封面
市場調查報告書
商品編碼
1865398

全球基礎設施用自修復材料市場:預測至2032年-按材料類型、修復機制、技術、應用、最終用戶和地區分類的分析

Self-Healing Materials for Infrastructure Market Forecasts to 2032 - Global Analysis By Material Type, Healing Mechanism, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,預計 2025 年全球基礎設施自修復材料市場規模將達到 7.291 億美元,到 2032 年將達到 30.182 億美元,預測期內複合年成長率為 22.5%。

用於基礎設施的自修復材料是一種先進的複合材料,無需外部干預即可自主檢測並修復裂縫和微裂縫等損傷。這些材料包含修復劑,例如膠囊、血管網路或化學觸發劑,這些修復劑會在受到應力或環境因素作用時被激活。透過恢復結構完整性並延長使用壽命,它們可以降低維護成本並提高安全性。自修復技術廣泛應用於混凝土、瀝青和塗料等領域,有助於建立符合長期耐久性目標的韌性永續基礎設施。

對彈性基礎設施的需求日益成長

自修復材料能夠自主修復微裂紋和結構損傷,從而延長使用壽命並最大限度地減少昂貴的維護成本,為解決基礎設施問題提供了極具吸引力的解決方案。這一趨勢在高流量應用場景(例如高速公路、隧道和橋樑)中尤其重要,因為這些場景的停機時間和維修成本都非常高。此外,氣候適應基礎設施正日益成為政策關注的焦點,而自修復複合材料則能夠提高基礎設施在惡劣條件下的耐久性,從而契合這些目標。

缺乏現場檢驗

由於缺乏長期案例研究和標準化測試通訊協定,基礎設施相關人員仍持謹慎態度。修復效率會因環境因素(例如濕度、溫度和工況週期)而異,這引發了對可靠性的擔憂。此外,將修復劑整合到傳統的施工流程中會帶來後勤方面的挑戰,尤其是在大型公共工程專案中。這些不確定性阻礙了修復劑的廣泛應用,並延緩了其獲得監管部門核准用於主流用途。

維修老舊基礎設施

城市無需徹底重建,即可利用這些材料延長現有設施的使用壽命,從而減少環境影響和資本支出。噴塗式和澆注式自修復組合藥物的創新使得橋樑、路面和供水系統的維修成為可能。此外,越來越多的公私合營試驗計畫獲得資助,用於在實際環境中測試這些材料。這種維修方法符合循環經濟原則,並支持建築業的脫碳目標。

與替代技術的競爭

自修復材料雖然具有獨特的優勢,但卻面臨其他先進解決方案的激烈競爭,例如超高性能混凝土(UHPC)、纖維增強聚合物和奈米塗層。這些替代技術通常前期成本更低,並且有大量的實證數據支持,因此對較保守的基礎設施負責人更具吸引力。此外,專有的自修復技術可能會導致市場分散化,並使採購和標準化變得更加複雜。

新冠疫情的影響:

疫情擾亂了供應鏈,導致全球基礎設施計劃延期,並影響了自修復材料的應用。然而,疫情也加速了人們對低維護、自主修復技術的興趣,尤其是在面臨勞動力短缺和預算限制的地區。隨著各國政府將刺激資金轉向韌性基礎建設,自修復材料在策略規劃中日益凸顯。遠端監控和預測性維護也變得更加普遍,這與能夠自我報告損傷的智慧材料形成了協同效應。

預計在預測期內,聚合物密封劑和塗料細分市場將佔據最大的市場佔有率。

由於其用途廣泛、易於施工且與現有基礎設施相容,預計在預測期內,聚合物基密封劑和塗料將佔據最大的市場佔有率。這些材料廣泛應用於道路、隧道和建築建築幕牆,用於密封裂縫和防止水分滲入。它們具有自癒能力,通常由水分、熱量或機械應力觸發,使其成為動態環境的理想選擇。此外,微膠囊化技術和可逆黏合劑化學的進步也提高了其性能和保存期限。

預計形狀記憶材料細分市場在預測期內將呈現最高的複合年成長率。

形狀記憶材料領域預計將在預測期內實現最高成長率,這主要得益於其在受到諸如熱或應力等特定刺激後能夠恢復原狀的特性。這些材料在地震多發地區和經常發生變形的重載基礎設施中尤其重要。形狀記憶合金和聚合物的創新正在推動其在伸縮縫、結構加固和自適應建築幕牆等領域的應用。與感測器網路整合進行即時監測進一步提升了其價值,使其成為智慧基礎設施計劃的理想選擇。

佔比最大的地區:

預計亞太地區將在預測期內佔據最大的市場佔有率,這主要得益於中國、印度和東南亞的大規模基礎設施投資。快速的都市化以及政府主導的智慧城市計畫正在推動對先進建築材料的需求。該地區各國也面臨基礎設施老化和極端天氣條件的挑戰,進一步凸顯了自修復解決方案的重要性。當地製造商正與全球企業進行越來越多的合作,以開發適合當地氣候的、具成本效益的配方。該地區對永續性和創新的積極態度也進一步推動了市場擴張。

預計年複合成長率最高的地區:

由於強勁的研發活動、有利的法規結構以及智慧基礎設施技術的早期應用,預計北美在預測期內將實現最高的複合年成長率。聯邦和州級項目正在資助先導計畫,將自修復材料應用於公路、橋樑和供水系統。該地區對氣候適應能力和基礎設施現代化的重視,為尖端材料的發展創造了沃土。此外,大學、Start-Ups和建設公司之間的合作正在加速商業化進程。

免費客製化服務

訂閱本報告的用戶可從以下免費自訂選項中選擇一項:

  • 公司簡介
    • 對最多三家其他公司進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域分類
    • 根據客戶興趣對主要國家進行市場估算、預測和複合年成長率分析(註:基於可行性檢查)
  • 競爭基準化分析
    • 基於產品系列、地域覆蓋和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 引言

  • 概述
  • 相關利益者
  • 分析範圍
  • 分析方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 分析方法
  • 分析材料
    • 原始研究資料
    • 二手研究資訊來源
    • 先決條件

第3章 市場趨勢分析

  • 介紹
  • 促進要素
  • 抑制因素
  • 市場機遇
  • 威脅
  • 技術分析
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的感染疾病

第4章 波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代產品的威脅
  • 新參與企業的威脅
  • 公司間的競爭

5. 全球基礎設施自修復材料市場(依材料類型分類)

  • 介紹
  • 聚合物密封塗層
  • 基於混凝土的自修復系統
  • 膠囊型修復劑
  • 酵素自修復系統
  • 混合自修復材料
  • 其他材料類型

6. 全球基礎設施自修復材料市場(依修復機制分類)

  • 介紹
  • 內在修復
  • 外源性修復
  • 自主修復
  • 非自主修復
  • 其他修復機制

7. 全球基礎設施自修復材料市場(依技術分類)

  • 介紹
  • 微膠囊化
  • 血管網路
  • 形狀記憶材料
  • 可逆聚合物
  • 生物修復
  • 其他技術

8. 全球基礎設施自修復材料市場(按應用領域分類)

  • 介紹
  • 道路和人行道
  • 橋樑和高架橋
  • 隧道和地下結構
  • 建築物和水泥建築物
  • 港口和沿海基礎設施
  • 管道和公用設施基礎設施
  • 其他用途

9. 全球基礎設施自修復材料市場(依最終用戶分類)

  • 介紹
  • 建築公司
  • 政府,
  • 基礎設施承包商
  • 工程和設計公司
  • 研究所
  • 其他最終用戶

10. 全球基礎設施自修復材料市場(按地區分類)

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章:主要趨勢

  • 合約、商業夥伴關係和合資企業
  • 企業合併(M&A)
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第12章:企業概況

  • BASF SE
  • Akzo Nobel NV
  • Covestro AG
  • Evonik Industries AG
  • Dow Inc.
  • Arkema Group
  • Autonomic Materials Inc.
  • Sensor Coating Systems Ltd.
  • NEI Corporation
  • Applied Thin Films Inc.
  • LG Chem
  • Huntsman Corporation
  • Nouryon
  • Teijin Limited
  • Sika AG
  • PPG Industries
  • Saint-Gobain
  • Wacker Chemie AG
  • Solvay SA
  • HB Fuller Company
Product Code: SMRC32089

According to Stratistics MRC, the Global Self-Healing Materials for Infrastructure Market is accounted for $729.1 million in 2025 and is expected to reach $3,018.2 million by 2032 growing at a CAGR of 22.5% during the forecast period. Self-healing materials for infrastructure are advanced composites engineered to autonomously detect and repair damage, such as cracks or microfractures, without external intervention. These materials incorporate healing agents like capsules, vascular networks, or chemical triggers that activate upon stress or exposure to environmental factors. By restoring structural integrity and extending service life, they reduce maintenance costs and enhance safety. Widely applied in concrete, asphalt, and coatings, self-healing technologies support resilient, sustainable infrastructure development aligned with long-term durability goals.

Market Dynamics:

Driver:

Rising demand for resilient infrastructure

Self-healing materials offer a compelling solution by autonomously repairing micro-cracks and structural damage, thereby extending service life and minimizing costly interventions. This trend is particularly relevant in high-traffic applications such as highways, tunnels, and bridges, where downtime and repair costs are significant. Additionally, climate-resilient infrastructure is becoming a policy focus, and self-healing composites align with these goals by enhancing durability under extreme conditions.

Restraint:

Limited field validation

Infrastructure stakeholders remain cautious due to the absence of long-term case studies and standardized testing protocols. Variability in healing efficiency based on environmental exposure-such as humidity, temperature, and load cycles raises concerns about reliability. Moreover, the integration of healing agents into traditional construction workflows poses logistical challenges, especially in large-scale public projects. These uncertainties hinder widespread adoption and delay regulatory approvals for mainstream use.

Opportunity:

Retrofitting aging infrastructure

Instead of full-scale reconstruction, municipalities can deploy these materials to extend the lifespan of existing assets, reducing environmental impact and capital expenditure. Innovations in sprayable and injectable self-healing formulations make retrofitting feasible for bridges, pavements, and water systems. Additionally, public-private partnerships are increasingly funding pilot programs to test these materials in real-world conditions. This retrofit approach aligns with circular economy principles and supports decarbonization goals in the construction sector.

Threat:

Competition from alternative technologies

While self-healing materials offer unique benefits, they face stiff competition from other advanced solutions such as ultra-high-performance concrete (UHPC), fiber-reinforced polymers, and nanocoatings. These alternatives often have lower upfront costs and are backed by extensive field data, making them more attractive to conservative infrastructure planners. Furthermore, proprietary self-healing technologies can create fragmentation in the market, complicating procurement and standardization.

Covid-19 Impact:

The pandemic disrupted supply chains and delayed infrastructure projects globally, affecting the rollout of self-healing materials. However, it also accelerated interest in low-maintenance and autonomous repair technologies, especially in regions facing labor shortages and budget constraints. As governments redirected stimulus funds toward resilient infrastructure, self-healing materials gained visibility in strategic planning. Remote monitoring and predictive maintenance became more prevalent, creating synergies with smart materials that can self-report damage.

The polymeric sealants and coatings segment is expected to be the largest during the forecast period

The polymeric sealants and coatings segment is expected to account for the largest market share during the forecast period propelled by, their versatility, ease of application, and compatibility with existing infrastructure. These materials are widely used in roads, tunnels, and building facades to seal cracks and prevent moisture ingress. Their self-healing capabilities-often triggered by moisture, heat, or mechanical stress-make them ideal for dynamic environments. Additionally, advancements in microencapsulation and reversible bonding chemistries have enhanced their performance and shelf life.

The shape memory materials segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the shape memory materials segment is predicted to witness the highest growth rate, influenced by, their ability to recover original form upon exposure to specific stimuli such as heat or stress. These materials are particularly valuable in seismic zones and high-load infrastructure where deformation is common. Innovations in shape memory alloys and polymers are enabling applications in expansion joints, structural reinforcements, and adaptive facades. Their integration with sensor networks for real-time monitoring adds further value, making them attractive for smart infrastructure projects.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, fuelled by, massive infrastructure investments across China, India, and Southeast Asia. Rapid urbanization, coupled with government-backed smart city initiatives, is driving demand for advanced construction materials. Countries in this region are also grappling with aging infrastructure and extreme weather events, making self-healing solutions highly relevant. Local manufacturers are increasingly collaborating with global players to develop cost-effective formulations tailored for regional climates. The region's proactive stance on sustainability and innovation further supports market expansion.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by, strong R&D activity, favorable regulatory frameworks, and early adoption of smart infrastructure technologies. Federal and state-level programs are funding pilot projects that incorporate self-healing materials in highways, bridges, and water systems. The region's emphasis on climate resilience and infrastructure modernization is creating fertile ground for advanced materials. Additionally, collaborations between universities, startups, and construction firms are accelerating commercialization.

Key players in the market

Some of the key players in Self-Healing Materials for Infrastructure Market include BASF SE, Akzo Nobel N.V., Covestro AG, Evonik Industries AG, Dow Inc., Arkema Group, Autonomic Materials Inc., Sensor Coating Systems Ltd., NEI Corporation, Applied Thin Films Inc., LG Chem, Huntsman Corporation, Nouryon, Teijin Limited, Sika AG, PPG Industries, Saint-Gobain, Wacker Chemie AG, Solvay SA, and H.B. Fuller Company.

Key Developments:

In October 2025, BASF partnered with IFF to co-develop next-gen enzyme technologies for cleaning and personal care. The collaboration enhances IFF's Designed Enzymatic Biomaterials(TM) platform. It targets industrial and consumer applications.

In October 2025, Covestro showcased "The Material Effect" at K 2025, emphasizing circular economy and sustainable design. It won the Good Design Award for its polycarbonate innovations. The event highlighted its materials science leadership.

In June 2025, JSW Paints signed definitive agreements to acquire a 74.76% stake in Akzo Nobel India. The deal is valued at INR 8,986 crore and strengthens JSW's coatings portfolio. Completion is expected by Q4 2025.

Material Types Covered:

  • Polymeric Sealants and Coatings
  • Concrete-Based Self-Healing Systems
  • Encapsulated Healing Agents
  • Enzymatic Self-Healing Systems
  • Hybrid Self-Healing Materials
  • Other Material Types

Healing Mechanisms Covered:

  • Intrinsic Healing
  • Extrinsic Healing
  • Autonomous Healing
  • Non-Autonomous Healing
  • Other Healing Mechanisms

Technologies Covered:

  • Microencapsulation
  • Vascular Networks
  • Shape Memory Materials
  • Reversible Polymers
  • Biological Healing Agents
  • Other Technologies

Applications Covered:

  • Roads & Pavements
  • Bridges & Viaducts
  • Tunnels & Underground Structures
  • Buildings & Concrete Structures
  • Harbors & Coastal Infrastructure
  • Pipelines & Utility Infrastructure
  • Other Applications

End Users Covered:

  • Construction Companies
  • Government & Municipal Authorities
  • Infrastructure Maintenance Contractors
  • Engineering & Design Firms
  • Research Institutions
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Self-Healing Materials for Infrastructure Market, By Material Type

  • 5.1 Introduction
  • 5.2 Polymeric Sealants and Coatings
  • 5.3 Concrete-Based Self-Healing Systems
  • 5.4 Encapsulated Healing Agents
  • 5.5 Enzymatic Self-Healing Systems
  • 5.6 Hybrid Self-Healing Materials
  • 5.7 Other Material Types

6 Global Self-Healing Materials for Infrastructure Market, By Healing Mechanism

  • 6.1 Introduction
  • 6.2 Intrinsic Healing
  • 6.3 Extrinsic Healing
  • 6.4 Autonomous Healing
  • 6.5 Non-Autonomous Healing
  • 6.6 Other Healing Mechanisms

7 Global Self-Healing Materials for Infrastructure Market, By Technology

  • 7.1 Introduction
  • 7.2 Microencapsulation
  • 7.3 Vascular Networks
  • 7.4 Shape Memory Materials
  • 7.5 Reversible Polymers
  • 7.6 Biological Healing Agents
  • 7.7 Other Technologies

8 Global Self-Healing Materials for Infrastructure Market, By Application

  • 8.1 Introduction
  • 8.2 Roads & Pavements
  • 8.3 Bridges & Viaducts
  • 8.4 Tunnels & Underground Structures
  • 8.5 Buildings & Concrete Structures
  • 8.6 Harbors & Coastal Infrastructure
  • 8.7 Pipelines & Utility Infrastructure
  • 8.8 Other Applications

9 Global Self-Healing Materials for Infrastructure Market, By End User

  • 9.1 Introduction
  • 9.2 Construction Companies
  • 9.3 Government & Municipal Authorities
  • 9.4 Infrastructure Maintenance Contractors
  • 9.5 Engineering & Design Firms
  • 9.6 Research Institutions
  • 9.7 Other End Users

10 Global Self-Healing Materials for Infrastructure Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 BASF SE
  • 12.2 Akzo Nobel N.V.
  • 12.3 Covestro AG
  • 12.4 Evonik Industries AG
  • 12.5 Dow Inc.
  • 12.6 Arkema Group
  • 12.7 Autonomic Materials Inc.
  • 12.8 Sensor Coating Systems Ltd.
  • 12.9 NEI Corporation
  • 12.10 Applied Thin Films Inc.
  • 12.11 LG Chem
  • 12.12 Huntsman Corporation
  • 12.13 Nouryon
  • 12.14 Teijin Limited
  • 12.15 Sika AG
  • 12.16 PPG Industries
  • 12.17 Saint-Gobain
  • 12.18 Wacker Chemie AG
  • 12.19 Solvay SA
  • 12.20 H.B. Fuller Company

List of Tables

  • Table 1 Global Self-Healing Materials for Infrastructure Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Self-Healing Materials for Infrastructure Market Outlook, By Material Type (2024-2032) ($MN)
  • Table 3 Global Self-Healing Materials for Infrastructure Market Outlook, By Polymeric Sealants and Coatings (2024-2032) ($MN)
  • Table 4 Global Self-Healing Materials for Infrastructure Market Outlook, By Concrete-Based Self-Healing Systems (2024-2032) ($MN)
  • Table 5 Global Self-Healing Materials for Infrastructure Market Outlook, By Encapsulated Healing Agents (2024-2032) ($MN)
  • Table 6 Global Self-Healing Materials for Infrastructure Market Outlook, By Enzymatic Self-Healing Systems (2024-2032) ($MN)
  • Table 7 Global Self-Healing Materials for Infrastructure Market Outlook, By Hybrid Self-Healing Materials (2024-2032) ($MN)
  • Table 8 Global Self-Healing Materials for Infrastructure Market Outlook, By Other Material Types (2024-2032) ($MN)
  • Table 9 Global Self-Healing Materials for Infrastructure Market Outlook, By Healing Mechanism (2024-2032) ($MN)
  • Table 10 Global Self-Healing Materials for Infrastructure Market Outlook, By Intrinsic Healing (2024-2032) ($MN)
  • Table 11 Global Self-Healing Materials for Infrastructure Market Outlook, By Extrinsic Healing (2024-2032) ($MN)
  • Table 12 Global Self-Healing Materials for Infrastructure Market Outlook, By Autonomous Healing (2024-2032) ($MN)
  • Table 13 Global Self-Healing Materials for Infrastructure Market Outlook, By Non-Autonomous Healing (2024-2032) ($MN)
  • Table 14 Global Self-Healing Materials for Infrastructure Market Outlook, By Other Healing Mechanisms (2024-2032) ($MN)
  • Table 15 Global Self-Healing Materials for Infrastructure Market Outlook, By Technology (2024-2032) ($MN)
  • Table 16 Global Self-Healing Materials for Infrastructure Market Outlook, By Microencapsulation (2024-2032) ($MN)
  • Table 17 Global Self-Healing Materials for Infrastructure Market Outlook, By Vascular Networks (2024-2032) ($MN)
  • Table 18 Global Self-Healing Materials for Infrastructure Market Outlook, By Shape Memory Materials (2024-2032) ($MN)
  • Table 19 Global Self-Healing Materials for Infrastructure Market Outlook, By Reversible Polymers (2024-2032) ($MN)
  • Table 20 Global Self-Healing Materials for Infrastructure Market Outlook, By Biological Healing Agents (2024-2032) ($MN)
  • Table 21 Global Self-Healing Materials for Infrastructure Market Outlook, By Other Technologies (2024-2032) ($MN)
  • Table 22 Global Self-Healing Materials for Infrastructure Market Outlook, By Application (2024-2032) ($MN)
  • Table 23 Global Self-Healing Materials for Infrastructure Market Outlook, By Roads & Pavements (2024-2032) ($MN)
  • Table 24 Global Self-Healing Materials for Infrastructure Market Outlook, By Bridges & Viaducts (2024-2032) ($MN)
  • Table 25 Global Self-Healing Materials for Infrastructure Market Outlook, By Tunnels & Underground Structures (2024-2032) ($MN)
  • Table 26 Global Self-Healing Materials for Infrastructure Market Outlook, By Buildings & Concrete Structures (2024-2032) ($MN)
  • Table 27 Global Self-Healing Materials for Infrastructure Market Outlook, By Harbors & Coastal Infrastructure (2024-2032) ($MN)
  • Table 28 Global Self-Healing Materials for Infrastructure Market Outlook, By Pipelines & Utility Infrastructure (2024-2032) ($MN)
  • Table 29 Global Self-Healing Materials for Infrastructure Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 30 Global Self-Healing Materials for Infrastructure Market Outlook, By End User (2024-2032) ($MN)
  • Table 31 Global Self-Healing Materials for Infrastructure Market Outlook, By Construction Companies (2024-2032) ($MN)
  • Table 32 Global Self-Healing Materials for Infrastructure Market Outlook, By Government & Municipal Authorities (2024-2032) ($MN)
  • Table 33 Global Self-Healing Materials for Infrastructure Market Outlook, By Infrastructure Maintenance Contractors (2024-2032) ($MN)
  • Table 34 Global Self-Healing Materials for Infrastructure Market Outlook, By Engineering & Design Firms (2024-2032) ($MN)
  • Table 35 Global Self-Healing Materials for Infrastructure Market Outlook, By Research Institutions (2024-2032) ($MN)
  • Table 36 Global Self-Healing Materials for Infrastructure Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.