封面
市場調查報告書
商品編碼
1857048

全球可生物分解電子材料市場:預測(至2032年)-按材料類型、組件、應用和地區分類的分析

Biodegradable Electronics Materials Market Forecasts to 2032 - Global Analysis By Material Type, Component, Application, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球可生物分解電子材料市場預計到 2025 年將達到 10 億美元,到 2032 年將達到 29 億美元,預測期內複合年成長率為 16.0%。

生物可分解電子材料是指那些設計用於在使用壽命結束後安全分解的材料,它們構成了瞬態電子產品。這些材料被用於感測器、醫療植入和環保設備,從而減少電子廢棄物。這些材料通常含有有機化合物和可溶性金屬。日益嚴格的電子廢棄物法規以及對永續、可暫時性且能在體內溶解的醫療植入的需求,推動了此類材料的發展,避免了二次取出手術,並最大限度地減少了對環境的影響。

電子廢棄物問題和日益嚴格的環境法規

電子廢棄物的日益增加和日益嚴格的環境政策正在推動可生物分解電子材料的應用。各國政府和監管機構積極推廣永續產品設計、強制回收和減少電子廢棄物的舉措,鼓勵製造商採用環保組件。此外,消費者對環境影響的日益關注也推動了對永續電子產品的需求。這些因素共同促使企業以可生物分解的替代品取代傳統材料,從而推動聚合物、基板和半導體領域的創新,同時確保企業符合全球永續性標準和生產者延伸責任計劃。

與傳統電子材料相比,成本較高

與傳統材料相比,可生物分解電子材料目前面臨更高的製造成本和採購成本,限制了其大規模應用。特殊聚合物、有機半導體和基板通常需要先進的加工技術,從而增加了營運成本。此外,中小型製造商可能面臨預算限制,降低了其轉型動力。儘管具有環境效益,但這種成本障礙阻礙了其在價格敏感型細分市場的滲透。

增加對綠色技術和循環經濟的投資

企業和政府對永續發展的永續性重視為可生物分解電子產品帶來了巨大的發展機會。越來越多的公司正在增加對環保聚合物、半導體以及可回收和可堆肥基板的研發投入。此外,循環經濟舉措鼓勵電子產品的設計以實現重複使用和最大限度減少浪費,這與可生物分解材料的應用不謀而合。策略夥伴關係、新興企業融資和創新加速器進一步推動了綠色電子產品的發展,為其提供長期成長前景,同時幫助企業實現永續性目標並符合監管要求。

醫療設備認證的監管障礙

生物分解電子產品在醫療保健領域的應用受到嚴格監管核准的限制。採用新型生物分解材料的設備必須經過嚴格的測試,以確保其安全性、可靠性和生物相容性,從而延長了產品上市時間。此外,各地法規的差異也使全球擴張更加複雜。這些障礙增加了研發成本,並可能阻礙中小企業的發展。

新冠疫情的影響:

新冠疫情擾亂了全球可生物分解電子產品的供應鏈和生產,導致原料採購和生產延誤。然而,疫情後人們對永續性和健康的日益關注加速了對環保材料的興趣。儘管研發和商業部署一度停滯,但復甦措施和政府獎勵策略推動了綠色科技的應用。這場危機凸顯了韌性和永續性,並鼓勵企業探索電子產品的可生物分解替代品,為產業適應後疫情時代供應鏈動態後市場逐步穩定成長鋪平了道路。

預計在預測期內,生物分解聚合物細分市場將成為最大的細分市場。

預計在預測期內,可生物分解聚合物細分市場將佔據最大的市場佔有率。可生物分解聚合物廣泛應用於包裝、電路基板和裝置組件,兼具功能性和環境友善性。製造商青睞這類聚合物,是因為它們具有良好的機械穩定性、柔韌性以及與標準製造流程的兼容性。此外,推廣綠色電子產品、減少廢棄物和循環經濟模式的舉措也推動了聚合物的應用。由於其在不同行業的廣泛適用性和有利的法律規範,該細分市場正引領市場,並在全球範圍內獲得廣泛的商業性認可。

預計半導體產業在預測期內將實現最高的複合年成長率。

預計半導體領域在預測期內將實現最高成長率。包括有機和聚合物基解決方案在內的可生物分解半導體技術,能夠實現節能、低成本且對環境友善的電子產品。它們在感測器、物聯網設備和瞬態電子裝置領域的應用,滿足了市場對永續技術日益成長的需求。此外,不斷增加的研究經費、夥伴關係關係以及新興市場的應用,都提升了其商業化潛力。隨著製造商尋求傳統矽基材料的替代方案,可生物分解半導體提供了一種可擴展且環境友善的解決方案,使其成為預測期內成長最快的市場。

佔比最大的地區:

預計北美地區在預測期內將佔據最大的市場佔有率。健全的法律規範、環保意識以及對永續技術的廣泛應用是推動北美市場主導地位的主要因素。主要電子產品製造商和研發機構的存在,加速了可生物分解材料在消費、工業和醫療領域的應用。此外,政府獎勵、支持綠色電子產品的政策以及完善的電子廢棄物管理項目,也鼓勵了企業的投資。這些因素共同支撐著市場成長,北美在全球可生物分解電子材料的應用方面保持主導地位。

複合年成長率最高的地區:

預計亞太地區在預測期內將呈現最高的複合年成長率。快速的工業化、不斷成長的電子產品消費量以及日益增強的環保意識,共同推動了該地區的強勁成長。政府推行的永續技術推廣和製造業擴張舉措,正在推動可生物分解聚合物和半導體的應用。此外,本土創新新興企業的湧現以及不斷成長的外商投資,也加速了綠色電子解決方案的商業化進程。消費者和工業市場收入水準的提高以及對環保設備需求的持續成長,進一步推動了這一領域的發展,使亞太地區成為全球成長最快的地區。

免費客製化服務

訂閱本報告的用戶可從以下免費自訂選項中選擇一項:

  • 公司簡介
    • 對最多三家其他公司進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域分類
    • 根據客戶興趣對主要國家進行市場估算、預測和複合年成長率分析(註:基於可行性檢查)
  • 競爭基準化分析
    • 基於產品系列、地域覆蓋和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 引言

  • 概述
  • 相關利益者
  • 分析範圍
  • 分析方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 分析方法
  • 分析材料
    • 原始研究資料
    • 二手研究資訊來源
    • 先決條件

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 市場機遇
  • 威脅
  • 應用分析
  • 新興市場
  • 新冠疫情的感染疾病

第4章 波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代產品的威脅
  • 新參與企業的威脅
  • 公司間的競爭

5. 全球可生物分解電子材料市場(依材料類型分類)

  • 可生物分解聚合物
    • 聚乳酸(PLA)
    • 聚羥基烷酯(PHA)
    • Polybutylene Adipate Terephthalate(PBAT)
    • 其他材料類型
  • 天然/生物來源材料
    • 纖維素和紙基材
    • 絲素蛋白材料
    • 澱粉和木質素
  • 導電材料
    • 金屬奈米粒子
    • 碳基導體
    • 導電聚合物
  • 無機/介電材料

6. 全球可生物分解電子材料市場(依組件分類)

  • 基板和封裝
  • 導體
  • 半導體
  • 介電解質

7. 全球可生物分解電子材料市場(依應用領域分類)

  • 醫療設備和醫療保健
    • 暫時/可吸收植入和支架
    • 可生物分解的感測器和診斷設備
    • 穿戴式健康貼片
  • 家用電子電器
    • 顯示和照明設備
    • 軟性/臨時基板
  • 包裝和RFID標籤
  • 環境監測、農業
  • 國防/軍事

8. 全球可生物分解電子材料市場(依地區分類)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第9章:主要趨勢

  • 合約、商業夥伴關係和合資企業
  • 企業合併(M&A)
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第10章:公司簡介

  • BASF SE
  • Mitsubishi Chemical Corporation
  • NatureWorks LLC
  • Covestro AG
  • Evonik Industries AG
  • Samsung Electronics Co., Ltd.
  • Panasonic Corporation
  • Fujitsu Limited
  • Beonchip
  • Bioinicia
  • Intel Corporation
  • Apple Inc.
  • Toray Industries, Inc.
  • Biome Bioplastics
  • Green Dot Bioplastics
  • Novaled GmbH
  • AU Optronics Corporation
  • LinkeWire Innovations
  • FutureTronics
  • Material ConneXion
Product Code: SMRC31913

According to Stratistics MRC, the Global Biodegradable Electronics Materials Market is accounted for $1.0 billion in 2025 and is expected to reach $2.9 billion by 2032 growing at a CAGR of 16.0% during the forecast period. Biodegradable electronics materials covers materials designed to safely decompose after their useful life, creating transient electronics. Used in sensors, medical implants, and eco-friendly devices, they reduce electronic waste (e-waste). Materials often include organic compounds or dissolvable metals. Demand is fueled by increasing e-waste regulations and the need for sustainable temporary medical implants that dissolve in the body, eliminating secondary removal surgeries and minimizing environmental footprint.

Market Dynamics:

Driver:

Growing e-waste concerns and environmental regulations

Rising volumes of electronic waste and stricter environmental policies are driving the adoption of biodegradable electronics materials. Governments and regulatory bodies are promoting sustainable product design, recycling mandates, and e-waste reduction initiatives, which incentivize manufacturers to integrate eco-friendly components. Moreover, consumer awareness around environmental impact is increasing demand for sustainable electronics. These factors collectively encourage companies to replace conventional materials with biodegradable alternatives, fostering innovation in polymers, substrates, and semiconductors, while simultaneously enabling compliance with global sustainability standards and extended producer responsibility initiatives.

Restraint:

Higher costs compared to conventional electronic materials

Biodegradable electronics materials currently involve higher production and sourcing costs relative to traditional materials, limiting large-scale adoption. The specialized polymers, organic semiconductors, and substrates often require advanced processing techniques, increasing operational expenses. Additionally, small- and medium-sized manufacturers may face budget constraints, reducing their willingness to transition. This cost barrier slows penetration into price-sensitive segments despite environmental benefits.

Opportunity:

Growing investment in green technology and circular economy

Expanding corporate and governmental focus on sustainability presents significant opportunities for biodegradable electronics. Companies are increasingly funding research and development in eco-friendly polymers, semiconductors, and substrates that can be recycled or composted. Moreover, circular economy initiatives encourage designing electronics for reuse and minimal waste, which aligns with biodegradable material adoption. Strategic partnerships, funding for startups and innovation accelerators further enhance the development of green electronics, providing long-term growth prospects while helping companies meet sustainability targets and regulatory compliance.

Threat:

Regulatory hurdles for medical device approvals

The adoption of biodegradable electronics in medical and healthcare applications is constrained by stringent regulatory approvals. Devices incorporating new biodegradable materials must undergo rigorous testing to ensure safety, reliability, and biocompatibility, which prolongs time-to-market. Moreover, differing regulations across regions add complexity for global deployment. These hurdles increase development costs and may discourage smaller players.

Covid-19 Impact:

The Covid-19 pandemic disrupted global supply chains and manufacturing of biodegradable electronics, causing delays in raw material sourcing and production. However, heightened focus on sustainability and health accelerated interest in eco-friendly materials post-pandemic. While lockdowns temporarily slowed R&D and commercial deployment, recovery efforts and government stimulus supported green technology adoption. The crisis emphasized resilience and sustainability, prompting companies to explore biodegradable alternatives for electronics and paving the way for gradual but steady market growth as industries adjust to post-pandemic supply chain dynamics.

The biodegradable polymers segment is expected to be the largest during the forecast period

The biodegradable polymers segment is expected to account for the largest market share during the forecast period. The widespread use of biodegradable polymers in packaging, circuit substrates, and device components provides both functional performance and environmental compliance. Manufacturers favor these polymers for their mechanical stability, flexibility, and compatibility with standard fabrication techniques. Additionally, initiatives promoting green electronics, e-waste reduction, and circular economy models reinforce polymer adoption. The segment's extensive applicability across diverse industries and favorable regulatory frameworks underpins its sustained market leadership and strong commercial acceptance globally.

The semiconductors segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the semiconductors segment is predicted to witness the highest growth rate. Biodegradable semiconductor technologies, including organic and polymer-based solutions, enable energy-efficient, low-cost, and environmentally safe electronics. Their applications in sensors, IoT devices, and transient electronics meet growing demand for sustainable technology. Furthermore, increased research funding, partnerships, and adoption in emerging markets enhance commercialization potential. As manufacturers seek alternatives to conventional silicon-based materials, biodegradable semiconductors offer a scalable, eco-friendly solution, making this segment the fastest-growing in the market over the forecast period.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share. Strong regulatory frameworks, environmental awareness, and high adoption of sustainable technologies drive North America's dominance. The presence of leading electronics manufacturers and R&D institutions accelerates deployment of biodegradable materials in consumer, industrial, and medical applications. Additionally, government incentives, policies supporting green electronics, and widespread e-waste management programs encourage corporate investment. Together, these factors sustain market growth, ensuring North America maintains its leading position in global biodegradable electronics materials adoption.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. Rapid industrialization, rising electronic consumption, and growing environmental awareness contribute to strong regional growth. Government initiatives promoting sustainable technology, coupled with expanding manufacturing capabilities, support adoption of biodegradable polymers and semiconductors. Furthermore, the presence of innovative local startups and increasing foreign investments accelerate commercialization of green electronics solutions. Rising income levels and increasing demand for eco-friendly devices in consumer and industrial markets further drive the segment, making Asia Pacific the fastest-growing region globally.

Key players in the market

Some of the key players in Biodegradable Electronics Materials Market include BASF SE, Mitsubishi Chemical Corporation, NatureWorks LLC, Covestro AG, Evonik Industries AG, Samsung Electronics Co., Ltd., Panasonic Corporation, Fujitsu Limited, Beonchip, Bioinicia, Intel Corporation, Apple Inc., Toray Industries, Inc., Biome Bioplastics, Green Dot Bioplastics, Novaled GmbH, AU Optronics Corporation, LinkeWire Innovations, FutureTronics, and Material ConneXion.

Key Developments:

In October 2025, BASF, one of the world's largest chemical companies and leader in sustainable product innovation, announced a strategic collaboration with International Flavors & Fragrances Inc. (IFF), a global leader in bioscience innovation, to accelerate the development of IFF's Designed Enzymatic Biomaterials(TM) technology platform and create next-generation enzyme technologies for fabric, dish and personal care as well as industrial cleaning applications.

In September 2025, BASF has announced a significant upgrade to its QDYESTM, a quantum dot-level solution for LCD backlight applications, implemented in 2025. This upgrade aims to provide a greener and more efficient option for manufacturers of wide color gamut displays.

Materials Types Covered:

  • Biodegradable Polymers
  • Natural/Bio-Derived Materials
  • Conductive Materials
  • Inorganic/Dielectric Materials

Components Covered:

  • Substrates and Encapsulants
  • Conductors
  • Semiconductors
  • Dielectrics

Applications Covered:

  • Medical Devices and Healthcare
  • Consumer Electronics
  • Packaging and RFID Tags
  • Environmental Monitoring and Agriculture
  • Defense and Military

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Biodegradable Electronics Materials Market, By Material Type

  • 5.1 Introduction
  • 5.2 Biodegradable Polymers
    • 5.2.1 Polylactic Acid (PLA)
    • 5.2.2 Polyhydroxyalkanoates (PHA)
    • 5.2.3 Polybutylene Adipate Terephthalate (PBAT)
    • 5.2.4 Other Material Types
  • 5.3 Natural/Bio-Derived Materials
    • 5.3.1 Cellulose and Paper-based Substrates
    • 5.3.2 Silk and Protein-based Materials
    • 5.3.3 Starch and Lignin
  • 5.4 Conductive Materials
    • 5.4.1 Metal Nanoparticles
    • 5.4.2 Carbon-based Conductors
    • 5.4.3 Conductive Polymers
  • 5.5 Inorganic/Dielectric Materials

6 Global Biodegradable Electronics Materials Market, By Component

  • 6.1 Introduction
  • 6.2 Substrates and Encapsulants
  • 6.3 Conductors
  • 6.4 Semiconductors
  • 6.5 Dielectrics

7 Global Biodegradable Electronics Materials Market, By Application

  • 7.1 Introduction
  • 7.2 Medical Devices and Healthcare
    • 7.2.1 Transient/Dissolvable Implants and Stents
    • 7.2.2 Biodegradable Sensors and Diagnostics
    • 7.2.3 Wearable Health Patches
  • 7.3 Consumer Electronics
    • 7.3.1 Displays and Lighting
    • 7.3.2 Flexible and Temporary Circuit Boards
  • 7.4 Packaging and RFID Tags
  • 7.5 Environmental Monitoring and Agriculture
  • 7.6 Defense and Military

8 Global Biodegradable Electronics Materials Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 BASF SE
  • 10.2 Mitsubishi Chemical Corporation
  • 10.3 NatureWorks LLC
  • 10.4 Covestro AG
  • 10.5 Evonik Industries AG
  • 10.6 Samsung Electronics Co., Ltd.
  • 10.7 Panasonic Corporation
  • 10.8 Fujitsu Limited
  • 10.9 Beonchip
  • 10.10 Bioinicia
  • 10.11 Intel Corporation
  • 10.12 Apple Inc.
  • 10.13 Toray Industries, Inc.
  • 10.14 Biome Bioplastics
  • 10.15 Green Dot Bioplastics
  • 10.16 Novaled GmbH
  • 10.17 AU Optronics Corporation
  • 10.18 LinkeWire Innovations
  • 10.19 FutureTronics
  • 10.20 Material ConneXion

List of Tables

  • Table 1 Global Biodegradable Electronics Materials Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Biodegradable Electronics Materials Market Outlook, By Material Type (2024-2032) ($MN)
  • Table 3 Global Biodegradable Electronics Materials Market Outlook, By Biodegradable Polymers (2024-2032) ($MN)
  • Table 4 Global Biodegradable Electronics Materials Market Outlook, By Polylactic Acid (PLA) (2024-2032) ($MN)
  • Table 5 Global Biodegradable Electronics Materials Market Outlook, By Polyhydroxyalkanoates (PHA) (2024-2032) ($MN)
  • Table 6 Global Biodegradable Electronics Materials Market Outlook, By Polybutylene Adipate Terephthalate (PBAT) (2024-2032) ($MN)
  • Table 7 Global Biodegradable Electronics Materials Market Outlook, By Other Material Types (2024-2032) ($MN)
  • Table 8 Global Biodegradable Electronics Materials Market Outlook, By Natural/Bio-Derived Materials (2024-2032) ($MN)
  • Table 9 Global Biodegradable Electronics Materials Market Outlook, By Cellulose and Paper-based Substrates (2024-2032) ($MN)
  • Table 10 Global Biodegradable Electronics Materials Market Outlook, By Silk and Protein-based Materials (2024-2032) ($MN)
  • Table 11 Global Biodegradable Electronics Materials Market Outlook, By Starch and Lignin (2024-2032) ($MN)
  • Table 12 Global Biodegradable Electronics Materials Market Outlook, By Conductive Materials (2024-2032) ($MN)
  • Table 13 Global Biodegradable Electronics Materials Market Outlook, By Metal Nanoparticles (2024-2032) ($MN)
  • Table 14 Global Biodegradable Electronics Materials Market Outlook, By Carbon-based Conductors (2024-2032) ($MN)
  • Table 15 Global Biodegradable Electronics Materials Market Outlook, By Conductive Polymers (2024-2032) ($MN)
  • Table 16 Global Biodegradable Electronics Materials Market Outlook, By Inorganic/Dielectric Materials (2024-2032) ($MN)
  • Table 17 Global Biodegradable Electronics Materials Market Outlook, By Component (2024-2032) ($MN)
  • Table 18 Global Biodegradable Electronics Materials Market Outlook, By Substrates and Encapsulants (2024-2032) ($MN)
  • Table 19 Global Biodegradable Electronics Materials Market Outlook, By Conductors (2024-2032) ($MN)
  • Table 20 Global Biodegradable Electronics Materials Market Outlook, By Semiconductors (2024-2032) ($MN)
  • Table 21 Global Biodegradable Electronics Materials Market Outlook, By Dielectrics (2024-2032) ($MN)
  • Table 22 Global Biodegradable Electronics Materials Market Outlook, By Application (2024-2032) ($MN)
  • Table 23 Global Biodegradable Electronics Materials Market Outlook, By Medical Devices and Healthcare (2024-2032) ($MN)
  • Table 24 Global Biodegradable Electronics Materials Market Outlook, By Transient/Dissolvable Implants and Stents (2024-2032) ($MN)
  • Table 25 Global Biodegradable Electronics Materials Market Outlook, By Biodegradable Sensors and Diagnostics (2024-2032) ($MN)
  • Table 26 Global Biodegradable Electronics Materials Market Outlook, By Wearable Health Patches (2024-2032) ($MN)
  • Table 27 Global Biodegradable Electronics Materials Market Outlook, By Consumer Electronics (2024-2032) ($MN)
  • Table 28 Global Biodegradable Electronics Materials Market Outlook, By Displays and Lighting (2024-2032) ($MN)
  • Table 29 Global Biodegradable Electronics Materials Market Outlook, By Flexible and Temporary Circuit Boards (2024-2032) ($MN)
  • Table 30 Global Biodegradable Electronics Materials Market Outlook, By Packaging and RFID Tags (2024-2032) ($MN)
  • Table 31 Global Biodegradable Electronics Materials Market Outlook, By Environmental Monitoring and Agriculture (2024-2032) ($MN)
  • Table 32 Global Biodegradable Electronics Materials Market Outlook, By Defense and Military (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.