封面
市場調查報告書
商品編碼
1787927

導熱聚合物材料市場預測(至2032年):依聚合物類型、填料類型、形態、導熱係數、技術、最終用戶和地區進行分析

Thermal Conductive Polymer Material Market Forecasts to 2032 - Global Analysis By Polymer Type, Filler Type, Form, Thermal Conductivity, Technology, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球導熱聚合物材料市場預計在 2025 年達到 2.107 億美元,到 2032 年將達到 5.538 億美元,預測期內的複合年成長率為 14.8%。

導熱聚合物材料因其輕質、耐腐蝕和易加工的特性,在材料產業中發揮重要作用。這些聚合物是專為高效導熱而設計的塑膠。其高效的導熱能力使其成為各種電子、汽車和消費品應用的必備材料。為了提高散熱能力,這些材料通常填充導熱元素,例如石墨、碳纖維或陶瓷顆粒。它們無需使用金屬即可提供高效的溫度控管解決方案,並廣泛應用於 LED、汽車和電子產品。其輕量化設計、設計靈活性和電絕緣性使其成為需要有效熱控制的高性能緊湊型設備的理想選擇。

重量輕、設計靈活性高,具有出色的熱性能

其輕量、柔韌的高性能熱性能使其具有出色的散熱性能和輕量化特性,是電子和汽車等應用的理想選擇。其優異的適應性使其能夠實現複雜、小型化的設計,滿足現代小型化的需求。與金屬相比,它們具有電絕緣性、耐腐蝕性和導熱性,可延長關鍵系統的使用壽命並提高產品可靠性。隨著企業優先考慮緊湊型解決方案和能源效率,對這些聚合物的需求持續成長。

熱導率低於金屬,性能較不穩定

導熱聚合物材料的導熱係數低於傳統金屬,限制了其在嚴苛溫度控管情境中的應用。這項缺點使其不適用於依賴高效散熱的領域,例如電力電子和高頻系統。這些問題導致最終用戶不願廣泛採用這些材料。因此,製造商難以滿足先進技術對熱性能的嚴格要求。總而言之,這些挑戰限制了導熱聚合物材料的廣泛應用和市場成長。

奈米技術和混合材料的進展

石墨烯、奈米碳管和氮化硼等奈米填料增強了聚合物的散熱性能。這些進步使得適用於小型電子設備的高性能材料得以誕生。混合複合材料融合了多種不同材料的優勢,具有優異的機械和熱穩定性。此類材料滿足了5G基礎設施、LED和電動車日益成長的需求。製造商擴大採用這些尖端解決方案,以滿足不斷變化的性能和環境需求。

與現有參與企業的激烈競爭

主要企業通常採用激進的行銷和研發策略,使新參與企業難以競爭。他們現有的客戶群和知名品牌限制了新業務的市場潛力。規模經濟也有利於現有參與企業,使他們能夠以更低的價格提供產品。這些競爭對手不斷的技術創新使中小型公司難以進入市場。因此,市場分散和激烈的競爭降低了整個行業的成長潛力。

COVID-19的影響

新冠疫情嚴重擾亂了導熱聚合物材料市場,導致汽車、電子和航太等關鍵產業出現生產停頓、供應鏈延遲和需求下降。停工和勞動力短缺阻礙了生產,計劃延期導致庫存積壓。然而,隨著各行各業的複工以及家用電子電器和醫療設備對輕質高效導熱材料的需求激增,市場逐漸復甦。企業透過數位化業務和最佳化供應鏈來應對,儘管在疫情尖峰時段遭遇了短期挫折,但仍增強了長期韌性。

預測期內,聚醯胺(PA)市場預計將成為最大的市場

聚醯胺 (PA) 憑藉其優異的熱穩定性和機械強度,預計將在預測期內佔據最大的市場佔有率。其與導電填料的高相容性增強了電子和汽車零件的散熱性能。 PA 的輕量化特性正在推動其在節能汽車和緊湊型電子設備中的需求。其優異的耐磨性、耐化學性和耐熱性也推動了其在高要求工業應用的應用。電動車和 5G 基礎設施投資的不斷成長也加速了基於 PA 的導熱材料的使用。

預計工業設備領域在預測期內將實現最高的複合年成長率。

由於高性能機器對高效散熱的需求不斷成長,預計工業設備領域將在預測期內實現最高成長率。這些聚合物正在取代設備零件中的金屬,並具有重量更輕、耐腐蝕等優勢。它們易於加工,可以經濟高效地製造複雜零件。各行各業自動化和電氣化的不斷提高也推動了這些聚合物的應用。由於設備在高溫下運行,溫度控管變得至關重要,從而推動了對這些材料的需求。

比最大的地區

由於中國、韓國和日本電子製造地的快速擴張,預計亞太地區將在預測期內佔據最大的市場佔有率。家用電子電器和電動車對輕量化和高效能導熱元件的需求不斷成長,推動了相關應用的普及。政府支持電動車發展的措施以及主要汽車製造商的進駐也進一步推動了需求成長。此外,為開發經濟高效的材料而不斷增加的研發投入,使該地區成為導熱聚合物應用創新和生產的熱點地區。

複合年成長率最高的地區

在預測期內,由於航太、醫療設備和高階運算系統等領域的應用日益增多,北美預計將實現最高的複合年成長率。該地區對惡劣環境下的溫度控管和電子設備小型化的關注正在推動技術創新。隨著對永續和節能解決方案的投資不斷增加,以及全球材料科學公司的穩固影響力,北美受益於先進的研發能力。該地區在軍事和工業自動化領域對聚合物基熱感解決方案的應用也日益增多,其中美國在多個高性能領域的需求處於領先地位。

免費客製化服務

訂閱此報告的客戶可享有以下免費自訂選項之一:

  • 公司簡介
    • 對最多三家其他市場參與企業進行全面分析
    • 主要企業的SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶興趣對主要國家進行的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 透過產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 主要研究資料
    • 二手研究資料
    • 先決條件

第3章市場走勢分析

  • 介紹
  • 驅動程式
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 最終用戶分析
  • 新興市場
  • COVID-19的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球導熱聚合物材料市場(依聚合物類型)

  • 介紹
  • 聚醯胺(PA)
  • 聚丁烯對苯二甲酸酯(PBT)
  • 聚碳酸酯(PC)
  • 聚苯硫(PPS)
  • 聚醚醚酮(PEEK)
  • 聚乙烯(PE)
  • 聚丙烯(PP)
  • 聚氨酯(PU)
  • 其他

6. 全球導熱聚合物材料市場(依填料類型)

  • 介紹
  • 碳基填料
  • 陶瓷基填料
  • 金屬基填料
  • 混合填料

7. 全球導熱聚合物材料市場(按類型)

  • 介紹
  • 顆粒
  • 床單
  • 塗層
  • 膠水
  • 複合材料
  • 其他

8. 全球導熱聚合物材料市場(依導熱係數)

  • 介紹
  • 低熱導率(10W/mK以下)
  • 中等導熱係數(10-50W/mK)
  • 高導熱率(超過50W/mK)

9. 全球導熱聚合物材料市場(按技術)

  • 介紹
  • 射出成型
  • 擠壓成型
  • 壓縮成型
  • 吹塑成型
  • 熱成型
  • 其他

第 10 章全球導熱聚合物材料市場(依最終用戶)

  • 介紹
  • 電氣和電子
  • 工業設備
  • 衛生保健
  • 航太和國防
  • 能源和電力
  • 消費品
  • 建造
  • 通訊
  • 其他

第11章全球導熱聚合物材料市場(按區域)

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第12章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第13章:企業概況

  • BASF SE
  • Covestro AG
  • Celanese Corporation
  • 3M Company
  • DuPont de Nemours, Inc.
  • Ensinger GmbH
  • Toray Industries, Inc.
  • Avient Corporation
  • Mitsubishi Chemical Group Corporation
  • Arkema SA
  • SABIC
  • RTP Company
  • LyondellBasell Industries NV
  • Sumitomo Chemical Co., Ltd.
  • Daikin Industries, Ltd.
Product Code: SMRC30192

According to Stratistics MRC, the Global Thermal Conductive Polymer Material Market is accounted for $210.7 million in 2025 and is expected to reach $553.8 million by 2032 growing at a CAGR of 14.8% during the forecast period. In the material industry, the Thermal Conductive Polymer Materials plays a vital role as they are light weight, resistance to corrosion, and ease of processing, which are speciality plastics designed to transport heat effectively These polymers are characterized by their ability to efficiently transfer heat, making them indispensable in various electronic, automotive, and consumer goods applications. To improve their capacity to dissipate heat, these materials are usually filled with thermally conductive elements such as graphite, carbon fibres, or ceramic particles. They offer efficient heat management solutions without the need for metals and are utilised in LED, automotive, and electronics applications. Their reduced weight, design flexibility, and electrical insulating qualities make them perfect for high-performance, small devices that need effective heat control.

Market Dynamics:

Driver:

High-performance thermal properties in lightweight, design-flexible formats

Superior heat dissipation and low weight are provided by high-performance thermal characteristics in lightweight, design-flexible shapes, making them perfect for applications in electronics and automobiles. Their adaptability enables intricate and small designs, satisfying the demands of contemporary miniaturisation. In contrast to metals, they combine electrical insulation, corrosion resistance, and thermal conductivity. This prolongs the lifespan of vital systems and improves product reliability. The need for these polymers keeps growing as companies place a higher priority on compact solutions and energy efficiency.

Restraint:

Lower thermal conductivity than metals & inconsistent performance

Thermal conductive polymer materials exhibit lower thermal conductivity than conventional metals, restricting their use in demanding thermal management scenarios.This drawback makes them less ideal for sectors that rely on efficient heat dissipation, like power electronics and high-frequency systems. Additionally, inconsistent performance caused by uneven filler distribution and processing variability affects their reliability. Such issues create reluctance among end-users to adopt these materials widely. Consequently, manufacturers struggle to meet the strict thermal demands of advanced technologies. These challenges collectively limit the widespread adoption and market growth of thermal conductive polymer materials.

Opportunity:

Advances in nanotechnology and hybrid materials

Heat dissipation in polymers is enhanced by nanofillers like graphene, carbon nanotubes, and boron nitride. The creation of high-performance materials appropriate for small electronic devices is made possible by these advancements. Superior mechanical and thermal stability is provided by hybrid composites, which combine the advantages of several different materials. These materials satisfy the increasing need for 5G infrastructure, LEDs, and electric cars. In order to satisfy changing performance and environmental demands, manufacturers are consequently embracing these cutting-edge solutions more and more.

Threat:

Intense rivalry from established players

Top businesses frequently use aggressive marketing and research and development strategies, which make it challenging for newcomers to compete. Their established clientele and well-known brand restrict market potential for new businesses. Economies of scale also help established players by enabling them to provide goods at reduced prices. These rivals' constant innovation makes it harder for smaller firms to enter the market. Consequently, market fragmentation and fierce rivalry reduce the industry's potential for overall growth.

Covid-19 Impact

The COVID-19 pandemic significantly disrupted the Thermal Conductive Polymer Material Market by halting manufacturing activities, delaying supply chains, and reducing demand across key sectors like automotive, electronics, and aerospace. Lockdowns and workforce shortages hindered production, while project postponements led to inventory pileups. However, the market witnessed gradual recovery as industries resumed operations and demand for lightweight, thermally efficient materials surged in consumer electronics and medical devices. Companies adapted by digitizing operations and optimizing supply chains, fostering long-term resilience despite short-term setbacks during the peak pandemic period.

The polyamide (PA) segment is expected to be the largest during the forecast period

The polyamide (PA) segment is expected to account for the largest market share during the forecast period, due to its excellent thermal stability and mechanical strength. Its high compatibility with conductive fillers enhances heat dissipation in electronic and automotive components. PA's lightweight nature supports the ongoing demand for fuel-efficient vehicles and compact electronic devices. The material's resistance to wear, chemicals, and high temperatures further drives its adoption in demanding industrial applications. Growing investments in electric vehicles and 5G infrastructure are also accelerating the use of PA-based thermal conductive materials.

The industrial equipment segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the industrial equipment segment is predicted to witness the highest growth rate, due to rising demand for efficient heat dissipation in high-performance machinery. These polymers replace metals in equipment components, offering benefits like reduced weight and corrosion resistance. Their ease of processing supports cost-effective manufacturing of complex parts. Increasing automation and electrification across industries further amplify their adoption. As equipment operates at higher temperatures, thermal management becomes critical, boosting demand for these materials.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to the rapid expansion of electronics manufacturing hubs in China, South Korea, and Japan. The increasing demand for lightweight, thermally efficient components in consumer electronics and electric vehicles is pushing adoption. Government initiatives supporting electric mobility and the presence of major OEMs are further fuelling demand. Moreover, local players are increasingly investing in R&D to develop cost-effective, high-performance materials, making the region a hotspot for innovation and production in thermal conductive polymer applications.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to rising applications in aerospace, medical devices, and high-end computing systems. The region's strong focus on thermal management in harsh environments and miniaturized electronics is driving innovation. With increased investment in sustainable, energy-efficient solutions and a well-established presence of global material science companies, North America benefits from advanced R&D capabilities. The region also sees higher adoption of polymer-based thermal solutions in military and industrial automation, with the U.S. leading demand across multiple high-performance sectors.

Key players in the market

Some of the key players profiled in the Thermal Conductive Polymer Material Market include BASF SE, Covestro AG, Celanese Corporation, 3M Company, DuPont de Nemours, Inc., Ensinger GmbH, Toray Industries, Inc., Avient Corporation, Mitsubishi Chemical Group Corporation, Arkema S.A., SABIC, RTP Company, LyondellBasell Industries N.V., Sumitomo Chemical Co., Ltd. and Daikin Industries, Ltd.

Key Developments:

In June 2025, BASF officially launched the reduced Product Carbon Footprint (rPCF) product range within its Engineering Plastics and Thermoplastic Polyurethanes portfolio. This new series incorporates renewable electricity and steam in production, furthering sustainability for thermal conductive polymer materials.

In March 2025, BASF Corporation signed a long-term supply agreement with Braven Environmental for the supply of "Braven PyChem(R)," an ISCC PLUS certified pyrolysis oil from mixed plastic waste. This renewable feedstock will partly replace fossil resources in BASF's ChemCycling(R) project at the Port Arthur, Texas facility. The collaboration supports the production of sustainable plastics, enhancing circularity in polymer manufacturing, relevant for thermal conductive applications

In March 2024, 3M and HD Hyundai KSOE entered a joint research agreement to develop advanced insulation for liquid hydrogen storage tanks. The project utilizes 3M's high-strength, low-density Glass Bubbles within a cryogenic vacuum insulation system, aiming to enhance thermal efficiency and safety in hydrogen-powered marine applications.

Polymer Types Covered:

  • Polyamide (PA)
  • Polybutylene Terephthalate (PBT)
  • Polycarbonate (PC)
  • Polyphenylene Sulfide (PPS)
  • Polyether Ether Ketone (PEEK)
  • Polyethylene (PE)
  • Polypropylene (PP)
  • Polyurethane (PU)
  • Other Polymer Types

Filler Types Covered:

  • Carbon-Based Fillers
  • Ceramic-Based Fillers
  • Metal-Based Fillers
  • Hybrid Fillers

Forms Covered:

  • Granules
  • Sheets
  • Coatings
  • Adhesives
  • Composites
  • Other Forms

Thermal Conductivities Covered:

  • Low Thermal Conductivity (<10 W/mK)
  • Medium Thermal Conductivity (10-50 W/mK)
  • High Thermal Conductivity (>50 W/mK)

Technologies Covered:

  • Injection Molding
  • Extrusion
  • Compression Molding
  • Blow Molding
  • Thermoforming
  • Other Technologies

End Users Covered:

  • Electrical & Electronics
  • Automotive
  • Industrial Equipment
  • Healthcare
  • Aerospace & Defense
  • Energy & Power
  • Consumer Goods
  • Construction
  • Telecommunications
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.7 Technology Analysis
  • 3.9 End User Analysis
  • 3.10 Emerging Markets
  • 3.11 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Thermal Conductive Polymer Material Market, By Polymer Type

  • 5.1 Introduction
  • 5.2 Polyamide (PA)
  • 5.3 Polybutylene Terephthalate (PBT)
  • 5.4 Polycarbonate (PC)
  • 5.5 Polyphenylene Sulfide (PPS)
  • 5.6 Polyether Ether Ketone (PEEK)
  • 5.7 Polyethylene (PE)
  • 5.8 Polypropylene (PP)
  • 5.9 Polyurethane (PU)
  • 5.10 Other Polymer Types

6 Global Thermal Conductive Polymer Material Market, By Filler Type

  • 6.1 Introduction
  • 6.2 Carbon-Based Fillers
  • 6.3 Ceramic-Based Fillers
  • 6.4 Metal-Based Fillers
  • 6.5 Hybrid Fillers

7 Global Thermal Conductive Polymer Material Market, By Form

  • 7.1 Introduction
  • 7.2 Granules
  • 7.3 Sheets
  • 7.4 Coatings
  • 7.5 Adhesives
  • 7.6 Composites
  • 7.7 Other Forms

8 Global Thermal Conductive Polymer Material Market, By Thermal Conductivity

  • 8.1 Introduction
  • 8.2 Low Thermal Conductivity (<10 W/mK)
  • 8.3 Medium Thermal Conductivity (10-50 W/mK)
  • 8.4 High Thermal Conductivity (>50 W/mK)

9 Global Thermal Conductive Polymer Material Market, By Technology

  • 9.1 Introduction
  • 9.2 Injection Molding
  • 9.3 Extrusion
  • 9.4 Compression Molding
  • 9.5 Blow Molding
  • 9.6 Thermoforming
  • 9.7 Other Technologies

10 Global Thermal Conductive Polymer Material Market, By End User

  • 10.1 Introduction
  • 10.2 Electrical & Electronics
  • 10.3 Automotive
  • 10.4 Industrial Equipment
  • 10.5 Healthcare
  • 10.6 Aerospace & Defense
  • 10.7 Energy & Power
  • 10.8 Consumer Goods
  • 10.9 Construction
  • 10.10 Telecommunications
  • 10.11 Other End Users

11 Global Thermal Conductive Polymer Material Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 BASF SE
  • 13.2 Covestro AG
  • 13.3 Celanese Corporation
  • 13.4 3M Company
  • 13.5 DuPont de Nemours, Inc.
  • 13.6 Ensinger GmbH
  • 13.7 Toray Industries, Inc.
  • 13.8 Avient Corporation
  • 13.9 Mitsubishi Chemical Group Corporation
  • 13.10 Arkema S.A.
  • 13.11 SABIC
  • 13.12 RTP Company
  • 13.13 LyondellBasell Industries N.V.
  • 13.14 Sumitomo Chemical Co., Ltd.
  • 13.15 Daikin Industries, Ltd.

List of Tables

  • Table 1 Global Thermal Conductive Polymer Material Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Thermal Conductive Polymer Material Market Outlook, By Polymer Type (2024-2032) ($MN)
  • Table 3 Global Thermal Conductive Polymer Material Market Outlook, By Polyamide (PA) (2024-2032) ($MN)
  • Table 4 Global Thermal Conductive Polymer Material Market Outlook, By Polybutylene Terephthalate (PBT) (2024-2032) ($MN)
  • Table 5 Global Thermal Conductive Polymer Material Market Outlook, By Polycarbonate (PC) (2024-2032) ($MN)
  • Table 6 Global Thermal Conductive Polymer Material Market Outlook, By Polyphenylene Sulfide (PPS) (2024-2032) ($MN)
  • Table 7 Global Thermal Conductive Polymer Material Market Outlook, By Polyether Ether Ketone (PEEK) (2024-2032) ($MN)
  • Table 8 Global Thermal Conductive Polymer Material Market Outlook, By Polyethylene (PE) (2024-2032) ($MN)
  • Table 9 Global Thermal Conductive Polymer Material Market Outlook, By Polypropylene (PP) (2024-2032) ($MN)
  • Table 10 Global Thermal Conductive Polymer Material Market Outlook, By Polyurethane (PU) (2024-2032) ($MN)
  • Table 11 Global Thermal Conductive Polymer Material Market Outlook, By Other Polymer Types (2024-2032) ($MN)
  • Table 12 Global Thermal Conductive Polymer Material Market Outlook, By Filler Type (2024-2032) ($MN)
  • Table 13 Global Thermal Conductive Polymer Material Market Outlook, By Carbon-Based Fillers (2024-2032) ($MN)
  • Table 14 Global Thermal Conductive Polymer Material Market Outlook, By Ceramic-Based Fillers (2024-2032) ($MN)
  • Table 15 Global Thermal Conductive Polymer Material Market Outlook, By Metal-Based Fillers (2024-2032) ($MN)
  • Table 16 Global Thermal Conductive Polymer Material Market Outlook, By Hybrid Fillers (2024-2032) ($MN)
  • Table 17 Global Thermal Conductive Polymer Material Market Outlook, By Form (2024-2032) ($MN)
  • Table 18 Global Thermal Conductive Polymer Material Market Outlook, By Granules (2024-2032) ($MN)
  • Table 19 Global Thermal Conductive Polymer Material Market Outlook, By Sheets (2024-2032) ($MN)
  • Table 20 Global Thermal Conductive Polymer Material Market Outlook, By Coatings (2024-2032) ($MN)
  • Table 21 Global Thermal Conductive Polymer Material Market Outlook, By Adhesives (2024-2032) ($MN)
  • Table 22 Global Thermal Conductive Polymer Material Market Outlook, By Composites (2024-2032) ($MN)
  • Table 23 Global Thermal Conductive Polymer Material Market Outlook, By Other Forms (2024-2032) ($MN)
  • Table 24 Global Thermal Conductive Polymer Material Market Outlook, By Thermal Conductivity (2024-2032) ($MN)
  • Table 25 Global Thermal Conductive Polymer Material Market Outlook, By Low Thermal Conductivity (<10 W/mK) (2024-2032) ($MN)
  • Table 26 Global Thermal Conductive Polymer Material Market Outlook, By Medium Thermal Conductivity (10-50 W/mK) (2024-2032) ($MN)
  • Table 27 Global Thermal Conductive Polymer Material Market Outlook, By High Thermal Conductivity (>50 W/mK) (2024-2032) ($MN)
  • Table 28 Global Thermal Conductive Polymer Material Market Outlook, By Technology (2024-2032) ($MN)
  • Table 29 Global Thermal Conductive Polymer Material Market Outlook, By Injection Molding (2024-2032) ($MN)
  • Table 30 Global Thermal Conductive Polymer Material Market Outlook, By Extrusion (2024-2032) ($MN)
  • Table 31 Global Thermal Conductive Polymer Material Market Outlook, By Compression Molding (2024-2032) ($MN)
  • Table 32 Global Thermal Conductive Polymer Material Market Outlook, By Blow Molding (2024-2032) ($MN)
  • Table 33 Global Thermal Conductive Polymer Material Market Outlook, By Thermoforming (2024-2032) ($MN)
  • Table 34 Global Thermal Conductive Polymer Material Market Outlook, By Other Technologies (2024-2032) ($MN)
  • Table 35 Global Thermal Conductive Polymer Material Market Outlook, By End User (2024-2032) ($MN)
  • Table 36 Global Thermal Conductive Polymer Material Market Outlook, By Electrical & Electronics (2024-2032) ($MN)
  • Table 37 Global Thermal Conductive Polymer Material Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 38 Global Thermal Conductive Polymer Material Market Outlook, By Industrial Equipment (2024-2032) ($MN)
  • Table 39 Global Thermal Conductive Polymer Material Market Outlook, By Healthcare (2024-2032) ($MN)
  • Table 40 Global Thermal Conductive Polymer Material Market Outlook, By Aerospace & Defense (2024-2032) ($MN)
  • Table 41 Global Thermal Conductive Polymer Material Market Outlook, By Energy & Power (2024-2032) ($MN)
  • Table 42 Global Thermal Conductive Polymer Material Market Outlook, By Consumer Goods (2024-2032) ($MN)
  • Table 43 Global Thermal Conductive Polymer Material Market Outlook, By Construction (2024-2032) ($MN)
  • Table 44 Global Thermal Conductive Polymer Material Market Outlook, By Telecommunications (2024-2032) ($MN)
  • Table 45 Global Thermal Conductive Polymer Material Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.