封面
市場調查報告書
商品編碼
1865443

行動電話半導體市場預測至2032年:按組件、技術節點、製造流程、應用和地區分類的全球分析

Mobile Phone Semiconductor Market Forecasts to 2032 - Global Analysis By Component, Technology Node, Manufacturing Process, Application and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,預計到 2025 年,全球行動電話半導體市場規模將達到 418.1 億美元,到 2032 年將達到 918.6 億美元,預測期內複合年成長率為 11.9%。

行動電話半導體是智慧型手機運作的關鍵電子元件,負責管理處理、儲存、能源控制和連接。它們由處理器、儲存模組、射頻晶片和感測器等組件構成,實現通訊、顯示和多媒體功能。這些晶片在提升行動電話性能、功能和能源效率方面發揮著至關重要的作用,確保設備流暢且先進地運作。

每輛車的零件需求量增加

隨著製造商將5G連接、人工智慧處理和高解析度攝影機等先進功能整合到晶片組中,晶片組的複雜性和整合度持續提升。每一代行動電話都對運算效能、記憶體容量和能源效率提出了更高的要求,從而推動了半導體消費。此外,折疊式和遊戲手機的興起進一步增加了對專用晶片的需求。電子設備的日益複雜性迫使半導體製造商擴大產能。因此,每台手機的組件數量不斷增加,仍是推動行動電話半導體市場擴張的主要因素。

國內人力資源短缺

許多國家缺乏足夠的半導體製造技術人員和工程師,導致其依賴外國技術。這種人才短缺抑制了創新,並減緩了本地生產的擴張,尤其是在新興市場。高准入門檻和複雜的培訓要求進一步限制了合格人才的供應。因此,企業往往面臨高營運成本和生產效率下降的問題。如果不加大對教育和人才培養的投入,這種人才短缺很可能會繼續限制該行業的長期成長潛力。

營運數位化和供應鏈最佳化

企業正在加速採用人工智慧、物聯網和高階分析技術,以最佳化生產線並簡化物流。這些技術能夠實現即時監控、預測性維護和高效庫存管理,從而減少停機時間和廢棄物。數位雙胞胎和智慧製造系統的整合進一步提高了營運的精準度和成本效益。此外,數位化供應鏈解決方案增強了透明度和韌性,有助於緩解疫情等突發事件的衝擊。預計這一數位化趨勢將增強半導體產業的競爭力,並帶來更高水準的生產力提升。

激烈的市場競爭與價格壓力

企業面臨著以更低成本實現更高績效的持續壓力,這擠壓了利潤空間。科技的快速變化進一步加劇了競爭,因為創新成果很快就會過時。新進者,尤其是來自低成本製造地區的企業,加劇了全球企業在定價方面的挑戰。這種激烈的競爭環境迫使製造商加強研發投入和效率提升,以維持差異化優勢。然而,持續的價格戰會削弱盈利,並扼殺市場的長期創新。

新冠疫情的感染疾病:

新冠疫情嚴重擾亂了全球半導體供應鏈,導致供不應求和生產延誤。封鎖措施、物流中斷和勞動力短缺導致產量下降,智慧型手機發布也被推遲。儘管初期受到衝擊,但隨著遠端辦公和數位化通訊需求的激增,設備銷售也隨之飆升。此次危機凸顯了半導體產業過度依賴特定製造地的脆弱性。疫情後的調整促使半導體產業重新調整策略,更重視在地化數位化。

預計在預測期內,前端部分將佔據最大的市場佔有率。

預計在預測期內,前端製造領域將佔據最大的市場佔有率。這主要歸功於其在晶圓加工和電晶體製造中的關鍵作用。這些製程決定了半導體裝置的性能、效率和可擴展性。隨著智慧型手機製造商追求更小、更高性能的晶片,對先進前端製造的需求也不斷成長。極紫外線(EUV)光刻和先進蝕刻等技術的重要性日益凸顯。領先的晶圓代工廠正在擴大其前端製造產能,以滿足這些不斷變化的需求。

預計在預測期內,穿戴式裝置領域將實現最高的複合年成長率。

預計在預測期內,穿戴式裝置領域將實現最高成長率,這主要得益於消費者對健身追蹤器、智慧型手錶和健康監測設備日益成長的興趣。這些設備需要高效、緊湊且低功耗的晶片,以提升功能並延長電池續航力。感測器、連接模組和人工智慧驅動的健康分析功能的整合將進一步推動半導體的使用。此外,醫療和生活方式領域的日益普及也推動了市場規模的成長。

佔比最大的地區:

由於中國、韓國、台灣和日本等國家和地區擁有眾多大型晶片製造商和智慧型手機組裝,預計亞太地區在預測期內將保持最大的市場佔有率。該地區受益於穩健的供應鏈、政府激勵措施和成本效益高的生產能力。智慧型手機的快速普及和5G網路的擴展將進一步推動對半導體的需求。此外,大型晶圓代工廠的存在也為大規模生產和創新提供了支持。

年複合成長率最高的地區:

預計在預測期內,北美將實現最高的複合年成長率,這主要得益於先進的研發投資、強大的晶片設計生態系統以及5G和人工智慧設備的日益普及。美國領先的科技公司正在加速處理器和通訊晶片的創新研發。政府支持半導體自給自足和國內製造的措施進一步提升了成長前景。此外,該地區對供應鏈韌性和先進製造技術的重視也推動了其擴張。

免費客製化服務:

購買此報告的客戶可以選擇以下免費自訂選項之一:

  • 公司概況
    • 對其他市場參與者(最多 3 家公司)進行全面分析
    • 主要企業SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶要求,對主要國家的市場規模和複合年成長率進行估算和預測(註:可行性需確認)。
  • 競爭基準化分析
    • 根據主要參與者的產品系列、地理覆蓋範圍和策略聯盟基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 原始研究資料
    • 次級研究資訊來源
    • 先決條件

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 新興市場
  • 新冠疫情的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

第5章 全球行動電話半導體市場(依組件分類)

  • 處理器和SoC
  • 基頻和射頻晶片
  • 連線IC
    • Wi-Fi
    • Bluetooth
  • 記憶體和儲存
    • DRAM
    • NAND
    • 電子MMC
  • 電源管理積體電路
  • 類比IC
  • 顯示驅動積體電路
  • 音訊積體電路
  • 感應器

第6章 全球行動電話半導體市場(依技術節點分類)

  • 尖端(10奈米或更小,包括5奈米、3奈米)
  • 成熟(16-65 奈米)
  • 傳統製程(90 奈米及以上)

第7章 全球行動電話半導體市場(依製造流程分類)

  • 前端(晶圓製造)
  • 後端(組裝和測試)
  • 封裝(覆晶、晶圓級、扇出型)

第8章 全球行動電話半導體市場(依應用領域分類)

  • 智慧型手機
  • 功能手機
  • 穿戴式裝置
  • 其他應用

9. 全球行動電話半導體市場(按地區分類)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲國家
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第10章:重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與併購
  • 新產品上市
  • 業務拓展
  • 其他關鍵策略

第11章 企業概況

  • Qualcomm
  • Arm Holdings
  • MediaTek
  • Infineon Technologies
  • Samsung Electronics
  • Texas Instruments
  • Apple Inc.
  • NXP Semiconductors
  • Broadcom Inc.
  • STMicroelectronics
  • Intel Corporation
  • Micron Technology
  • NVIDIA Corporation
  • SK Hynix
  • Taiwan Semiconductor Manufacturing Company(TSMC)
Product Code: SMRC32061

According to Stratistics MRC, the Global Mobile Phone Semiconductor Market is accounted for $41.81 billion in 2025 and is expected to reach $91.86 billion by 2032 growing at a CAGR of 11.9% during the forecast period. Mobile phone semiconductors are vital electronic elements that power smartphones by managing processing, memory, energy control, and connectivity. They consist of components like processors, memory modules, RF chips, and sensors that enable communication, display, and multimedia features. These chips are fundamental in improving the performance, functionality, and energy efficiency of mobile phones, ensuring smooth and advanced device operation.

Market Dynamics:

Driver:

Increased component demand per phone

As manufacturers integrate advanced features such as 5G connectivity, AI processing, and high-resolution cameras, the complexity and density of chipsets continue to grow. Each generation of mobile phones demands higher computational performance, memory capacity, and power efficiency, driving semiconductor consumption. Additionally, the rise of foldable and gaming smartphones further boosts demand for specialized chips. This expansion in electronic sophistication is compelling semiconductor firms to enhance production capabilities. Consequently, the growing component count per phone remains a primary force fueling the mobile phone semiconductor market's expansion.

Restraint:

Shortage of domestic talent

Many countries lack sufficient engineers and technicians proficient in semiconductor manufacturing, leading to dependence on foreign expertise. This talent gap hampers innovation and delays local production expansion, especially in emerging markets. High barriers to entry and complex training requirements further limit the availability of qualified professionals. As a result, firms often face higher operational costs and production inefficiencies. Without substantial investment in education and workforce development, this shortage could continue to constrain the industry's long-term growth potential.

Opportunity:

Digitalization of operations and supply chain optimization

Companies are increasingly adopting AI, IoT, and advanced analytics to optimize production lines and streamline logistics. These technologies enable real-time monitoring, predictive maintenance, and efficient inventory management, reducing downtime and waste. The integration of digital twins and smart manufacturing systems further enhances operational precision and cost efficiency. Additionally, digital supply chain solutions improve transparency and resilience, mitigating disruptions like those experienced during the pandemic. This digital shift is expected to strengthen competitiveness and unlock new levels of productivity in the semiconductor sector.

Threat:

Intense hyper-competition and price pressure

Companies are under constant pressure to deliver higher performance at lower costs, which compresses profit margins. Rapid technological changes further intensify rivalry, as innovations quickly become obsolete. New entrants, particularly from low-cost manufacturing regions, heighten the pricing challenge for global firms. This competitive intensity forces manufacturers to invest heavily in R&D and efficiency improvements to maintain differentiation. However, sustained price wars could undermine profitability and discourage long-term innovation in the market.

Covid-19 Impact:

The COVID-19 pandemic significantly disrupted the global semiconductor supply chain, causing shortages and production delays. Lockdowns, logistics interruptions, and labor constraints led to reduced output and delayed smartphone launches. Despite initial setbacks, demand surged as remote work and digital communication needs accelerated device sales. The crisis highlighted vulnerabilities in the industry's overreliance on specific manufacturing hubs. These post-pandemic adjustments have reshaped strategies, emphasizing localization and digitalization in semiconductor operations.

The front-end segment is expected to be the largest during the forecast period

The front-end segment is expected to account for the largest market share during the forecast period, due to its vital role in wafer processing and transistor formation. These processes determine the performance, efficiency, and miniaturization capabilities of semiconductor devices. As smartphone manufacturers push for smaller, more powerful chips, demand for advanced front-end manufacturing rises. Technologies such as extreme ultraviolet (EUV) lithography and advanced etching are becoming increasingly critical. Major foundries are expanding their front-end capacities to meet these evolving needs.

The wearable devices segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the wearable devices segment is predicted to witness the highest growth rate, due to rising consumer interest in fitness trackers, smartwatches, and health-monitoring gadgets. These devices require highly efficient, compact, and low-power chips to enhance functionality and battery life. The integration of sensors, connectivity modules, and AI-driven health analytics further fuels semiconductor usage. Additionally, growing adoption in healthcare and lifestyle applications expands the market's reach.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, due to the strong presence of leading chip manufacturers and smartphone assemblers in countries such as China, South Korea, Taiwan, and Japan. The region benefits from robust supply chains, government incentives, and cost-effective production capabilities. Rapid smartphone penetration and the expansion of 5G networks further drive semiconductor demand. Additionally, the presence of major foundries supports large-scale manufacturing and innovation.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to The region's growth is driven by advanced R&D investments, a strong ecosystem of chip designers, and increasing adoption of 5G and AI-powered devices. Major tech companies in the U.S. are accelerating innovation in processor and communication chip development. Government initiatives supporting semiconductor self-reliance and domestic fabrication are further enhancing growth prospects. Additionally, the region's emphasis on supply chain resilience and advanced manufacturing technologies is propelling expansion.

Key players in the market

Some of the key players in Mobile Phone Semiconductor Market include Qualcomm, Arm Holdings, MediaTek, Infineon Technologies, Samsung Electronics, Texas Instruments, Apple Inc., NXP Semiconductors, Broadcom Inc., STMicroelectronics, Intel Corporation, Micron Technology, NVIDIA Corporation, SK Hynix, and Taiwan Semiconductor Manufacturing Company (TSMC).

Key Developments:

In October 2025, Qualcomm Technologies, Inc. announced its agreement to acquire Arduino, a premier open-source hardware and software company. The transaction accelerates Qualcomm Technologies' strategy to empower developers by facilitating access to its unmatched portfolio of edge technologies and products. This acquisition builds on the Company's recent integrations of Edge Impulse and Foundries.io, reinforcing its commitment to delivering a full-stack edge platform that spans hardware, software, and cloud services.

In October 2025, MediaTek has teamed with NVIDIA on the design of the GB10 Grace Blackwell Superchip in NVIDIA DGX Spark, a personal AI supercomputer that allows developers to prototype, fine-tune, and inference large AI models on the desktop. Announced earlier this year, DGX Spark will be available to the public starting October 15 to drive the next wave of AI development across industries.

Components Covered:

  • Processors & SoCs
  • Baseband & RF Chips
  • Connectivity Ics
  • Memory & Storage
  • Power Management ICs
  • Analog ICs
  • Display Driver ICs
  • Audio ICs
  • Sensors

Technology Nodes Covered:

  • Advanced (<=10 nm including 5 nm, 3 nm)
  • Mature (16-65 nm)
  • Legacy (>=90 nm)

Manufacturing Processes Covered:

  • Front-End (Wafer Fabrication)
  • Back-End (Assembly & Testing)
  • Packaging (Flip-Chip, Wafer-Level, Fan-Out)

Applications Covered:

  • Smartphones
  • Feature Phones
  • Wearable Devices
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Mobile Phone Semiconductor Market, By Component

  • 5.1 Introduction
  • 5.2 Processors & SoCs
  • 5.3 Baseband & RF Chips
  • 5.4 Connectivity Ics
    • 5.4.1 Wi-Fi
    • 5.4.2 Bluetooth
  • 5.5 Memory & Storage
    • 5.5.1 DRAM
    • 5.5.2 NAND
    • 5.5.3 eMMC
  • 5.6 Power Management ICs
  • 5.7 Analog ICs
  • 5.8 Display Driver ICs
  • 5.9 Audio ICs
  • 5.10 Sensors

6 Global Mobile Phone Semiconductor Market, By Technology Node

  • 6.1 Introduction
  • 6.2 Advanced (<=10 nm including 5 nm, 3 nm)
  • 6.3 Mature (16-65 nm)
  • 6.4 Legacy (>=90 nm)

7 Global Mobile Phone Semiconductor Market, By Manufacturing Process

  • 7.1 Introduction
  • 7.2 Front-End (Wafer Fabrication)
  • 7.3 Back-End (Assembly & Testing)
  • 7.4 Packaging (Flip-Chip, Wafer-Level, Fan-Out)

8 Global Mobile Phone Semiconductor Market, By Application

  • 8.1 Introduction
  • 8.2 Smartphones
  • 8.3 Feature Phones
  • 8.4 Wearable Devices
  • 8.5 Other Applications

9 Global Mobile Phone Semiconductor Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Qualcomm
  • 11.2 Arm Holdings
  • 11.3 MediaTek
  • 11.4 Infineon Technologies
  • 11.5 Samsung Electronics
  • 11.6 Texas Instruments
  • 11.7 Apple Inc.
  • 11.8 NXP Semiconductors
  • 11.9 Broadcom Inc.
  • 11.10 STMicroelectronics
  • 11.11 Intel Corporation
  • 11.12 Micron Technology
  • 11.13 NVIDIA Corporation
  • 11.14 SK Hynix
  • 11.15 Taiwan Semiconductor Manufacturing Company (TSMC)

List of Tables

  • Table 1 Global Mobile Phone Semiconductor Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Mobile Phone Semiconductor Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Mobile Phone Semiconductor Market Outlook, By Processors & SoCs (2024-2032) ($MN)
  • Table 4 Global Mobile Phone Semiconductor Market Outlook, By Baseband & RF Chips (2024-2032) ($MN)
  • Table 5 Global Mobile Phone Semiconductor Market Outlook, By Connectivity Ics (2024-2032) ($MN)
  • Table 6 Global Mobile Phone Semiconductor Market Outlook, By Wi-Fi (2024-2032) ($MN)
  • Table 7 Global Mobile Phone Semiconductor Market Outlook, By Bluetooth (2024-2032) ($MN)
  • Table 8 Global Mobile Phone Semiconductor Market Outlook, By Memory & Storage (2024-2032) ($MN)
  • Table 9 Global Mobile Phone Semiconductor Market Outlook, By DRAM (2024-2032) ($MN)
  • Table 10 Global Mobile Phone Semiconductor Market Outlook, By NAND (2024-2032) ($MN)
  • Table 11 Global Mobile Phone Semiconductor Market Outlook, By eMMC (2024-2032) ($MN)
  • Table 12 Global Mobile Phone Semiconductor Market Outlook, By Power Management ICs (2024-2032) ($MN)
  • Table 13 Global Mobile Phone Semiconductor Market Outlook, By Analog ICs (2024-2032) ($MN)
  • Table 14 Global Mobile Phone Semiconductor Market Outlook, By Display Driver ICs (2024-2032) ($MN)
  • Table 15 Global Mobile Phone Semiconductor Market Outlook, By Audio ICs (2024-2032) ($MN)
  • Table 16 Global Mobile Phone Semiconductor Market Outlook, By Sensors (2024-2032) ($MN)
  • Table 17 Global Mobile Phone Semiconductor Market Outlook, By Technology Node (2024-2032) ($MN)
  • Table 18 Global Mobile Phone Semiconductor Market Outlook, By Advanced (<=10 nm including 5 nm, 3 nm) (2024-2032) ($MN)
  • Table 19 Global Mobile Phone Semiconductor Market Outlook, By Mature (16-65 nm) (2024-2032) ($MN)
  • Table 20 Global Mobile Phone Semiconductor Market Outlook, By Legacy (>=90 nm) (2024-2032) ($MN)
  • Table 21 Global Mobile Phone Semiconductor Market Outlook, By Manufacturing Process (2024-2032) ($MN)
  • Table 22 Global Mobile Phone Semiconductor Market Outlook, By Front-End (Wafer Fabrication) (2024-2032) ($MN)
  • Table 23 Global Mobile Phone Semiconductor Market Outlook, By Back-End (Assembly & Testing) (2024-2032) ($MN)
  • Table 24 Global Mobile Phone Semiconductor Market Outlook, By Packaging (Flip-Chip, Wafer-Level, Fan-Out) (2024-2032) ($MN)
  • Table 25 Global Mobile Phone Semiconductor Market Outlook, By Application (2024-2032) ($MN)
  • Table 26 Global Mobile Phone Semiconductor Market Outlook, By Smartphones (2024-2032) ($MN)
  • Table 27 Global Mobile Phone Semiconductor Market Outlook, By Feature Phones (2024-2032) ($MN)
  • Table 28 Global Mobile Phone Semiconductor Market Outlook, By Wearable Devices (2024-2032) ($MN)
  • Table 29 Global Mobile Phone Semiconductor Market Outlook, By Other Applications (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.