全球氣凝膠市場(2026-2036)
市場調查報告書
商品編碼
1858289

全球氣凝膠市場(2026-2036)

The Global Aerogels Market 2026-2036

出版日期: | 出版商: Future Markets, Inc. | 英文 325 Pages, 61 Tables, 42 Figures | 訂單完成後即時交付

價格
簡介目錄

全球氣凝膠產業正經歷前所未有的變革,從利基特殊材料領域轉型為主流技術平台,其應用範圍廣泛,涵蓋電動車電池、建築保溫、航空航天系統和生物醫學設備等領域。這種充滿活力的市場演變既反映了氣凝膠的獨特性能(一種超輕材料,具有卓越的隔熱性能、高比表面積和顯著的孔隙率),也體現了人們日益認識到其在解決能源效率、熱管理和可持續製造等關鍵挑戰方面的潛力。

氣凝膠市場格局正快速整合,既有老牌企業,也有創新新晉企業。像 Aspen Aerogels 和 Cabot Corporation 這樣的傳統企業在不斷推動其核心二氧化矽氣凝膠技術的同時,也積極拓展電動車隔熱層和先進建築保溫系統等高成長應用領域。同時,從大學衍生企業到正在拓展產品組合的成熟材料公司,許多新晉企業正在推出創新產品,爭奪新的市場機會。這種競爭環境正在加速多方面的創新。雖然二氧化矽氣凝膠在商業產品類別中仍佔主導地位,但聚合物和生物聚合物氣凝膠正獲得顯著發展勢頭。各公司正在開發針對特定應用的專用配方,例如用於儲能電極的碳氣凝膠、用於 5G 通訊基礎設施的聚合物氣凝膠以及用於永續包裝和生物醫學應用的生物基氣凝膠。

製造工藝創新是競爭的關鍵領域。各公司正在探索多種策略來降低製造成本並提高可擴展性,從無需昂貴的超臨界處理的大氣乾燥技術到提高產量的連續製造系統。先進的 3D 列印技術能夠實現以前無法實現的複雜氣凝膠形狀,而可持續原材料的開發則有助於解決環境問題並增強供應鏈的韌性。數位技術的整合顯著提升了氣凝膠的開發和製造。計算建模加速了材料設計,而先進的表徵技術能夠精確控制孔隙結構、熱性能和機械性能。這些能力對於滿足各行各業日益嚴格的應用要求至關重要。

電動車應用或許已成為最重要的驅動因素,氣凝膠提供的熱管理解決方案對於電池的安全性和性能至關重要。隨著電動車在全球的普及,採用氣凝膠屏障的熱失控預防系統正成為標準安全功能,這為特種材料供應商創造了巨大的市場機會。

建築和施工應用不斷擴展,不再局限於傳統的隔熱材料,而是涵蓋高性能窗戶、隔熱解決方案以及旨在實現淨零能耗的整合式建築系統。在航空航太和國防領域,氣凝膠正被用於熱防護系統、輕質結構部件和先進電子設備的冷卻。生物醫學應用是一個特別活躍的研究領域,其發展成果包括組織工程支架、傷口癒合材料和控釋藥物系統。環境應用,例如碳捕獲技術和水淨化系統,在應對全球永續發展挑戰的同時,也創造了新的商業機會。

氣凝膠市場的發展軌跡反映了能源效率、永續性和先進材料性能的更廣泛趨勢。 隨著製造成本持續下降和應用知識的不斷拓展,氣凝膠將成為多個產業的主流解決方案。

本報告深入分析了全球氣凝膠市場,透過全面的公司概況和詳細的市場預測,考察了其製造規模、成本結構、競爭格局和新興應用機會。

目錄

第1章 摘要整理

  • 氣凝膠的特性
  • 氣凝膠的用途
  • 氣凝膠市場上競爭要素
  • 市場促進因素和趨勢
  • 氣凝膠製造商生產能力和製造流程
  • 市場與技術的課題
  • 氣凝膠的市場規模與預測(~2036年)
  • 競爭情形

第2章 簡介

  • 氣凝膠
  • 生產工藝
  • 二氧化矽氣凝膠
  • 類氣凝膠聚合物泡沫
  • 金屬氧化物氣凝膠
  • 有機氣凝膠
  • 3D列印氣凝膠
  • 混合氣凝膠與複合材料氣凝膠氣凝膠
  • 技術成熟度等級 (TRL)

第3章 生產方式

  • 概要
  • 溶膠凝膠法
  • 氣凝膠的3D列印
  • 乾燥方法
  • 成本
  • 製造規模擴大的課題

第4章 氣凝膠的市場與用途

  • 競爭情形
  • EV用電池
  • 石油、天然氣
  • 建築·建設
  • 能源儲存
  • 生物醫學
  • 低溫運輸包裝
  • 電子通訊
  • 過濾·分離·吸著
  • 纖維
  • 食品
  • 催化劑
  • 油漆和塗料
  • 航太·防衛
  • 化妝品
  • 其他的市場與用途

第5章 氣凝膠的專利

  • 專利申請

第6章 氣凝膠企業的簡介(企業52公司的簡介)

第7章 調查範圍和調查手法

第8章 參考文獻

簡介目錄

The global aerogel industry is experiencing unprecedented transformation as it transitions from a niche specialty materials sector into a mainstream technology platform with applications spanning electric vehicle batteries, building insulation, aerospace systems, and biomedical devices. This dynamic market evolution reflects both the unique properties of aerogels-ultralight materials with exceptional thermal insulation, high surface area, and remarkable porosity-and the growing recognition of their potential to address critical challenges in energy efficiency, thermal management, and sustainable manufacturing.

The aerogel landscape is undergoing rapid restructuring driven by both established players and innovative newcomers. Traditional manufacturers like Aspen Aerogels and Cabot Corporation continue advancing their core silica aerogel technologies while expanding into high-growth applications such as electric vehicle thermal barriers and advanced building insulation systems. Simultaneously, a wave of new entrants-ranging from university spin-offs to established materials companies diversifying their portfolios-are introducing novel products and competing for emerging market opportunities. This competitive environment has accelerated innovation across multiple dimensions. While silica aerogels maintain their position as the dominant commercial product category, polymer and biopolymer aerogels are gaining significant traction. Companies are developing specialized formulations targeting specific applications: carbon aerogels for energy storage electrodes, polymer aerogels for 5G telecommunications infrastructure, and bio-based aerogels for sustainable packaging and biomedical applications.

Manufacturing process innovation represents a critical competitive frontier. Companies are pursuing multiple strategies to reduce production costs and improve scalability, from ambient pressure drying techniques that eliminate expensive supercritical processing to continuous manufacturing systems that enhance throughput. Advanced 3D printing technologies are enabling complex aerogel geometries previously impossible to achieve, while sustainable feedstock development is addressing environmental concerns and supply chain resilience. The integration of digital technologies is significantly enhancing aerogel development and manufacturing. Computational modelling accelerates materials design, while advanced characterization techniques enable precise control over pore structure, thermal properties, and mechanical performance. These capabilities are essential for meeting increasingly stringent application requirements across diverse industries.

Electric vehicle applications have emerged as perhaps the most significant growth driver, with aerogels providing critical thermal management solutions for battery safety and performance. As EV adoption accelerates globally, thermal runaway protection systems incorporating aerogel barriers are becoming standard safety features, creating substantial market opportunities for specialized materials suppliers.

Building and construction applications continue expanding beyond traditional insulation, encompassing high-performance windows, thermal bridge solutions, and integrated building systems designed for net-zero energy performance. The aerospace and defense sectors are adopting aerogels for thermal protection systems, lightweight structural components, and advanced electronics cooling applications. Biomedical applications represent a particularly active research area, with developments in tissue engineering scaffolds, wound healing materials, and controlled drug release systems. Environmental applications, including carbon capture technologies and water purification systems, address global sustainability challenges while creating new commercial opportunities.

The aerogel market's trajectory reflects broader trends toward energy efficiency, sustainability, and advanced materials performance. As manufacturing costs continue declining and application knowledge expands, aerogels are positioned to become mainstream solutions across multiple industries.

"The Global Aerogels Market 2026-2036" provides strategic intelligence for materials manufacturers, end-users, investors, and technology developers navigating this rapidly evolving market. Analysis encompasses silica, polymer, carbon, and bio-based aerogel technologies, examining manufacturing scalability, cost structures, competitive dynamics, and emerging application opportunities through comprehensive company profiles and detailed market forecasts.

Report Contents include:

  • Comprehensive analysis of aerogel properties including thermal conductivity benchmarking, density comparisons, and mechanical characteristics
  • EV battery pack applications as primary growth driver with detailed thermal runaway protection analysis
  • Competitive landscape assessment covering 54+ global manufacturers
  • Market drivers spanning energy efficiency regulations, thermal management requirements, and sustainability mandates
  • Manufacturing capacity analysis by geography with focus on China's dominance in production versus revenue
  • Technology and market challenges including cost barriers, dust generation concerns, and integration complexities
  • Market forecasts 2026-2036 segmented by aerogel type (silica, polymer, carbon), end-use market, and geographic region
  • Technology & Materials Analysis
    • Detailed aerogel classification covering inorganic, organic, and composite materials
    • Manufacturing processes including supercritical drying, ambient pressure drying, and rapid extraction techniques
    • Silica aerogel products: monoliths, powders, granules, blankets, boards, and renders with SWOT analyses
    • Advanced composites using organic crosslinkers and fiber reinforcement
    • Sustainable feedstock development from food waste, textile waste, and agricultural byproducts
    • Polymer aerogels including polyimide, polyurethane, and resorcinol-formaldehyde systems
    • Bio-based aerogels: cellulose nanofibers, alginate, starch, chitosan, protein, pectin, and agar materials
    • Carbon aerogels, graphene aerogels, and carbon nanotube architectures
    • 3D printing technologies for complex aerogel geometries
    • Hybrid and composite systems including metal-organic framework aerogels
  • Manufacturing & Production
    • Sol-gel chemistry fundamentals and process optimization
    • Supercritical CO2 drying with closed-loop systems and autoclave technologies
    • Ambient pressure drying innovations reducing production costs
    • Scale-up challenges from laboratory to commercial manufacturing
    • Cost analysis by aerogel type and production method
    • QT-polysiloxane enabler technologies
  • Applications & Markets
    • EV Batteries: Thermal runaway protection, fire safety regulations (UN GTR 20, GB 38031-2020), material intensity analysis, integration strategies, and comprehensive company assessment
    • Oil & Gas: Refinery insulation, cryogenic pipeline applications, LNG facilities
    • Building & Construction: Sustainable insulation materials, panels, renders, plasters, window glazing systems, industrial insulation standards (EN 17956)
    • Energy Storage: Silicon anodes, lithium-sulfur batteries, electrode materials, supercapacitors, hydrogen storage
    • Biomedical: Drug delivery systems, tissue engineering scaffolds, wound dressings, medical implants with sterilization protocols
    • Electronics & Telecommunications: EMI shielding, thermal management, 5G antenna substrates, low-loss dielectric materials
    • Environmental Applications: Water treatment, heavy metal removal, oil spill remediation, CO2 capture and direct air capture systems
    • Textiles: Winter sports apparel, luxury fashion applications, protective equipment, footwear
    • Aerospace & Defense: Thermal protection systems, vibration suppression, NASA applications, crash absorbers
    • Additional Markets: Cold-chain packaging, cosmetics, catalysts, paints/coatings, food applications, solar energy, passive cooling
  • Patent Landscape
    • Analysis of 2010-2024 patent filings by technology area, assignee, and geography
    • Intellectual property trends and competitive positioning
  • Company Profiles Detailed profiles of 54 aerogel manufacturers including:
    • Production capacity and manufacturing processes
    • Product portfolios and specifications
    • Target markets and applications
    • Recent developments and strategic initiatives
    • Companies profiled include: ABIS Aerogel Co., Ltd., Active Aerogels, Aerobel BV, Aerofybers Technologies SL, aerogel-it GmbH, Aerogel Core Ltd, Aerogel Technologies LLC, Aerogel Coating Technologies, Aerogel Inside, AeroShield Materials Inc., AGITEC International AG, Armacell International S.A., Aspen Aerogels, Inc., BASF SE, Blueshift Materials, Inc., Cabot Corporation, Dongjin Semichem, Dragonfly Insulation, Elisto GmbH, Enersens SAS, Fibenol, Fuji Silysia Chemical Ltd., Gelanggang Kencana Sdn. Bhd., Graphene Composites Limited, Guangdong Alison Hi-Tech Co., Ltd., Hebei Jinna Technology Co., Ltd., IBIH Advanced Materials, Hokuetsu Toyo Fibre Co., Ltd., JIOS Aerogel, Joda Technology Co., Ltd., Keey Aerogel and more.......

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Aerogel Properties
  • 1.2. Aerogel Applications
  • 1.3. Competitive Factors in the Aerogels Market
  • 1.4. Market Drivers and Trends
  • 1.5. Aerogel Manufacturer Production Capacity and Manufacturing Processes
    • 1.5.1. Technology Evolution Enabling Capacity Growth
    • 1.5.2. Cost Reduction Trajectory
    • 1.5.3. Regional Capacity Analysis and Utilization Rates
      • 1.5.3.1. North America
      • 1.5.3.2. China
      • 1.5.3.3. Europe
      • 1.5.3.4. South Korea
      • 1.5.3.5. Japan
      • 1.5.3.6. Rest of World
  • 1.6. Market and Technology Challenges
  • 1.7. Aerogel Market Size and Forecast to 2036
    • 1.7.1. 2024 Market Composition by Value
    • 1.7.2. Company Performance and Market Share Analysis
      • 1.7.2.1. Aspen Aerogels, Inc.
      • 1.7.2.2. Cabot Corporation
      • 1.7.2.3. Armacell International S.A.
      • 1.7.2.4. Guangdong Alison Hi-Tech Co., Ltd.
    • 1.7.3. By Aerogel Type
      • 1.7.3.1. Silica Aerogels
        • 1.7.3.1.1. Manufacturing Maturity
        • 1.7.3.1.2. Applications
        • 1.7.3.1.3. Competitive Dynamics
        • 1.7.3.1.4. Technology Trends and Future Development:
        • 1.7.3.1.5. Market Share Erosion but Absolute Growth
      • 1.7.3.2. Polymer Aerogels
        • 1.7.3.2.1. Material Types and Properties
        • 1.7.3.2.2. Applications
        • 1.7.3.2.3. Manufacturing and Cost Structure
        • 1.7.3.2.4. Competitive Landscape
        • 1.7.3.2.5. Technology Development Priorities
        • 1.7.3.2.6. Market Growth Drivers
      • 1.7.3.3. Carbon Aerogels
        • 1.7.3.3.1. Material Properties and Characteristics
        • 1.7.3.3.2. Cost Structure
        • 1.7.3.3.3. Applications
        • 1.7.3.3.4. Technology Development Priorities
        • 1.7.3.3.5. Market Growth Drivers
      • 1.7.3.4. Hybrid/Composite Aerogels: Engineered Multi-Functionality
        • 1.7.3.4.1. Material Types and Architectures
        • 1.7.3.4.2. Applications
        • 1.7.3.4.3. Technology Development Priorities
        • 1.7.3.4.4. Market Growth Drivers
      • 1.7.3.5. Other Aerogel Types: Emerging Technologies
        • 1.7.3.5.1. Material Types
    • 1.7.4. By End Use Market
    • 1.7.5. EV Battery Thermal Barriers: The Dominant Growth Engine
      • 1.7.5.1. Regulatory Drivers
      • 1.7.5.2. Market Penetration Dynamics
      • 1.7.5.3. Geographic Penetration Patterns
      • 1.7.5.4. Technology and Product Evolution
      • 1.7.5.5. Content per Vehicle Trends
      • 1.7.5.6. Competitive Dynamics and Market Share Evolution
      • 1.7.5.7. Growth Projections Methodology and Assumptions
      • 1.7.5.8. Alternative Scenarios
    • 1.7.6. Oil & Gas Pipeline Insulation
      • 1.7.6.1. Market Composition by Pipeline Type
        • 1.7.6.1.1. Subsea Oil & Gas Pipelines
        • 1.7.6.1.2. Onshore Heated Oil Pipelines
        • 1.7.6.1.3. LNG and Cryogenic Applications
        • 1.7.6.1.4. Industrial Process Pipelines
      • 1.7.6.2. Market Trends and Outlook:
    • 1.7.7. By Region
      • 1.7.7.1. North America
      • 1.7.7.2. Europe
      • 1.7.7.3. China
      • 1.7.7.4. Japan
      • 1.7.7.5. Rest of Asia-Pacific (excluding China and Japan)
      • 1.7.7.6. Rest of World (Middle East, Africa, Latin America)
  • 1.8. Competitive Landscape
    • 1.8.1. Market Structure and Concentration
    • 1.8.2. Strategic Group Analysis
      • 1.8.2.1. Group 1: Global Technology Leaders
      • 1.8.2.2. Group 2: Diversified Insulation Leaders
      • 1.8.2.3. Group 3: Chinese Volume Manufacturers
      • 1.8.2.4. Group 4: Niche Specialists & Regional Players
    • 1.8.3. Competitive Battlegrounds: Where Competition Is Intensifying
      • 1.8.3.1. Battleground 1: Mass-Market EV Segment ($30-50K Vehicles)
      • 1.8.3.2. Battleground 2: Industrial Insulation Market
      • 1.8.3.3. Battleground 3: Particles vs. Blankets Format War
      • 1.8.3.4. Battleground 4: Geographic Market Control - China

2. INTRODUCTION

  • 2.1. Aerogels
    • 2.1.1. Origin of Aerogels
    • 2.1.2. Classification
    • 2.1.3. Aerogel Forms
    • 2.1.4. Commercially available aerogels
  • 2.2. Manufacturing processes
    • 2.2.1. Supercritical Drying Process
      • 2.2.1.1. Closed Loop Systems
      • 2.2.1.2. Autoclave Loading and Operational Efficiency
    • 2.2.2. Ambient Pressure Drying Process
  • 2.3. Silica aerogels
    • 2.3.1. Properties
      • 2.3.1.1. Thermal conductivity and density
      • 2.3.1.2. Mechanical
      • 2.3.1.3. Silica aerogel precursors
    • 2.3.2. Products
      • 2.3.2.1. Monoliths
        • 2.3.2.1.1. Properties
        • 2.3.2.1.2. Monoliths prepared under ambient pressure
        • 2.3.2.1.3. Scalable monolithic sheet production for windows
        • 2.3.2.1.4. Alternative monolithic aerogel manufacturing processes
      • 2.3.2.2. Powder
        • 2.3.2.2.1. Key characteristics
        • 2.3.2.2.2. Silica Aerogel powder manufacturing processes
        • 2.3.2.2.3. Powders and granules prepared under ambient pressure
      • 2.3.2.3. Granules
      • 2.3.2.4. Blankets
      • 2.3.2.5. Aerogel boards
      • 2.3.2.6. Aerogel renders
      • 2.3.2.7. Silica aerogel from sustainable feedstocks
      • 2.3.2.8. Silica composite aerogels
        • 2.3.2.8.1. Organic crosslinkers
        • 2.3.2.8.2. Composites from powders and granules
        • 2.3.2.8.3. Opacified aerogels
        • 2.3.2.8.4. Commercial activity
    • 2.3.3. Cost
    • 2.3.4. Main Companies and Products
  • 2.4. Aerogel-like polymer foams
    • 2.4.1. Properties
    • 2.4.2. Applications for aerogel-like polymer foams include:
  • 2.5. Metal oxide aerogels
  • 2.6. Organic aerogels
    • 2.6.1. Polymer-based aerogels
      • 2.6.1.1. Polyimide-graphene aerogel composites
      • 2.6.1.2. Recyclable aerogels
    • 2.6.2. Biobased aerogels (bio-aerogels)
      • 2.6.2.1. Overview
      • 2.6.2.2. Sustainable Feedstocks
        • 2.6.2.2.1. Silica aerogels derived from waste sources
          • 2.6.2.2.1.1. Food waste to bioaerogel conversion
        • 2.6.2.2.2. Commercial development
        • 2.6.2.2.3. Textile waste into high-value aerogel materials
      • 2.6.2.3. Cellulose aerogels
        • 2.6.2.3.1. Cellulose nanofiber (CNF) aerogels
        • 2.6.2.3.2. Cellulose nanocrystal aerogels
        • 2.6.2.3.3. Bacterial nanocellulose aerogels
      • 2.6.2.4. Lignin aerogels
      • 2.6.2.5. Alginate aerogels
      • 2.6.2.6. Starch aerogels
      • 2.6.2.7. Chitosan aerogels
      • 2.6.2.8. Protein aerogels
        • 2.6.2.8.1. Albumin aerogels
        • 2.6.2.8.2. Casein aerogels
        • 2.6.2.8.3. Gelatin aerogels
        • 2.6.2.8.4. Whey protein isolate aerogels
      • 2.6.2.9. Silk fiber
      • 2.6.2.10. Pectin composite aerogels for thermal superinsulation
      • 2.6.2.11. Agar aerogels for biomedical applications
    • 2.6.3. Carbon aerogels
      • 2.6.3.1. Manufacturing and properties
      • 2.6.3.2. Carbon nanotube aerogels
      • 2.6.3.3. Graphene and graphite aerogels
      • 2.6.3.4. MXene materials
      • 2.6.3.5. Graphitic Networks on Polyimide Aerogels
      • 2.6.3.6. Graphene (Hybrid Systems)
      • 2.6.3.7. Carbon aerogel manufacturers
  • 2.7. 3D printed aerogels
    • 2.7.1. 3D printing processes and applications
    • 2.7.2. Carbon nitride
    • 2.7.3. Gold
    • 2.7.4. Cellulose
    • 2.7.5. Graphene oxide
  • 2.8. Hybrid and composite aerogels
    • 2.8.1. Mixed oxide aerogels
    • 2.8.2. Metal oxide aerogel composites
    • 2.8.3. Carbon-based aerogel composites
    • 2.8.4. Metal Organic Framework Aerogel Composites (MOFACs)
  • 2.9. Technology Readiness Level (TRL)

3. PRODUCTION METHODS

  • 3.1. Overview
  • 3.2. Sol-gel process
  • 3.3. 3D printing of aerogels
  • 3.4. Drying methods
    • 3.4.1. Overview of drying methods
    • 3.4.2. Supercritical Drying
      • 3.4.2.1. Closed loop
      • 3.4.2.2. Autoclave loading
    • 3.4.3. Ambient Pressure Drying
    • 3.4.4. Rapid Supercritical Extraction (RSCE)
    • 3.4.5. Advantages and disadvantages
  • 3.5. Costs
  • 3.6. Manufacturing scale-up challenges

4. MARKETS AND APPLICATIONS FOR AEROGELS

  • 4.1. Competitive landscape
  • 4.2. EV Batteries
    • 4.2.1. Overview
    • 4.2.2. EV batteries
      • 4.2.2.1. Fire protection
      • 4.2.2.2. Thermal barriers
      • 4.2.2.3. Regulations
      • 4.2.2.4. Challenges
      • 4.2.2.5. Integration of aerogels with specialized foam materials
      • 4.2.2.6. Companies
  • 4.3. Oil and Gas
    • 4.3.1. Overview
    • 4.3.2. Applications
      • 4.3.2.1. Refineries
      • 4.3.2.2. Pipelines
  • 4.4. Building and Construction
    • 4.4.1. Overview
    • 4.4.2. Types of sustainable insulation materials
    • 4.4.3. Technical Value Proposition in Buildings
    • 4.4.4. Application Segments
      • 4.4.4.1. Historic Building Renovation
        • 4.4.4.1.1. Market Characteristics
        • 4.4.4.1.2. Typical Applications
        • 4.4.4.1.3. Geographic Distribution
        • 4.4.4.1.4. Market Dynamics
      • 4.4.4.2. Exterior Insulation Finishing Systems (EIFS) and Facades
        • 4.4.4.2.1. Market Characteristics
        • 4.4.4.2.2. Applications
        • 4.4.4.2.3. Geographic Distribution
        • 4.4.4.2.4. Market Dynamics
        • 4.4.4.2.5. Technology Development
      • 4.4.4.3. Window Glazing and Daylighting Systems
        • 4.4.4.3.1. Market Characteristics
        • 4.4.4.3.2. Technology Description
        • 4.4.4.3.3. Technical Performance
        • 4.4.4.3.4. Applications
        • 4.4.4.3.5. Geographic Distribution
        • 4.4.4.3.6. Market Dynamics
        • 4.4.4.3.7. Technology Development
      • 4.4.4.4. High-Performance Residential and Commercial Insulation
        • 4.4.4.4.1. Market Characteristics
        • 4.4.4.4.2. Geographic Distribution
        • 4.4.4.4.3. Market Dynamics
        • 4.4.4.4.4. Growth Trajectory
      • 4.4.4.5. Industrial insulation
      • 4.4.4.6. Other Building Applications
      • 4.4.4.7. Manufacturing and Cost Economics for Building Applications
        • 4.4.4.7.1. Cost Reduction Pathway
      • 4.4.4.8. Regulatory Environment and Building Codes
        • 4.4.4.8.1. Regulatory Evolution
      • 4.4.4.9. Market Growth Drivers
  • 4.5. Energy Storage
    • 4.5.1. Overview
    • 4.5.2. Applications
      • 4.5.2.1. Silicon anodes
      • 4.5.2.2. Li-S batteries
      • 4.5.2.3. Electrodes
      • 4.5.2.4. Thermal insulation
      • 4.5.2.5. Supercapacitors
  • 4.6. Biomedical
    • 4.6.1. Overview
    • 4.6.2. Applications
      • 4.6.2.1. Drug delivery
      • 4.6.2.2. Tissue engineering
      • 4.6.2.3. Medical implants
      • 4.6.2.4. Wound care
  • 4.7. Cold-Chain Packaging
    • 4.7.1. Overview
  • 4.8. Electronics and Telecommunications
    • 4.8.1. Overview
    • 4.8.2. Applications
      • 4.8.2.1. EMI Shielding
      • 4.8.2.2. Thermal insulation
      • 4.8.2.3. 5G
        • 4.8.2.3.1. Antenna modules
        • 4.8.2.3.2. High-performance antenna substrates
        • 4.8.2.3.3. Advanced low-loss materials
  • 4.9. Filtration, Separation, and Sorption
    • 4.9.1. Overview
    • 4.9.2. Applications
      • 4.9.2.1. Sorbents for liquids, hazardous ions (heavy metal ions) (e.g., water treatment)
      • 4.9.2.2. Sorbent for oil spills
      • 4.9.2.3. Sorbents for gases (CO2, hazardous gases, VOC)
  • 4.10. Textiles
    • 4.10.1. Overview
    • 4.10.2. Applications
      • 4.10.2.1. Winter sports apparel
      • 4.10.2.2. Consumer apparel
      • 4.10.2.3. Protective equipment
      • 4.10.2.4. Footwear applications
  • 4.11. Food
    • 4.11.1. Overview
  • 4.12. Catalysts
  • 4.13. Paint and Coatings
  • 4.14. Aerospace and Defence
    • 4.14.1. Overview
    • 4.14.2. Applications
      • 4.14.2.1. Thermal protection systems
      • 4.14.2.2. Crash absorbers
      • 4.14.2.3. Applications
  • 4.15. Cosmetics
    • 4.15.1. Overview
  • 4.16. Other markets and applications
    • 4.16.1. Sports equipment
    • 4.16.2. Fire retardant applications
    • 4.16.3. Solar energy collection
    • 4.16.4. Knudsen pumps
    • 4.16.5. Passive Cooling

5. AEROGEL PATENTS

  • 5.1. Patent applications

6. AEROGEL COMPANY PROFILES (52 company profiles)

7. RESEARCH SCOPE AND METHODOLOGY

  • 7.1. Report scope
  • 7.2. Research methodology

8. REFERENCES

Tables

  • Table 1. General properties and value of aerogels
  • Table 2. Aerogel Thermal Conductivity and Density Benchmarking
  • Table 3. Market drivers for aerogels
  • Table 4. Aerogel Manufacturer Production Capacity and Manufacturing Processes (2024)
  • Table 5. Planned Aerogel Production Expansions (2024-2027)
  • Table 6. Market and technology challenges in aerogels
  • Table 7. Global Aerogel Market Forecast 2021-2036 by Aerogel Type (Million USD)
  • Table 8. Global Aerogel Market 2024-2036 by Application (Million USD)
  • Table 9. Global Aerogel Market 2024-2036 by Region (Million USD)
  • Table 10. Aerogel Form Factors
  • Table 11. Commercially Available Aerogel Products
  • Table 12. Silica aerogel properties
  • Table 13. Chemical precursors used to synthesize silica aerogels
  • Table 14. Alternative Monolithic Aerogel Manufacturing Processes
  • Table 15. Silica Aerogel Powder Manufacturing Processes
  • Table 16. Commercially available aerogel-enhanced blankets
  • Table 17. Silica Composite Aerogels Formed from Powder and Granules - Players and Progress
  • Table 18. Commercial Silica Composite Aerogels
  • Table 19. Main manufacturers of silica aerogels and product offerings
  • Table 20. Typical structural properties of metal oxide aerogels
  • Table 21. Polymer aerogels companies
  • Table 22. Types of biobased aerogels
  • Table 23. Agar Aerogels for Biomedical Applications
  • Table 24. Carbon aerogel companies
  • Table 25. Carbon aerogel manufacturers
  • Table 26. 3D printing processes and applications
  • Table 27. Synthesis methods-Aerogels synthesised, advantages and disadvantages
  • Table 28. Silica Aerogel Powder Manufacturing Processes Using Ambient Drying
  • Table 29. Drying methods for aerogel production
  • Table 30. Advantages and disadvantages of drying methods
  • Table 31. Silica Composite Aerogels - Cost Analysis
  • Table 32. Cost Analysis by Aerogel Type
  • Table 33. Manufacturing scale-up challenges
  • Table 34. Market overview of aerogels in automotive-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 35. Properties of Aerogels and Other Fire Protection Materials
  • Table 36. Types of Fire Protection Materials
  • Table 37. Thermally Insulating Fire Protection Products for EVs
  • Table 38. Comparison of Aerogels vs Other Fire Protection Materials
  • Table 39. Comparison of Aerogel Fire Protection Materials for EV Batteries
  • Table 40. Companies producing Aerogels for EV Batteries
  • Table 41. Market overview of aerogels in oil and gas-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 42. Aerogel Products for Cryogenic Insulation
  • Table 43. Thermal Performance Comparison
  • Table 44. Aerogel Products for Windows/Daylighting
  • Table 45. Aerogel Materials for Building & Construction Applications
  • Table 46. Market overview of aerogels in energy conversion and storage-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 47. Market overview of aerogels in drug delivery-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 48. Market overview of aerogels in tissue engineering-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 49. Market overview of aerogels in medical implants-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 50. Market overview of aerogels in wound care-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 51. Market overview of aerogels in cold-chain packaging-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 52. Market overview of aerogels in electronics and Telecommunications-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 53. Aerogel Products for Electronic Appliances
  • Table 54. Market overview of aerogels in filtration, separation, and sorption-market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 55. Market overview of aerogels in textiles- market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 56. Market overview of aerogels in food- market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 57. Market overview of aerogels in catalysts-market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 58. Market overview of aerogels in paints and coatings-market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 59. Market overview of aerogels in aerospace and defence-market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 60. Market overview of aerogels in cosmetics-market drivers, types of aerogels utilized, motivation for use of aerogels, applications
  • Table 61. Aerogel patents 2010-2024

Figures

  • Figure 1. Classification of aerogels
  • Figure 2. SLENTEX-R thermal insulation
  • Figure 3. Global Aerogel Market Forecast 2021-2036 by Aerogel Type (Million USD)
  • Figure 4. Global Aerogel Market 2024-2036 by Application (Million USD)
  • Figure 5. Global Aerogel Market 2024-2036 by Region (Million USD)
  • Figure 6. Main characteristics of aerogel type materials
  • Figure 7. Classification of aerogels
  • Figure 8. Canada Goose luxury footwear
  • Figure 9. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner
  • Figure 10. Monolithic aerogel
  • Figure 11. Aerogel granules
  • Figure 12. Internal aerogel granule applications
  • Figure 13. Slentite
  • Figure 14. Methods for producing bio-based aerogels
  • Figure 15. Types of cellulose aerogel
  • Figure 16. Lignin-based aerogels
  • Figure 17. Fabrication routes for starch-based aerogels
  • Figure 18. Schematic of silk fiber aerogel synthesis
  • Figure 19. Graphene aerogel
  • Figure 20. Commonly employed printing technologies for aerogels
  • Figure 21. Schematic for direct ink writing of silica aerogels
  • Figure 22. 3D printed aerogel
  • Figure 23. Schematic of silica aerogels synthesis
  • Figure 24. Formation of aerogels, cryogels and xerogels
  • Figure 25. Aerogel engineering strategies
  • Figure 26. 3D printed aerogels
  • Figure 27. SEM images of the microstructures of (a) alginate and (b) pectin aerogels obtained by supercritical drying, (c) cellulose aerogels by freeze-drying, and (d) silica-cellulose composite aerogels by ambient drying
  • Figure 28. Methods of gel drying
  • Figure 29. Pyrogel insulation on a heat-exchange vessel in a petrochemical plant
  • Figure 30. Aerogel construction applications
  • Figure 31. Incorporation of aerogels into textiles
  • Figure 32. Aerogel dust collector
  • Figure 33. Thermal Conductivity Performance of ArmaGel HT
  • Figure 34. SLENTEX-R roll (piece)
  • Figure 35. CNF gel
  • Figure 36. Block nanocellulose material
  • Figure 37. Keey Aerogel
  • Figure 38. Fire-resistance in Keey Aerogel
  • Figure 39. Melodea CNC suspension
  • Figure 40. Insulation of various aerogel fibres illustrated using the example of a cushion
  • Figure 41. Sunthru Aerogel pane
  • Figure 42. Quartzene-R