21 Global Bio-based Aerogels Market Outlook, By Medical & Healthcare (2024-2032) ($MN)
  • Table 22 Global Bio-based Aerogels Market Outlook, By Food & Beverage Manufacturing (2024-2032) ($MN)
  • Table 23 Global Bio-based Aerogels Market Outlook, By Environmental Services (2024-2032) ($MN)
  • Table 24 Global Bio-based Aerogels Market Outlook, By Energy Systems & Utilities (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.