封面
市場調查報告書
商品編碼
1848449

全球醫療保健巨量資料市場:預測(至 2032 年)—按組件、資料類型、部署方法、應用程式、最終用戶和地區進行分析

Big Data in Healthcare Market Forecasts to 2032 - Global Analysis By Component (Software & Platforms and Services), Data Type, Deployment Mode, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,預計到 2025 年,全球醫療保健巨量資料市場規模將達到 575.4 億美元,到 2032 年將達到 1,388.5 億美元,預測期內複合年成長率為 13.41%。

醫療巨量資料是指從各種來源(包括電子健康記錄(EHR)、醫學影像、基因組序列、穿戴式裝置和病患回饋)產生的龐大且複雜的健康相關資訊集合。這些數據透過進階分析、人工智慧和機器學習技術進行分析,以發現規律、改善臨床決策、提升患者療效並降低醫療成本。透過整合和解讀各種資料集,巨量資料能夠實現個人化醫療、預測性診斷以及醫療資源和人群健康趨勢的有效管理。

改善臨床療效及個人化醫療

醫院和研究機構正在投資支援即時分析、預測建模和臨床基準測試的平台。與電子健康記錄、影像系統和基因組資料庫的整合正在增強個人化醫療服務。供應商正在開發符合價值醫療和人群健康策略的工具。監管機構正在支持數據標準化,以提高互通性和透明度。市場正朝著由先進分析驅動的精準醫療方向發展。

資料隱私與網路安全風險

資料隱私和網路安全風險正引起服務提供者、保險公司和監管機構的警惕。資料外洩和違規可能導致聲譽受損和法律處罰。各組織必須投資於加密、存取控制和審核機制,以滿足 HIPAA 和 GDPR 標準。舊有系統和碎片化的資料架構使保護工作更加複雜。這些挑戰正在減緩雲端基礎的跨機構分析平台的普及。

人工智慧、雲端運算和分析技術的進步

人工智慧、雲端運算和分析技術的進步使得從結構化和非結構化資料集中更快地獲取洞察成為可能。醫院正在部署機器學習模型來支援診斷、分診和提高營運效率。雲端平台正在提升分散式網路的可擴展性和即時數據存取能力。與穿戴式裝置和遠端監測工具的整合正在加強對患者的長期追蹤。這一發展動能正在為預防醫學和個人化醫療開啟新的可能性。

數據品質與管治不善

資料品質和管治不善正在影響模型的準確性、合規性和決策。不完整的記錄、不一致的格式和過時的輸入都會損害分析結果。各組織必須實施健全的資料管理框架,以確保資料的有效性和可追溯性。機構間缺乏標準化通訊協定也使互通性和基準化分析變得複雜。這些風險促使各組織加大對品質保證和元資料管理的投入。

新冠疫情的影響:

疫情加速了數位醫療的普及,凸顯了即時數據在危機應變的價值。醫院和政府利用巨量資料平台追蹤感染率、分配資源並模擬疫情爆發情景。遠距醫療和遠端醫療蓬勃發展,產生了新的數據流用於分析。為協助疫情防控和災後恢復,對雲端基礎設施和人工智慧工具的投資也隨之增加。官民合作關係的出現,進一步改善了資料共用和流行病學建模。這場危機永久地將巨量資料從營運支援提升到了戰略基礎設施的高度。

預計在預測期內,軟體平台板塊將成為最大的板塊。

由於軟體平台在數據聚合、分析和視覺化方面發揮核心作用,預計在預測期內,軟體平台細分市場將佔據最大的市場佔有率。供應商提供可與電子病歷 (EHR)、影像系統和基因組資料庫整合的模組化解決方案。雲端原生架構和人工智慧驅動的分析正在提升可擴展性和洞察力。醫院和研究中心擴大採用支援臨床決策和營運最佳化的平台。醫療保健領域對即時儀錶板和預測工具的需求日益成長。該細分市場支持醫療保健分析的數位轉型。

預計基因組數據領域在預測期內將以最高的複合年成長率成長。

隨著精準醫療和基因研究的蓬勃發展,基因組數據領域預計將在預測期內實現最高成長率。定序技術正在產生海量資料集,需要藉助先進的分析技術進行解讀。與臨床記錄和表現型數據的整合正在改進疾病風險評估和治療方案製定。供應商正在開發平台以支援變異分析、生物標記發現和個人化治療設計。生物技術公司與醫療服務提供者之間的夥伴關係正在加速這些技術的應用。

佔比最高的地區

在預測期內,北美預計將佔據最大的市場佔有率,這主要得益於其先進的醫療基礎設施、清晰的監管環境和創新生態系統。美國和加拿大正在醫院、研究機構和公共衛生組織中推廣巨量資料應用。對人工智慧、雲端平台和互通性標準的投資正在推動平台部署。主要供應商和學術中心的存在增強了市場實力。政府舉措,例如《健康資訊科技促進經濟和臨床健康法案》(HITECH)和《21世紀治療方法》 ,正在支援資料整合和分析。

複合年成長率最高的地區:

預計亞太地區在預測期內將實現最高的複合年成長率,這主要得益於醫療服務覆蓋範圍的擴大、數位基礎設施的完善以及研發投入的增加。中國、印度、日本和韓國等國家正在醫院、診斷實驗室和基因組學中心等場所大規模部署巨量資料平台。政府支持的醫療數位化計畫和新興企業生態系統正在加速創新。行動醫療的普及和穿戴式裝置的整合正在產生新的數據流以供分析。區域醫療機構正在投資雲端基礎和人工智慧的工具,以改善醫療服務。

免費客製化服務

訂閱本報告的用戶可從以下免費自訂選項中選擇一項:

  • 公司簡介
    • 對最多三家其他公司進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域分類
    • 根據客戶興趣對主要國家進行市場估算、預測和複合年成長率分析(註:基於可行性檢查)
  • 競爭基準化分析
    • 基於產品系列、地域覆蓋和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 引言

  • 概述
  • 相關利益者
  • 分析範圍
  • 分析方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 分析方法
  • 分析材料
    • 原始研究資料
    • 二手研究資訊來源
    • 先決條件

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 市場機遇
  • 威脅
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 感染疾病疫情的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代產品的威脅
  • 新參與企業的威脅
  • 公司間的競爭

5. 全球醫療保健巨量資料市場(按組成部分分類)

  • 軟體平台
    • 資料整合工具
    • 預測與分析平台
    • 視覺化和儀錶板工具
  • 服務
    • 諮詢和實施
    • 託管服務
    • 資料管治與合規

6. 全球醫療保健巨量資料市場(依資料類型分類)

  • 臨床數據
  • 基因組數據
  • 影像資料
  • 患者產生的健康數據
  • 計費和收費數據
  • 穿戴式感測器數據

第7章 全球醫療保健巨量資料市場依部署方式分類

  • 本地部署
  • 雲端基礎的
  • 混合

第8章 全球醫療保健巨量資料市場(按應用領域分類)

  • 人口健康管理
  • 臨床決策支持
  • 精準醫療與基因組學
  • 遠端患者監護
  • 詐騙偵測和風險管理
  • 其他用途

9. 全球醫療保健巨量資料市場(以最終用戶分類)

  • 製藥和生物技術公司
  • 付款方/保險公司
  • 研究所
  • 政府和公共衛生機構
  • 其他最終用戶

第10章:全球醫療保健巨量資料市場(按地區分類)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章:主要趨勢

  • 合約、商業夥伴關係和合資企業
  • 企業合併(M&A)
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第12章 企業概況

  • IBM Watson Health
  • Google Health
  • Amazon Web Services(AWS)
  • Oracle Corporation
  • Microsoft Azure for Healthcare
  • SAS Institute Inc.
  • Optum
  • Cerner Corporation
  • Epic Systems Corporation
  • GE Healthcare
  • Siemens Healthineers
  • Health Catalyst
  • Palantir Technologies Inc.
  • Flatiron Health
  • Truven Health Analytics
Product Code: SMRC31564

According to Stratistics MRC, the Global Big Data in Healthcare Market is accounted for $57.54 billion in 2025 and is expected to reach $138.85 billion by 2032 growing at a CAGR of 13.41% during the forecast period. Big Data in healthcare refers to the vast and complex collection of health-related information generated from various sources such as electronic health records (EHRs), medical imaging, genomic sequencing, wearable devices, and patient feedback. This data is analyzed using advanced analytics, artificial intelligence, and machine learning techniques to uncover patterns, improve clinical decision-making, enhance patient outcomes, and reduce healthcare costs. By integrating and interpreting diverse data sets, Big Data enables personalized medicine, predictive diagnostics, and efficient management of healthcare resources and population health trends.

Market Dynamics:

Driver:

Improved clinical outcomes & personalized medicine

Hospitals and research institutions are investing in platforms that support real-time analytics, predictive modeling, and clinical benchmarking. Integration with electronic health records, imaging systems, and genomic databases is enhancing care personalization. Vendors are developing tools that align with value-based care and population health strategies. Regulatory bodies are supporting data standardization to improve interoperability and transparency. The market is evolving toward precision medicine powered by advanced analytics.

Restraint:

Data privacy & cybersecurity risk

Data privacy and cybersecurity risk is prompting caution among providers, insurers, and regulators. Breach incidents and compliance failures can result in reputational damage and legal penalties. Organizations must invest in encryption, access control, and audit mechanisms to meet HIPAA and GDPR standards. Legacy systems and fragmented data architectures complicate protection efforts. These challenges are slowing adoption of cloud-based and cross-institutional analytics platforms.

Opportunity:

Advances in AI, cloud and analytics technology

Advances in AI, cloud, and analytics technology are enabling faster insights from structured and unstructured datasets. Hospitals are deploying machine learning models to support diagnostics, triage, and operational efficiency. Cloud platforms are improving scalability and access to real-time data across distributed networks. Integration with wearable devices and remote monitoring tools is enhancing longitudinal patient tracking. This momentum is unlocking new possibilities in preventive and personalized care.

Threat:

Poor data quality and governance

Poor data quality and governance is affecting model accuracy, compliance, and decision-making. Incomplete records, inconsistent formats, and outdated entries degrade analytical outcomes. Organizations must implement robust data stewardship frameworks to ensure validity and traceability. Lack of standardized protocols across institutions is complicating interoperability and benchmarking. These risks are prompting investment in quality assurance and metadata management.

Covid-19 Impact:

The pandemic accelerated digital health adoption and highlighted the value of real-time data in crisis response. Hospitals and governments relied on big data platforms to track infection rates, allocate resources, and model outbreak scenarios. Remote care and telehealth surged, generating new data streams for analysis. Investment in cloud infrastructure and AI tools increased to support pandemic preparedness and recovery. Public-private partnerships emerged to improve data sharing and epidemiological modeling. The crisis permanently elevated big data from operational support to strategic infrastructure.

The software & platforms segment is expected to be the largest during the forecast period

The software & platforms segment is expected to account for the largest market share during the forecast period due to their central role in data aggregation, analysis, and visualization. Vendors are offering modular solutions that integrate with EHRs, imaging systems, and genomic databases. Cloud-native architecture and AI-powered analytics are improving scalability and insight generation. Hospitals and research centers are adopting platforms that support clinical decision-making and operational optimization. Demand for real-time dashboards and predictive tools are rising across care settings. This segment anchors the digital transformation of healthcare analytics.

The genomic data segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the genomic data segment is predicted to witness the highest growth rate as precision medicine and genetic research gain momentum. Sequencing technologies are generating vast datasets that require advanced analytics for interpretation. Integration with clinical records and phenotype data is improving disease risk assessment and treatment planning. Vendors are developing platforms that support variant analysis, biomarker discovery, and personalized therapy design. Partnerships between biotech firms and healthcare providers are accelerating adoption.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share due to its advanced healthcare infrastructure, regulatory clarity, and innovation ecosystem. The United States and Canada are scaling big data adoption across hospitals, research institutions, and public health agencies. Investment in AI, cloud platforms, and interoperability standards is driving platform deployment. Presence of leading vendors and academic centers is reinforcing market strength. Government initiatives such as HITECH and 21st Century Cures Act are supporting data integration and analytics.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR as healthcare access, digital infrastructure, and research investment expand. Countries like China, India, Japan, and South Korea are scaling big data platforms across hospitals, diagnostics labs, and genomics centers. Government-backed health digitization programs and startup ecosystems are accelerating innovation. Mobile health adoption and wearable integration are generating new data streams for analysis. Regional providers are investing in cloud-based and AI-enabled tools to improve care delivery.

Key players in the market

Some of the key players in Big Data in Healthcare Market include IBM Watson Health, Google Health, Amazon Web Services (AWS), Oracle Corporation, Microsoft Azure for Healthcare, SAS Institute Inc., Optum, Cerner Corporation, Epic Systems Corporation, GE Healthcare, Siemens Healthineers, Health Catalyst, Palantir Technologies Inc., Flatiron Health and Truven Health Analytics.

Key Developments:

In September 2025, AWS introduced ready-to-deploy templates for HIPAA-compliant environments, healthcare data lakes, and clinical analytics platforms. These solutions were designed to modernize healthcare data platforms, enabling organizations to leverage generative AI and big data analytics for improved patient outcomes.

In March 2024, Google Health partnered with HCA Healthcare to implement generative AI tools aimed at reducing administrative burdens in emergency departments. These tools assisted in documenting patient visits and streamlining nurse handoffs, thereby enhancing clinical efficiency and allowing healthcare professionals to focus more on patient care.

In June 2022, Francisco Partners completed the acquisition of IBM's healthcare data division, including Health Insights, MarketScan, Micromedex, and Merge Imaging. The deal led to the formation of Merative, a standalone company focused on healthcare analytics, clinical development, and decision support.

Components Covered:

  • Software & Platforms
  • Services

Data Types Covered:

  • Clinical Data
  • Genomic Data
  • Imaging Data
  • Patient-Generated Health Data
  • Claims & Billing Data
  • Wearable & Sensor Data

Deployment Modes Covered:

  • On-Premise
  • Cloud-Based
  • Hybrid

Applications Covered:

  • Population Health Management
  • Clinical Decision Support
  • Precision Medicine & Genomics
  • Remote Patient Monitoring
  • Fraud Detection & Risk Management
  • Other Applications

End Users Covered:

  • Pharmaceutical & Biotech Companies
  • Payers & Insurance Firms
  • Research Institutes
  • Government & Public Health Agencies
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Big Data in Healthcare Market, By Component

  • 5.1 Introduction
  • 5.2 Software & Platforms
    • 5.2.1 Data Integration Tools
    • 5.2.2 Predictive Analytics Platforms
    • 5.2.3 Visualization & Dashboard Tools
  • 5.3 Services
    • 5.3.1 Consulting & Implementation
    • 5.3.2 Managed Services
    • 5.3.3 Data Governance & Compliance

6 Global Big Data in Healthcare Market, By Data Type

  • 6.1 Introduction
  • 6.2 Clinical Data
  • 6.3 Genomic Data
  • 6.4 Imaging Data
  • 6.5 Patient-Generated Health Data
  • 6.6 Claims & Billing Data
  • 6.7 Wearable & Sensor Data

7 Global Big Data in Healthcare Market, By Deployment Mode

  • 7.1 Introduction
  • 7.2 On-Premise
  • 7.3 Cloud-Based
  • 7.4 Hybrid

8 Global Big Data in Healthcare Market, By Application

  • 8.1 Introduction
  • 8.2 Population Health Management
  • 8.3 Clinical Decision Support
  • 8.4 Precision Medicine & Genomics
  • 8.5 Remote Patient Monitoring
  • 8.6 Fraud Detection & Risk Management
  • 8.7 Other Applications

9 Global Big Data in Healthcare Market, By End User

  • 9.1 Introduction
  • 9.2 Pharmaceutical & Biotech Companies
  • 9.3 Payers & Insurance Firms
  • 9.4 Research Institutes
  • 9.5 Government & Public Health Agencies
  • 9.6 Other End Users

10 Global Big Data in Healthcare Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 IBM Watson Health
  • 12.2 Google Health
  • 12.3 Amazon Web Services (AWS)
  • 12.4 Oracle Corporation
  • 12.5 Microsoft Azure for Healthcare
  • 12.6 SAS Institute Inc.
  • 12.7 Optum
  • 12.8 Cerner Corporation
  • 12.9 Epic Systems Corporation
  • 12.10 GE Healthcare
  • 12.11 Siemens Healthineers
  • 12.12 Health Catalyst
  • 12.13 Palantir Technologies Inc.
  • 12.14 Flatiron Health
  • 12.15 Truven Health Analytics

List of Tables

  • Table 1 Global Big Data in Healthcare Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Big Data in Healthcare Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Big Data in Healthcare Market Outlook, By Software & Platforms (2024-2032) ($MN)
  • Table 4 Global Big Data in Healthcare Market Outlook, By Data Integration Tools (2024-2032) ($MN)
  • Table 5 Global Big Data in Healthcare Market Outlook, By Predictive Analytics Platforms (2024-2032) ($MN)
  • Table 6 Global Big Data in Healthcare Market Outlook, By Visualization & Dashboard Tools (2024-2032) ($MN)
  • Table 7 Global Big Data in Healthcare Market Outlook, By Services (2024-2032) ($MN)
  • Table 8 Global Big Data in Healthcare Market Outlook, By Consulting & Implementation (2024-2032) ($MN)
  • Table 9 Global Big Data in Healthcare Market Outlook, By Managed Services (2024-2032) ($MN)
  • Table 10 Global Big Data in Healthcare Market Outlook, By Data Governance & Compliance (2024-2032) ($MN)
  • Table 11 Global Big Data in Healthcare Market Outlook, By Data Type (2024-2032) ($MN)
  • Table 12 Global Big Data in Healthcare Market Outlook, By Clinical Data (2024-2032) ($MN)
  • Table 13 Global Big Data in Healthcare Market Outlook, By Genomic Data (2024-2032) ($MN)
  • Table 14 Global Big Data in Healthcare Market Outlook, By Imaging Data (2024-2032) ($MN)
  • Table 15 Global Big Data in Healthcare Market Outlook, By Patient-Generated Health Data (2024-2032) ($MN)
  • Table 16 Global Big Data in Healthcare Market Outlook, By Claims & Billing Data (2024-2032) ($MN)
  • Table 17 Global Big Data in Healthcare Market Outlook, By Wearable & Sensor Data (2024-2032) ($MN)
  • Table 18 Global Big Data in Healthcare Market Outlook, By Deployment Mode (2024-2032) ($MN)
  • Table 19 Global Big Data in Healthcare Market Outlook, By On-Premise (2024-2032) ($MN)
  • Table 20 Global Big Data in Healthcare Market Outlook, By Cloud-Based (2024-2032) ($MN)
  • Table 21 Global Big Data in Healthcare Market Outlook, By Hybrid (2024-2032) ($MN)
  • Table 22 Global Big Data in Healthcare Market Outlook, By Application (2024-2032) ($MN)
  • Table 23 Global Big Data in Healthcare Market Outlook, By Population Health Management (2024-2032) ($MN)
  • Table 24 Global Big Data in Healthcare Market Outlook, By Clinical Decision Support (2024-2032) ($MN)
  • Table 25 Global Big Data in Healthcare Market Outlook, By Precision Medicine & Genomics (2024-2032) ($MN)
  • Table 26 Global Big Data in Healthcare Market Outlook, By Remote Patient Monitoring (2024-2032) ($MN)
  • Table 27 Global Big Data in Healthcare Market Outlook, By Fraud Detection & Risk Management (2024-2032) ($MN)
  • Table 28 Global Big Data in Healthcare Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 29 Global Big Data in Healthcare Market Outlook, By End User (2024-2032) ($MN)
  • Table 30 Global Big Data in Healthcare Market Outlook, By Pharmaceutical & Biotech Companies (2024-2032) ($MN)
  • Table 31 Global Big Data in Healthcare Market Outlook, By Payers & Insurance Firms (2024-2032) ($MN)
  • Table 32 Global Big Data in Healthcare Market Outlook, By Research Institutes (2024-2032) ($MN)
  • Table 33 Global Big Data in Healthcare Market Outlook, By Government & Public Health Agencies (2024-2032) ($MN)
  • Table 34 Global Big Data in Healthcare Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.