封面
市場調查報告書
商品編碼
1802970

全球暗庫能源採集市場:2032 年預測 - 按組件、設備類型、部署方法、技術、應用和地區進行分析

Dark Store Energy Harvesting Market Forecasts to 2032 - Global Analysis By Component, Facility Type, Deployment Model, Technology, Application and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球暗庫能源採集市場預計在 2025 年將達到 4,236 萬美元,到 2032 年將達到 8,907 萬美元,預測期內的複合年成長率為 11.2%。

暗倉能源採集是指在微型倉配或暗倉設施中捕獲並利用營運過程中的能量。透過整合物聯網系統、動能、熱能和再生能源來源,零售商可以最佳化能源效率並降低成本。這種方法支援永續性目標,同時提高自動化程度和即時監控能力。它將未開發的能源流轉化為設備、感測器和智慧基礎設施所需的電能,從而增強營運韌性,並最大限度地減少最後一哩物流的環境足跡。

根據《自然通訊》報導,研發團隊開發出一種厚度90微米、超軟性的能源收集和儲存系統,將有機光伏與鋅離子電池結合,實現了超過16%的轉換效率、超過10mW/cm²的輸出、以及5.82mWh/cm²的能量密度。

顯著降低營運成本

暗店能源採集市場的主要驅動力在於無人店內能源產出系統大幅降低了營運成本。這些創新解決方案顯著降低了對電網的依賴,從而降低了暗店營運商的電費。此外,能源採集技術能夠預測能源成本,從而實現更合理的財務規劃和預算分配。智慧型能源管理系統的整合進一步最佳化了用電模式,並降低了尖峰時段電費。此外,可再生能源的採用加速了投資收益,使得能源採集解決方案對暗店營運商的吸引力日益增強。

與傳統基礎設施整合的複雜性

現有的暖通空調、照明和自動化網路通常與可再生能源整合通訊協定不相容。改裝方案需要進行大量的電氣改造,這可能會在安裝階段中斷營運連續性。傳統的建築管理系統通常需要昂貴的升級才能適應智慧能量收集控制器和監控平台。此外,電氣安全標準的合規性要求也使安裝程序變得複雜。這些整合障礙增加了計劃週期和實施成本,限制了已有基礎設施投資的營運商的採用率。

城市幕後店擴張

最後一哩配送的需求和消費者對快速訂單履行的期望正在加速城市暗店的發展。城市設施面臨日益嚴格的環境法規,鼓勵從計劃開始整合可再生能源。城市規劃舉措日益要求商業開發項目採用永續的建築實踐。此外,人口密集的城市環境為多種能源採集方法提供了理想條件,包括屋頂太陽能裝置和動能回收系統。這一日益成長的趨勢為技術供應商提供了日益成長的市場機會,使他們能夠將能源採集解決方案融入下一代自動化履約設施中。

能源儲存的局限性

目前的鋰離子儲能解決方案在暗室環境下典型的連續充放電循環中表現出有限的耐用性。由於能量密度限制,需要佔用較大的實體空間才能確保足夠的備用電源容量。倉庫環境中的溫度波動會顯著降低電池的效能和使用壽命。此外,更換儲能系統的成本會造成長期的經濟負擔,抵銷初期的節能效果。這些技術限制降低了系統的可靠性和投資收益率,可能會阻礙設施營運商採用全面的能源採集解決方案。

COVID-19的影響:

由於全球電子商務需求激增,新冠疫情加速了「暗店」的普及,擴大了能源採集技術的應用機會。由於消毒通訊協定的加強和營業時間的延長,設施業者面臨營運成本的上升。此外,供應鏈中斷凸顯了能源獨立對於維持持續營運的重要性。遠距辦公政策減少了對商業房地產的需求,同時增加了對自動化履約中心的投資。然而,勞動力限制和零件供應短缺導致安裝延遲,暫時抑制了2020-2021年的市場成長。

預計光學(太陽能/光伏)能源採集領域將成為預測期內最大的領域

預計光學(太陽能/光伏)能源採集領域將在預測期內佔據最大的市場佔有率。屋頂太陽能電池陣列可在白天提供持續的能源產出,以滿足設施的營運需求。太陽能太陽能發電面板成本的下降和轉換效率的提高使大規模部署更具經濟效益。政府激勵措施和可再生能源信貸進一步推動了商業建築中太陽能的普及。太陽能發電系統具有可擴展性,允許設施營運商根據能源消耗模式和營運成長需求逐步擴展容量。

預計在預測期內,現有設施的改造安裝將以最高的複合年成長率成長。

由於履約中心的營運基礎需要提高能源效率,預計現有設施的改造安裝量將在預測期內呈現最高成長率。維修計劃受益於現有的電力基礎設施和建築許可,從而縮短了實施時間並降低了監管複雜性。營運商正在優先考慮在不產生設施搬遷成本的情況下降低能源成本的策略。此外,技術進步使得與現有建築管理系統和自動化網路的無縫整合成為可能。政府專門針對商業建築升級的獎勵,正在進一步加速那些注重成本、尋求永續營運改善的設施營運商的改裝採用率。

佔比最大的地區:

預計北美將在預測期內佔據最大的市場佔有率,這得益於其完善的電商基礎設施和支援可再生能源應用的法規結構。該地區成熟的暗店網路提供了重要的維修機會,同時也促進了新設施的開發。此外,優惠的淨計量政策和稅收激勵機制鼓勵商業性能源採集投資。總部位於北美的領先物流營運商正透過其企業永續性承諾推動技術應用。主要大都市市場(尤其是加州和紐約州)的高電費為在自動化履約營運中實施能源獨立策略提供了令人信服的經濟理由。

複合年成長率最高的地區:

受快速都市化和新興市場電子商務爆炸式成長的推動,亞太地區預計將在預測期內呈現最高的複合年成長率。隨著消費者購買行為轉向線上零售平台,中國和印度的「幕後店」發展正在加速。此外,不斷上漲的電費和對電網可靠性的擔憂,促使設施營運商尋求能源獨立解決方案。區域內能源採集組件的製造成本優勢支持了具有競爭力的定價結構。區域技術夥伴關係和供應鏈的接近性加快了計劃實施進度,使其能夠快速滲透到不同的地理市場。

成分

  • 感應器
  • 電源管理積體電路
  • 電力儲存裝置
  • 其他組件

免費客製化服務

此報告的訂閱者可以從以下免費自訂選項中選擇一項:

  • 公司簡介
    • 對最多三家其他公司進行全面分析
    • 主要企業的SWOT分析(最多3家公司)
  • 區域分類
    • 根據客戶興趣對主要國家進行的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第 2 章 簡介

  • 概述
  • 相關利益者
  • 分析範圍
  • 分析方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 分析方法
  • 分析材料
    • 主要研究資料
    • 二手研究資訊來源
    • 先決條件

第3章市場走勢分析

  • 驅動程式
  • 抑制因素
  • 市場機會
  • 威脅
  • 技術分析
  • 應用分析
  • 新興市場
  • COVID-19的感染疾病

第4章 波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代產品的威脅
  • 新參與企業的威脅
  • 企業之間的競爭

5. 全球暗店能源採集市場(按組件)

  • 感應器
    • 壓電
    • 太陽能發電
    • 熱電
    • 高頻
  • 電源管理積體電路
  • 電力儲存裝置
  • 其他組件

6. 全球暗店能源採集市場(依設施類型)

  • 小型暗店
  • 中型履約中心
  • 大型自動化倉庫

7. 全球暗店能源採集市場(以部署方式)

  • 新建暗店(待開發區計劃)
  • 現有設施改裝

8. 全球暗店能源採集市場(按技術)

  • 光能(太陽能/光伏)能源採集
  • 能源採集
  • 振動/動能收集
  • 射頻 (RF)能源採集
  • 其他技術

9. 全球暗店能源採集市場(按應用)

  • 智慧照明系統
  • 庫存管理和資產追蹤
  • 無線感測器網路(WSN)
  • 輸送機和自動化系統
  • 安全和監控系統
  • 資料中心電源管理
  • 其他用途

第10章全球暗店能源採集市場(按地區)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章:主要趨勢

  • 合約、商業夥伴關係和合資企業
  • 企業合併與收購(M&A)
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第12章 公司概況

  • EnOcean
  • e-peas
  • STMicroelectronics
  • Texas Instruments
  • Cymbet Corporation
  • Powercast Corporation
  • Analog Devices
  • Microchip Technology
  • ABB
  • Schneider Electric
  • Silicon Laboratories
  • Fujitsu
  • Honeywell
  • Lord MicroStrain
  • Voltree Power
  • Linear Technology
Product Code: SMRC30496

According to Stratistics MRC, the Global Dark Store Energy Harvesting Market is accounted for $42.36 million in 2025 and is expected to reach $89.07 million by 2032 growing at a CAGR of 11.2% during the forecast period. Dark store energy harvesting is capturing and utilizing energy from operational processes in micro-fulfillment or dark store facilities. By integrating IoT-enabled systems, kinetic, thermal, and renewable energy sources, retailers optimize energy efficiency and reduce costs. This approach supports sustainability goals while enhancing automation and real-time monitoring. It transforms underutilized energy flows into power for devices, sensors, and smart infrastructure, strengthening operational resilience and minimizing environmental footprint in last-mile logistics.

According to Nature Communications, researchers developed a 90 µm-thick ultraflexible energy-harvesting and storage system combining organic photovoltaics and zinc-ion batteries, achieving over 16 % conversion efficiency, >10 mW/cm2 output, and 5.82 mWh/cm2 energy density.

Market Dynamics:

Driver:

Significant reduction in operational expenditure

The dark store energy harvesting market is primarily driven by substantial reductions in operational expenditure achieved through autonomous energy generation systems. These innovative solutions significantly minimize dependency on grid electricity, resulting in lower utility costs for dark store operators. Additionally, energy harvesting technologies offer predictable energy costs, enabling better financial planning and budget allocation. The integration of smart energy management systems further optimizes consumption patterns, reducing peak-hour electricity charges. Moreover, renewable energy adoption accelerates return on investment, making energy harvesting solutions increasingly attractive for dark store operators.

Restraint:

Integration complexity with legacy infrastructure

Existing HVAC, lighting, and automation networks often lack compatibility interfaces with renewable energy integration protocols. Retrofitting scenarios require extensive electrical modifications, potentially disrupting operational continuity during installation phases. Legacy building management systems frequently demand costly upgrades to accommodate smart energy harvesting controllers and monitoring platforms. Moreover, regulatory compliance requirements for electrical safety standards complicate installation procedures. These integration barriers elevate project timelines and implementation costs, thereby limiting adoption rates among operators with established infrastructure investments.

Opportunity:

Expansion of urban dark stores

Metropolitan dark store development accelerates due to last-mile delivery demand and consumer expectations for rapid order fulfillment. Urban facilities face stricter environmental regulations, encouraging renewable energy integration from project inception. City planning initiatives increasingly mandate sustainable building practices for commercial developments. Moreover, dense urban environments offer optimal conditions for multiple energy harvesting modalities, including rooftop solar installations and kinetic energy capture systems. This expansion trend provides technology vendors with expanding market opportunities to embed energy harvesting solutions into next-generation automated fulfillment facilities.

Threat:

Energy storage limitations

Current lithium-ion storage solutions demonstrate limited durability under continuous charge-discharge cycles typical in dark store environments. Energy density limitations require substantial physical footprints for adequate backup power capacity. Temperature fluctuations within warehouse environments can degrade battery performance and operational lifespan significantly. Moreover, storage system replacement costs create long-term financial burdens that offset initial energy savings. These technological limitations reduce system reliability and return on investment calculations, potentially deterring facility operators from adopting comprehensive energy harvesting solutions.

Covid-19 Impact:

The COVID-19 pandemic accelerated dark store proliferation as e-commerce demand surged globally, creating expanded opportunities for energy harvesting implementation. Facility operators faced increased operational costs due to enhanced sanitization protocols and extended operating hours. Additionally, supply chain disruptions emphasized energy independence's importance for maintaining continuous operations. Remote work policies reduced commercial real estate demand while increasing automated fulfillment center investments. However, installation delays occurred due to workforce restrictions and component supply shortages, temporarily constraining market growth during 2020-2021.

The light (solar/photovoltaic) energy harvesting segment is expected to be the largest during the forecast period

The light (solar/photovoltaic) energy harvesting segment is expected to account for the largest market share during the forecast period. Rooftop solar arrays provide consistent energy generation capacity aligned with facility operational requirements throughout daylight hours. The declining of photovoltaic panel costs and improved conversion efficiency rates enhance economic viability for large-scale deployments. Government incentive programs and renewable energy credits further support solar adoption across commercial facilities. The scalable nature of solar systems allows facility operators to incrementally expand capacity based on energy consumption patterns and operational growth requirements.

The retrofit installations in existing facilities segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the retrofit installations in existing facilities segment is predicted to witness the highest growth rate due to the base of operational fulfillment centers requiring energy efficiency improvements. Retrofit projects benefit from existing electrical infrastructure and building permits, reducing implementation timelines and regulatory complexities. Operators increasingly prioritize energy cost reduction strategies without facility relocation expenses. Moreover, technological advancements enable seamless integration with existing building management systems and automation networks. Government incentives specifically targeting commercial building upgrades further accelerate retrofit adoption rates among cost-conscious facility operators seeking sustainable operational improvements.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share through established e-commerce infrastructure and supportive regulatory frameworks for renewable energy adoption. The region's mature dark store network provides substantial retrofit opportunities alongside new facility developments. Additionally, favorable net metering policies and tax incentive structures encourage commercial energy harvesting investments. Major logistics operators headquartered in North America drive technology adoption through corporate sustainability commitments. High electricity costs in key metropolitan markets, particularly California and New York, create compelling economic justifications for energy independence strategies across automated fulfillment operations.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by rapid urbanization and explosive e-commerce expansion across emerging markets. China and India lead dark store development as consumer purchasing behavior shifts toward online retail platforms. Additionally, rising electricity costs and grid reliability concerns motivate facility operators to pursue energy independence solutions. Manufacturing cost advantages for energy harvesting components within the region support competitive pricing structures. Local technology partnerships and supply chain proximity accelerate project implementation timelines, enabling faster market penetration across diverse geographical markets.

Key players in the market

Some of the key players in Dark Store Energy Harvesting Market include EnOcean, e-peas, STMicroelectronics, Texas Instruments, Cymbet Corporation, Powercast Corporation, Analog Devices, Microchip Technology, ABB, Schneider Electric, Silicon Laboratories, Fujitsu, Honeywell, Lord MicroStrain, Voltree Power, and Linear Technology.

Key Developments:

In August 2025, Powercast, in partnership with Microchip, continues to offer the world's first RF energy harvesting kit that enables battery-free, perpetually powered wireless applications. Their TX91501 Powercaster transmitter can broadcast power and data over 40 feet using 915-MHz ISM band.

In July 2025, Analog devices signed a collaboration agreement with Delta Electronics for silicon carbide solutions in energy applications, focusing on AI data centers, EV charging, renewable energy, and industrial power systems. Microchip continues its partnership with Powercast for RF energy harvesting solutions.

In April 2024, STMicro partnered with Dracula Technologies to integrate energy-harvesting organic photovoltaic (OPV) technology with their new STM32U0 microcontroller line. This collaboration enables battery-free IoT applications that can operate at light levels as low as 100-200 lux.

In October 2023, Texas instruments released the TPS62736 DC/DC step-down converter, described as the lowest-power device of its kind, increasing harvested energy usage by up to 70% over alternative devices.

Components:

  • Transducers
  • Power Management Integrated Circuits
  • Storage Devices
  • Other Components

Facility Types Covered:

  • Micro Dark Stores
  • Mid-Sized Fulfillment Centers
  • Large Automated Warehouses

Deployment Models Covered:

  • New Dark Stores (Greenfield Projects)
  • Retrofit Installations in Existing Facilities

Technologies Covered:

  • Light (Solar/Photovoltaic) Energy Harvesting
  • Thermal Energy Harvesting
  • Vibration/Kinetic Energy Harvesting
  • Radio Frequency (RF) Energy Harvesting
  • Other Technologies

Applications Covered:

  • Smart Lighting Systems
  • Inventory Management and Asset Tracking
  • Wireless Sensor Networks (WSN)
  • Conveyor and Automated Systems
  • Security and Surveillance Systems
  • Data Center Power Management
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Dark Store Energy Harvesting Market, By Component

  • 5.1 Introduction
  • 5.2 Transducers
    • 5.2.1 Piezoelectric
    • 5.2.2 Photovoltaic
    • 5.2.3 Thermoelectric
    • 5.2.4 RF
  • 5.3 Power Management Integrated Circuits
  • 5.4 Storage Devices
  • 5.5 Other Components

6 Global Dark Store Energy Harvesting Market, By Facility Type

  • 6.1 Introduction
  • 6.2 Micro Dark Stores
  • 6.3 Mid-Sized Fulfillment Centers
  • 6.4 Large Automated Warehouses

7 Global Dark Store Energy Harvesting Market, By Deployment Model

  • 7.1 Introduction
  • 7.2 New Dark Stores (Greenfield Projects)
  • 7.3 Retrofit Installations in Existing Facilities

8 Global Dark Store Energy Harvesting Market, By Technology

  • 8.1 Introduction
  • 8.2 Light (Solar/Photovoltaic) Energy Harvesting
  • 8.3 Thermal Energy Harvesting
  • 8.4 Vibration/Kinetic Energy Harvesting
  • 8.5 Radio Frequency (RF) Energy Harvesting
  • 8.6 Other Technologies

9 Global Dark Store Energy Harvesting Market, By Application

  • 9.1 Introduction
  • 9.2 Smart Lighting Systems
  • 9.3 Inventory Management and Asset Tracking
  • 9.4 Wireless Sensor Networks (WSN)
  • 9.5 Conveyor and Automated Systems
  • 9.6 Security and Surveillance Systems
  • 9.7 Data Center Power Management
  • 9.8 Other Applications

10 Global Dark Store Energy Harvesting Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 EnOcean
  • 12.2 e-peas
  • 12.3 STMicroelectronics
  • 12.4 Texas Instruments
  • 12.5 Cymbet Corporation
  • 12.6 Powercast Corporation
  • 12.7 Analog Devices
  • 12.8 Microchip Technology
  • 12.9 ABB
  • 12.10 Schneider Electric
  • 12.11 Silicon Laboratories
  • 12.12 Fujitsu
  • 12.13 Honeywell
  • 12.14 Lord MicroStrain
  • 12.15 Voltree Power
  • 12.16 Linear Technology

List of Tables

  • Table 1 Global Dark Store Energy Harvesting Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Dark Store Energy Harvesting Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Dark Store Energy Harvesting Market Outlook, By Transducers (2024-2032) ($MN)
  • Table 4 Global Dark Store Energy Harvesting Market Outlook, By Piezoelectric (2024-2032) ($MN)
  • Table 5 Global Dark Store Energy Harvesting Market Outlook, By Photovoltaic (2024-2032) ($MN)
  • Table 6 Global Dark Store Energy Harvesting Market Outlook, By Thermoelectric (2024-2032) ($MN)
  • Table 7 Global Dark Store Energy Harvesting Market Outlook, By RF (2024-2032) ($MN)
  • Table 8 Global Dark Store Energy Harvesting Market Outlook, By Power Management Integrated Circuits (2024-2032) ($MN)
  • Table 9 Global Dark Store Energy Harvesting Market Outlook, By Storage Devices (2024-2032) ($MN)
  • Table 10 Global Dark Store Energy Harvesting Market Outlook, By Other Components (2024-2032) ($MN)
  • Table 11 Global Dark Store Energy Harvesting Market Outlook, By Facility Type (2024-2032) ($MN)
  • Table 12 Global Dark Store Energy Harvesting Market Outlook, By Micro Dark Stores (2024-2032) ($MN)
  • Table 13 Global Dark Store Energy Harvesting Market Outlook, By Mid-Sized Fulfillment Centers (2024-2032) ($MN)
  • Table 14 Global Dark Store Energy Harvesting Market Outlook, By Large Automated Warehouses (2024-2032) ($MN)
  • Table 15 Global Dark Store Energy Harvesting Market Outlook, By Deployment Model (2024-2032) ($MN)
  • Table 16 Global Dark Store Energy Harvesting Market Outlook, By New Dark Stores (Greenfield Projects) (2024-2032) ($MN)
  • Table 17 Global Dark Store Energy Harvesting Market Outlook, By Retrofit Installations in Existing Facilities (2024-2032) ($MN)
  • Table 18 Global Dark Store Energy Harvesting Market Outlook, By Technology (2024-2032) ($MN)
  • Table 19 Global Dark Store Energy Harvesting Market Outlook, By Light (Solar/Photovoltaic) Energy Harvesting (2024-2032) ($MN)
  • Table 20 Global Dark Store Energy Harvesting Market Outlook, By Thermal Energy Harvesting (2024-2032) ($MN)
  • Table 21 Global Dark Store Energy Harvesting Market Outlook, By Vibration/Kinetic Energy Harvesting (2024-2032) ($MN)
  • Table 22 Global Dark Store Energy Harvesting Market Outlook, By Radio Frequency (RF) Energy Harvesting (2024-2032) ($MN)
  • Table 23 Global Dark Store Energy Harvesting Market Outlook, By Other Technologies (2024-2032) ($MN)
  • Table 24 Global Dark Store Energy Harvesting Market Outlook, By Application (2024-2032) ($MN)
  • Table 25 Global Dark Store Energy Harvesting Market Outlook, By Smart Lighting Systems (2024-2032) ($MN)
  • Table 26 Global Dark Store Energy Harvesting Market Outlook, By Inventory Management and Asset Tracking (2024-2032) ($MN)
  • Table 27 Global Dark Store Energy Harvesting Market Outlook, By Wireless Sensor Networks (WSN) (2024-2032) ($MN)
  • Table 28 Global Dark Store Energy Harvesting Market Outlook, By Conveyor and Automated Systems (2024-2032) ($MN)
  • Table 29 Global Dark Store Energy Harvesting Market Outlook, By Security and Surveillance Systems (2024-2032) ($MN)
  • Table 30 Global Dark Store Energy Harvesting Market Outlook, By Data Center Power Management (2024-2032) ($MN)
  • Table 31 Global Dark Store Energy Harvesting Market Outlook, By Other Applications (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.