封面
市場調查報告書
商品編碼
1818009

2032年工業自動化積層製造技術市場預測:按組件、材料類型、技術、應用、最終用戶和地區進行的全球分析

Additive Manufacturing for Industrial Automation Market Forecasts to 2032 - Global Analysis By Component (Hardware, Software and Services), Material Type, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球工業自動化積層製造技術市場預計在 2025 年達到 49.1 億美元,到 2032 年將達到 130 億美元,預測期內的複合年成長率為 14.9%。

積層製造技術正在重塑工業自動化,透過提供適應性、精度和生產效率。利用先進的 3D 列印方法,製造商可以創建複雜的設計,同時最大限度地減少材料使用,加快原型製作速度並提高創造性靈活性。這種整合透過減少停機時間、最佳化物流和減少對傳統技術的依賴來增強自動化。在自動化設定中,積層積層製造支援快速、按需生產替換零件和客製化工具,從而提高生產力。積層製造技術與自動化之間的協同作用正在創造創新機會,推動產業走向更智慧、更精簡、更永續的營運。

根據 ASTM 國際標準,積層製造被定義為將材料(通常逐層)連接起來以從 3D 模型數據創建物體的過程,並且正在通過 ASTM F42 委員會進行標準化,該委員會已製定了 30 多項標準,實現 AM 技術與工業自動化系統之間的互通性,促進航太、汽車和醫療設備等多個領域的可擴展部署。

成本效益和減少廢棄物

積層製造的成本效益是其在工業自動化領域廣泛應用的關鍵因素。與傳統的減材製造技術相比,積層製造採用逐層製造方法,最大限度地減少了材料浪費,從而提高了資源利用率並降低了原料成本。這種永續的方法還能降低能源消耗,進一步節省營運成本。自動化設定透過減少人工需求和設備停機時間,進一步提升了成本效益。該技術使製造商能夠交付精準且錯誤更少的零件,從而提高了效率。積層製造成本低且品質高,使其成為注重效率和競爭力的產業不可或缺的技術。

初期投資成本高

高昂的設置成本是積層製造技術在工業自動化領域推廣的關鍵障礙。先進的3D列印系統、專業軟體和配套基礎設施需要大量投資,中小企業難以管理。這些資金需求使得許多公司,尤其是預算有限的中小企業,難以採用該技術。雖然積層製造有望帶來長期效率和成本節約,但由於投資回報速度的不確定性,製造商對此持謹慎態度。因此,高昂的初始成本阻礙了其與自動化生產設備的整合,對市場成長構成了重大障礙。

材料科學進展

材料科學的進步為積層製造技術在工業自動化領域的應用創造了巨大的機會。先進聚合物、複合材料和金屬粉末領域的突破正在拓展3D列印的應用範圍。強度、耐久性和導電性均有所提升的材料,正助力航太和汽車等高要求產業生產功能性零件。隨著更多經濟實惠且可靠的選擇出現,積層製造正變得越來越切實可行,適合大規模應用。這些材料創新不僅降低了成本,還擴展了設計能力,並促進了更廣泛的應用。持續的研究正在使積層製造技術能夠更有效地整合到自動化製造系統中。

網路安全風險與資料竊取

工業自動化的積層製造技術因其依賴數位模型和網際網路而面臨嚴重的網路安全威脅。駭客可能竊取或篡改設計文件,從而導致智慧財產權損失和零件生產缺陷。在高度自動化的環境中,此類中斷可能會中斷工作流程、危及安全或損壞設備。這些風險降低了人們對大規模採用該技術的信心。隨著工業4.0時代各行各業採用更互聯的系統,惡意軟體和勒索軟體的漏洞也隨之增加。如果沒有強大的網路安全基礎設施和安全的資料管理實踐,積層製造仍然容易受到風險的影響,這些風險可能會損害其發展並擾亂自動化工業運作。

COVID-19的影響:

新冠疫情對工業自動化積層製造技術的影響既充滿挑戰,也帶來了改變。最初,供應鏈中斷和工廠關閉導致投資減少,應用放緩。然而,疫情也展現了積層製造的戰略優勢,尤其是其快速、分散式、按需生產關鍵零件和醫療用品的能力。這種能力緩解了短缺,並支持了自動化流程的連續性。危機過後,各行各業開始意識到這項技術所具備的韌性、靈活性和效率。因此,疫情加速了積層製造的長期應用,並將它定位為未來自動化的關鍵推動力。

預計硬體部分將成為預測期內最大的部分

預計硬體領域將在預測期內佔據最大的市場佔有率,因為它提供了生產所需的核心機械設備。印表機、掃描器和相關工具是建立精密、複雜和高效組件的基礎。自動化環境依賴於能夠順利整合到生產線的可靠硬體。多材料支援和更快的列印速度等技術創新正在推動對先進硬體解決方案的依賴。隨著越來越多的產業需要耐用、高性能的系統來實現汽車、航太和醫療保健等領域的大規模應用,硬體將繼續佔據市場主導地位,並成為技術應用的基礎。

複合材料領域預計將在預測期內實現最高複合年成長率

複合材料領域因其獨特的性能組合,預計將在預測期內呈現最高成長率。複合材料具有優異的耐久性、高比強度和耐惡劣環境性能,在汽車、航太和工業設備等應用中廣受歡迎。在自動化環境中,複合材料能夠生產輕盈、堅固的零件,從而提高性能並降低能耗。其設計靈活性也使其能夠創建適合現代製造需求的複雜客製化結構。隨著基於複合材料的列印方法的不斷改進,該領域正在迅速擴張,並已穩居市場成長最快的地位。

佔比最大的地區:

預計北美將在預測期內佔據最大的市場佔有率。這得歸功於其先進的基礎設施、新技術的快速應用以及大型跨國公司的存在。在航太、醫療保健和汽車等領域的大量研發投資正在鞏固該地區的地位。這些產業需要高度客製化和精密的零件,而積層製造可以有效率地滿足這些需求。政府推出的鼓勵採用自動化和智慧工廠的支持性政策也推動了成長。該地區早期向工業 4.0 的轉變,加上成熟的製造商和創新者,確保了其市場主導。北美繼續佔據主導地位,並為全球擴張設定步伐。

複合年成長率最高的地區:

受快速的工業成長、不斷擴張的智慧工廠計劃以及利好的政府政策支撐,預計亞太地區在預測期內將呈現最高的複合年成長率。中國、日本、韓國和印度等國家正在加速對數位化和先進製造技術的投資。汽車、醫療保健和家電等行業日益成長的應用,推動了自動化設備對積層製造解決方案的更大依賴。此外,經濟高效的生產基地、技術嫻熟的人才庫以及不斷發展的新興企業生態系統也進一步增強了積層製造技術的採用。這些因素共同作用,使亞太地區成為最具活力、成長最快的區域市場之一。

免費客製化服務:

此報告的訂閱者可以使用以下免費自訂選項之一:

  • 公司簡介
    • 對最多三家其他市場公司進行全面分析
    • 主要企業的SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶興趣對主要國家進行的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 主要研究資料
    • 次級研究資訊來源
    • 先決條件

第3章市場走勢分析

  • 驅動程式
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 最終用戶分析
  • 新興市場
  • COVID-19的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 工業自動化積層製造技術市場(按組件)

  • 硬體
  • 軟體
  • 服務

6. 工業自動化積層製造技術市場(依材料類型)

  • 金屬
  • 聚合物
  • 陶瓷
  • 複合材料
  • 光聚合物
  • 生物材料

7. 工業自動化積層製造技術市場(按技術)

  • 熔融沈積成型(FDM)
  • 選擇性雷射燒結(SLS)
  • 立體光固成型(SLA)
  • 直接金屬雷射燒結(DMLS)
  • 電子束熔煉(EBM)
  • 黏著劑噴塗成型
  • 材料噴塗
  • 數位光處理 (DLP)
  • 混合積層製造

8. 工業自動化積層製造技術市場(依應用)

  • 快速原型製作
  • 工具及固定裝置
  • 最終用途生產零件
  • 備件製造
  • 大規模客製化
  • 功能測試
  • 自動化後處理
  • 自動化品質檢測

9. 工業自動化積層製造技術市場(依最終用戶)

  • 航太/國防
  • 電子和半導體
  • 工業機械和設備
  • 能源與公共產業
  • 醫療保健和醫療設備
  • 消費品
  • 建築與建築
  • 教育研究所

10. 全球工業自動化積層製造技術市場(按地區)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第12章 公司概況

  • UPTIVE Advanced Manufacturing
  • Stratasys
  • EOS
  • 3D Systems, Inc.
  • Materialise
  • Renishaw
  • Sinterit
  • Proto Labs
  • Grenzebach
  • Siemens Energy
  • KUKA
  • AM-Flow
  • Printinue
  • Rockwell Automation
  • ABB
Product Code: SMRC30972

According to Stratistics MRC, the Global Additive Manufacturing for Industrial Automation Market is accounted for $4.91 billion in 2025 and is expected to reach $13.00 billion by 2032 growing at a CAGR of 14.9% during the forecast period. Additive manufacturing is reshaping industrial automation by offering adaptability, precision, and efficiency in production. Using advanced 3D printing methods, manufacturers can produce intricate designs with minimal material use, accelerated prototyping, and greater creative flexibility. This integration enhances automation by cutting downtime, optimizing logistics, and lowering reliance on conventional techniques. Within automated setups, additive manufacturing supports quick, on-demand fabrication of replacement parts and tailored tools, boosting productivity. The synergy of additive manufacturing and automation is creating innovative opportunities, propelling industries toward smarter, leaner, and more sustainable operations.

According to ASTM International, Additive Manufacturing is defined as the process of joining materials to make objects from 3D model data, usually layer upon layer, and is increasingly being standardized through the ASTM F42 Committee. This committee has developed over 30 standards that enable interoperability between AM technologies and industrial automation systems, facilitating scalable deployment across sectors like aerospace, automotive, and medical devices.

Market Dynamics:

Driver:

Cost efficiency and waste reduction

The cost-effectiveness of additive manufacturing is a crucial factor driving its adoption in industrial automation. By using a layer-by-layer approach, it minimizes material waste compared to traditional subtractive techniques, leading to better resource utilization and reduced raw material costs. This sustainable method also cuts down energy usage, creating additional operational savings. Within automated setups, cost benefits are amplified by lowering manual labor needs and minimizing equipment downtime. The technology enables manufacturers to deliver accurate parts with reduced errors, enhancing efficiency. Offering low-cost yet high-quality output, additive manufacturing serves as a vital enabler for industries focusing on efficiency and competitiveness.

Restraint:

High initial investment costs

High setup costs present a critical barrier to the expansion of additive manufacturing in industrial automation. Advanced 3D printing systems, specialized software, and supporting infrastructure require heavy investment, which smaller businesses find difficult to manage. Beyond the purchase price, ongoing maintenance, upgrades, and operator training add extra expenses. These financial demands make adoption challenging for many firms, especially SMEs with limited budgets. Although additive manufacturing promises long-term efficiency and savings, uncertainty around the speed of return on investment makes manufacturers cautious. The steep initial cost therefore slows integration into automated production setups, acting as a major obstacle to market growth.

Opportunity:

Advancements in material science

The evolution of material science is opening significant opportunities for additive manufacturing in industrial automation. Breakthroughs in advanced polymers, composites, and metallic powders are widening the range of 3D-printed applications. Materials with enhanced strength, durability, and conductivity now make it possible to produce functional components for industries with strict performance demands, such as aerospace and automotive. With an increasing variety of affordable and reliable options, additive manufacturing is becoming more practical for large-scale use. These material innovations not only lower costs but also expand design capabilities, driving broader adoption. Continuous research ensures additive technologies integrate more effectively into automated manufacturing systems.

Threat:

Cyber security risks and data theft

Additive manufacturing in industrial automation faces significant cybersecurity threats due to its reliance on digital models and connected networks. Hackers can steal or alter design files, risking intellectual property losses or the creation of defective components. In highly automated settings, such disruptions could interrupt workflows, compromise safety, or damage equipment. These risks weaken confidence in adopting the technology at scale. As industries adopt more interconnected systems under Industry 4.0, vulnerabilities to malware or ransomware increase. Without robust cybersecurity infrastructure and secure data management practices, additive manufacturing remains exposed to risks that could undermine its growth and disrupt automated industrial operations.

Covid-19 Impact:

The impact of COVID-19 on additive manufacturing in industrial automation was both challenging and transformative. During the early stages, disruptions in supply chains and factory closures led to reduced investments and slowed implementation. Yet, the pandemic also showcased the strategic benefits of additive manufacturing, particularly its ability to provide rapid, decentralized, and on-demand production of critical components and medical supplies. This capability helped mitigate shortages and supported continuity in automated processes. Following the crisis, industries began valuing the resilience, flexibility, and efficiency offered by the technology. As a result, the pandemic accelerated long-term adoption, positioning additive manufacturing as a key enabler for future automation.

The hardware segment is expected to be the largest during the forecast period

The hardware segment is expected to account for the largest market share during the forecast period as it provides the core machines and equipment necessary for production. Printers, scanners, and related tools are fundamental to building precise, complex, and efficient components. Automation environments depend on reliable hardware to integrate smoothly into production lines. Innovations such as multi-material capabilities and faster printing speeds are driving further reliance on advanced hardware solutions. With industries increasingly seeking durable and high-performance systems for large-scale applications in areas like automotive, aerospace, and healthcare, hardware continues to dominate the market, serving as the foundation for technological adoption.

The composites segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the composites segment is predicted to witness the highest growth rate because of their unique combination of properties. They offer excellent durability, strength-to-weight ratio, and resistance to harsh conditions, making them valuable for applications in automotive, aerospace, and industrial equipment. In automated settings, composites enable the production of lightweight, robust components that improve performance while lowering energy use. Their flexibility in design also allows the creation of intricate, tailored structures suited to modern manufacturing demands. With ongoing improvements in composite-based printing methods, this segment is expanding rapidly, establishing itself as the fastest-growing area in the market.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, driven by advanced infrastructure, rapid adoption of new technologies, and the presence of major global players. Significant investments in research and development across sectors such as aerospace, healthcare, and automotive strengthen the region's position. These industries demand highly customized and precise components, which additive manufacturing provides efficiently. Supportive government policies that encourage automation and smart factory adoption also boost growth. The region's early shift toward Industry 4.0, coupled with established manufacturers and innovators, ensures its market leadership. North America continues to dominate, setting the pace for global expansion.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, supported by rapid industrial growth, expanding smart factory initiatives, and favorable government policies. Nations such as China, Japan, South Korea, and India are accelerating investments in digital and advanced manufacturing technologies. Rising applications in industries like automotive, healthcare, and consumer electronics are increasing reliance on additive solutions within automated setups. Additionally, the presence of cost-effective production hubs, a skilled talent pool, and growing startup ecosystems further strengthen adoption. These factors collectively make Asia-Pacific the most dynamic and rapidly expanding regional market.

Key players in the market

Some of the key players in Additive Manufacturing for Industrial Automation Market include UPTIVE Advanced Manufacturing, Stratasys, EOS, 3D Systems, Inc., Materialise, Renishaw, Sinterit, Proto Labs, Grenzebach, Siemens Energy, KUKA, AM-Flow, Printinue, Rockwell Automation and ABB.

Key Developments:

In August 2025, 3D Systems announced it has been awarded a $7.65 million U.S. Air Force contract for a Large-format Metal 3D Printer Advanced Technology Demonstrator. The award is the next phase of a program 3D Systems has worked on since 2023 that supports the development of large-scale, high-speed, flight relevant additive manufacturing print capabilities.

In August 2025, Eos Energy Enterprises has signed a memorandum of understanding (MoU) with Frontier Power for a 5 gigawatt-hour (GWh) energy storage framework agreement. The partnership marks Eos' entry into the UK market, utilising its zinc-based long-duration energy storage systems.

In February 2025, Renishaw have established a new Renishaw Solutions Centre in Spain. Located within the premises of IDEKO, the new facility forms part of a collaboration agreement signed between the two organisations at the 2024 International Machine Tool Exhibition in Bilbao, Spain.

Components Covered:

  • Hardware
  • Software
  • Services

Material Types Covered:

  • Metals
  • Polymers
  • Ceramics
  • Composites
  • Photopolymers
  • Biomaterials

Technologies Covered:

  • Fused Deposition Modeling (FDM)
  • Selective Laser Sintering (SLS)
  • Stereolithography (SLA)
  • Direct Metal Laser Sintering (DMLS)
  • Electron Beam Melting (EBM)
  • Binder Jetting
  • Material Jetting
  • Digital Light Processing (DLP)
  • Hybrid Additive Manufacturing

Applications Covered:

  • Rapid Prototyping
  • Tooling and Fixtures
  • End-Use Production Parts
  • Spare Parts Manufacturing
  • Mass Customization
  • Functional Testing
  • Post-Processing Automation
  • Quality Inspection Automation

End Users Covered:

  • Automotive
  • Aerospace & Defense
  • Electronics & Semiconductors
  • Industrial Machinery & Equipment
  • Energy & Utilities
  • Healthcare & Medical Devices
  • Consumer Goods
  • Construction & Architecture
  • Education & Research Institutions

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Additive Manufacturing for Industrial Automation Market, By Component

  • 5.1 Introduction
  • 5.2 Hardware
  • 5.3 Software
  • 5.4 Services

6 Global Additive Manufacturing for Industrial Automation Market, By Material Type

  • 6.1 Introduction
  • 6.2 Metals
  • 6.3 Polymers
  • 6.4 Ceramics
  • 6.5 Composites
  • 6.6 Photopolymers
  • 6.7 Biomaterials

7 Global Additive Manufacturing for Industrial Automation Market, By Technology

  • 7.1 Introduction
  • 7.2 Fused Deposition Modeling (FDM)
  • 7.3 Selective Laser Sintering (SLS)
  • 7.4 Stereolithography (SLA)
  • 7.5 Direct Metal Laser Sintering (DMLS)
  • 7.6 Electron Beam Melting (EBM)
  • 7.7 Binder Jetting
  • 7.8 Material Jetting
  • 7.9 Digital Light Processing (DLP)
  • 7.10 Hybrid Additive Manufacturing

8 Global Additive Manufacturing for Industrial Automation Market, By Application

  • 8.1 Introduction
  • 8.2 Rapid Prototyping
  • 8.3 Tooling and Fixtures
  • 8.4 End-Use Production Parts
  • 8.5 Spare Parts Manufacturing
  • 8.6 Mass Customization
  • 8.7 Functional Testing
  • 8.8 Post-Processing Automation
  • 8.9 Quality Inspection Automation

9 Global Additive Manufacturing for Industrial Automation Market, By End User

  • 9.1 Introduction
  • 9.2 Automotive
  • 9.3 Aerospace & Defense
  • 9.4 Electronics & Semiconductors
  • 9.5 Industrial Machinery & Equipment
  • 9.6 Energy & Utilities
  • 9.7 Healthcare & Medical Devices
  • 9.8 Consumer Goods
  • 9.9 Construction & Architecture
  • 9.10 Education & Research Institutions

10 Global Additive Manufacturing for Industrial Automation Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 UPTIVE Advanced Manufacturing
  • 12.2 Stratasys
  • 12.3 EOS
  • 12.4 3D Systems, Inc.
  • 12.5 Materialise
  • 12.6 Renishaw
  • 12.7 Sinterit
  • 12.8 Proto Labs
  • 12.9 Grenzebach
  • 12.10 Siemens Energy
  • 12.11 KUKA
  • 12.12 AM-Flow
  • 12.13 Printinue
  • 12.14 Rockwell Automation
  • 12.15 ABB

List of Tables

  • Table 1 Global Additive Manufacturing for Industrial Automation Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Additive Manufacturing for Industrial Automation Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Additive Manufacturing for Industrial Automation Market Outlook, By Hardware (2024-2032) ($MN)
  • Table 4 Global Additive Manufacturing for Industrial Automation Market Outlook, By Software (2024-2032) ($MN)
  • Table 5 Global Additive Manufacturing for Industrial Automation Market Outlook, By Services (2024-2032) ($MN)
  • Table 6 Global Additive Manufacturing for Industrial Automation Market Outlook, By Material Type (2024-2032) ($MN)
  • Table 7 Global Additive Manufacturing for Industrial Automation Market Outlook, By Metals (2024-2032) ($MN)
  • Table 8 Global Additive Manufacturing for Industrial Automation Market Outlook, By Polymers (2024-2032) ($MN)
  • Table 9 Global Additive Manufacturing for Industrial Automation Market Outlook, By Ceramics (2024-2032) ($MN)
  • Table 10 Global Additive Manufacturing for Industrial Automation Market Outlook, By Composites (2024-2032) ($MN)
  • Table 11 Global Additive Manufacturing for Industrial Automation Market Outlook, By Photopolymers (2024-2032) ($MN)
  • Table 12 Global Additive Manufacturing for Industrial Automation Market Outlook, By Biomaterials (2024-2032) ($MN)
  • Table 13 Global Additive Manufacturing for Industrial Automation Market Outlook, By Technology (2024-2032) ($MN)
  • Table 14 Global Additive Manufacturing for Industrial Automation Market Outlook, By Fused Deposition Modeling (FDM) (2024-2032) ($MN)
  • Table 15 Global Additive Manufacturing for Industrial Automation Market Outlook, By Selective Laser Sintering (SLS) (2024-2032) ($MN)
  • Table 16 Global Additive Manufacturing for Industrial Automation Market Outlook, By Stereolithography (SLA) (2024-2032) ($MN)
  • Table 17 Global Additive Manufacturing for Industrial Automation Market Outlook, By Direct Metal Laser Sintering (DMLS) (2024-2032) ($MN)
  • Table 18 Global Additive Manufacturing for Industrial Automation Market Outlook, By Electron Beam Melting (EBM) (2024-2032) ($MN)
  • Table 19 Global Additive Manufacturing for Industrial Automation Market Outlook, By Binder Jetting (2024-2032) ($MN)
  • Table 20 Global Additive Manufacturing for Industrial Automation Market Outlook, By Material Jetting (2024-2032) ($MN)
  • Table 21 Global Additive Manufacturing for Industrial Automation Market Outlook, By Digital Light Processing (DLP) (2024-2032) ($MN)
  • Table 22 Global Additive Manufacturing for Industrial Automation Market Outlook, By Hybrid Additive Manufacturing (2024-2032) ($MN)
  • Table 23 Global Additive Manufacturing for Industrial Automation Market Outlook, By Application (2024-2032) ($MN)
  • Table 24 Global Additive Manufacturing for Industrial Automation Market Outlook, By Rapid Prototyping (2024-2032) ($MN)
  • Table 25 Global Additive Manufacturing for Industrial Automation Market Outlook, By Tooling and Fixtures (2024-2032) ($MN)
  • Table 26 Global Additive Manufacturing for Industrial Automation Market Outlook, By End-Use Production Parts (2024-2032) ($MN)
  • Table 27 Global Additive Manufacturing for Industrial Automation Market Outlook, By Spare Parts Manufacturing (2024-2032) ($MN)
  • Table 28 Global Additive Manufacturing for Industrial Automation Market Outlook, By Mass Customization (2024-2032) ($MN)
  • Table 29 Global Additive Manufacturing for Industrial Automation Market Outlook, By Functional Testing (2024-2032) ($MN)
  • Table 30 Global Additive Manufacturing for Industrial Automation Market Outlook, By Post-Processing Automation (2024-2032) ($MN)
  • Table 31 Global Additive Manufacturing for Industrial Automation Market Outlook, By Quality Inspection Automation (2024-2032) ($MN)
  • Table 32 Global Additive Manufacturing for Industrial Automation Market Outlook, By End User (2024-2032) ($MN)
  • Table 33 Global Additive Manufacturing for Industrial Automation Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 34 Global Additive Manufacturing for Industrial Automation Market Outlook, By Aerospace & Defense (2024-2032) ($MN)
  • Table 35 Global Additive Manufacturing for Industrial Automation Market Outlook, By Electronics & Semiconductors (2024-2032) ($MN)
  • Table 36 Global Additive Manufacturing for Industrial Automation Market Outlook, By Industrial Machinery & Equipment (2024-2032) ($MN)
  • Table 37 Global Additive Manufacturing for Industrial Automation Market Outlook, By Energy & Utilities (2024-2032) ($MN)
  • Table 38 Global Additive Manufacturing for Industrial Automation Market Outlook, By Healthcare & Medical Devices (2024-2032) ($MN)
  • Table 39 Global Additive Manufacturing for Industrial Automation Market Outlook, By Consumer Goods (2024-2032) ($MN)
  • Table 40 Global Additive Manufacturing for Industrial Automation Market Outlook, By Construction & Architecture (2024-2032) ($MN)
  • Table 41 Global Additive Manufacturing for Industrial Automation Market Outlook, By Education & Research Institutions (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.