封面
市場調查報告書
商品編碼
1787874

2032 年農業物聯網市場預測:按組件、部署模式、農場類型、連接性別、應用和地區進行的全球分析

IOT in Agriculture Market Forecasts to 2032 - Global Analysis By Component (Hardware, Software and Service), Deployment Model (On-Premise and Cloud-Based), Farm Type, Connectivity, Application and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球農業物聯網市場預計在 2025 年達到 467.4 億美元,到 2032 年將達到 1,213.4 億美元,預測期內的複合年成長率為 14.6%。

物聯網 (IoT) 正在透過實現智慧農業實踐來改變農業,從而提高生產力、效率和永續性。利用感測器和連網設備,農民可以即時追蹤牲畜、作物、天氣和土壤濕度的動態。數據主導的方法可以實現精準的病蟲害防治、施肥和灌溉,減少浪費並提高產量。為了提高效率,物聯網技術還可以支援曳引機和無人機等自動化機械。最終,農業物聯網使農民能夠做出明智的選擇,最大限度地利用資源,並在快速變化的氣候條件下確保糧食安全。

根據 OnFarm 的一項研究(糧農組織引用),實施物聯網系統的農場產量增加了 1.75%,每英畝能源成本減少了 7-13美國,灌溉用水量減少了 8%。

對精密農業的興趣日益濃厚

從傳統農業轉向精密農業的轉變是物聯網應用背後的驅動力。利用即時數據來制定病蟲害防治、灌溉、施肥和種植方面的決策被稱為精密農業。變數速率技術 (VRT)、GPS 導航曳引機和土壤濕度感測器都是支援物聯網的設備的例子,它們可以幫助農民僅在需要的地方投入資源,從而降低成本並減少環境影響。此外,隨著全球糧食需求的增加和可耕地面積的日益緊張,物聯網支援的精密農業對於提高生產力和永續性至關重要。

推出和持續成本高

雖然物聯網技術能夠帶來長期效益,但其初始設定、設備和系統整合成本對於中小型農戶來說可能過高。物聯網灌溉系統、無人機、自動化機械、智慧感測器和GPS模組價格不菲,尤其是在農業收入匱乏的開發中國家中國家。此外,維護、軟體升級、雲端儲存和資料訂閱服務等持續營運成本也加重了財務負擔。在缺乏財政獎勵或補貼的情況下,高昂的價格仍是阻礙力其普及的重要因素。

與機器學習和人工智慧的整合

物聯網與人工智慧和機器學習的融合,使得預測分析、異常檢測和自動化決策等農業管理高階功能成為可能。例如,基於物聯網感測器資料訓練的人工智慧模型可以根據環境觸發因素自動噴灑農藥,最佳化灌溉計劃,並預測作物病害的發生。這種協同效應使農業生產更加主動和精準。此外,提供物聯網-人工智慧整合平台的公司將更能滿足人們對智慧農業系統的需求,使其不僅僅是收集數據。

網路安全與資料外洩風險

隨著物聯網設備連接性的增強,農場越來越容易受到網路攻擊。勒索軟體攻擊、資料竊取以及自動化系統破壞等威脅可能會危及營運資料以及施肥、灌溉和牲畜飼養等關鍵流程。與傳統IT環境相比,農業物聯網系統更容易受到攻擊,因為通常缺乏強大的網路安全通訊協定和頻繁更新。此外,嚴重的安全漏洞可能會削弱消費者、投資者和農民的信心,減緩物聯網的普及,並引起監管機構的注意。

COVID-19的影響

新冠疫情對農業物聯網市場產生了許多影響。最初,由於勞動力短缺、設備交付延遲以及全球供應鏈中斷,物聯網設備和基礎設施在農場的推廣受到了阻礙。然而,隨著自動化、非接觸式操作和遠端監控的需求日益凸顯,這場危機也加速了農業的數位轉型。為了解決勞動力短缺問題、遠端監測作物健康狀況以及在停工期間維持糧食供應,越來越多的農民開始尋求物聯網解決方案。此外,疫情也推動了物聯網的長期應用,並凸顯了強大的數據驅動型農業系統的重要性。

預計預測期內本地部署部分將佔最大佔有率

預計本地部署市場將在預測期內佔據最大市場佔有率。這種主導地位源自於偏遠農業地區對資料安全性、即時回應能力和持續營運的需求,這些地區網路連線通常不穩定。本地部署解決方案允許農民和相關企業在本地管理和儲存數據,從而完全控制與作物健康、牲畜追蹤和設備運作相關的敏感數據。此外,擁有基礎設施和技術知識來管理自身伺服器和網路的大型農場和農業企業尤其青睞這些系統。本地部署仍然是精密農業的首選方案,因為它們能夠確保資料所有權和營運穩定性。

預計 LPWAN 領域在預測期內的複合年成長率最高

預計LPWAN領域將在預測期內實現最高成長率。 LPWAN以其獨特的低能耗遠距通訊能力,使其成為在廣闊偏遠農田中進行廣泛農業部署的理想選擇,從而推動了這一快速成長。由於LoRaWAN、Sigfox和NB-IoT等技術,追蹤土壤濕度、作物健康狀況和牲畜狀況的感測器僅需一塊電池即可無縫傳輸資料達數年之久。即使在缺乏強大行動電話基礎設施的地區,LPWAN也能提供經濟實惠且可擴展的連接,這與覆蓋範圍有限的Wi-Fi和藍牙截然不同。此外,對無需高速網路的精密農業解決方案的需求日益成長,也推動了LPWAN的廣泛應用,使其成為全球智慧農業的關鍵推動者。

比最大的地區

預計亞太地區將在預測期內佔據最大的市場佔有率,這得益於其廣泛的農業領域、日益成長的糧食安全擔憂以及政府對智慧農業技術的大力支持。為了提高永續性和生產力,中國、印度和日本等國家正在大力投資數位農業技術,例如基於感測器的作物監測、自動灌溉和精密農業。現代農業方法的採用、農村人口的成長以及互聯互通基礎設施的發展進一步推動了對物聯網解決方案的需求。因此,亞太地區在農業應用和技術開拓方面處於全球市場的前沿。

複合年成長率最高的地區

預計南美洲在預測期內的複合年成長率最高。這種快速擴張的動力源自於巴西和阿根廷等國精密農業技術的日益普及。這些國家的大規模農業經營者正在利用物聯網技術提高產量、高效管理資源,並滿足日益成長的全球糧食出口需求。不斷成長的農業技術投資、積極的政府項目以及與科技公司的合作,正在加速該地區農業的數位轉型。此外,隨著互聯互通基礎設施的進步以及智慧農業優勢日益廣泛認可,拉丁美洲有望成為農業物聯網的主要成長中心。

免費客製化服務

訂閱此報告的客戶可享有以下免費自訂選項之一:

  • 公司簡介
    • 對最多三家其他市場參與企業進行全面分析
    • 主要企業的SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶興趣對主要國家進行的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 透過產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 主要研究資料
    • 二手研究資料
    • 先決條件

第3章市場走勢分析

  • 介紹
  • 驅動程式
  • 抑制因素
  • 機會
  • 威脅
  • 應用分析
  • 新興市場
  • COVID-19的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球農業物聯網市場(按組成部分)

  • 介紹
  • 硬體
    • 感應器
    • 自動化與控制設備
    • 監控和導航
    • 計算和顯示
    • 照明
  • 軟體
    • 農場管理軟體
    • 數據分析平台
    • 物聯網平台軟體
    • 應用軟體
  • 服務
    • 諮詢與整合
    • 支援和維護
    • 連線服務
    • 託管服務

6. 全球農業物聯網市場(依部署模式)

  • 介紹
  • 本地
  • 雲端基礎

7. 全球農業物聯網市場(依農場類型)

  • 介紹
  • 大型農場
  • 中型農場
  • 小型農場

8. 全球農業物聯網市場:連結性別

  • 介紹
  • Wi-Fi
  • Bluetooth
  • Zigbee
  • LPWAN
  • 衛星
  • 其他連接

9. 全球農業物聯網市場(按應用)

  • 介紹
  • 精密農業
  • 牲畜監測和管理
  • 室內農業
  • 水產養殖
  • 智慧溫室
  • 水產養殖場監控
  • 其他

10. 全球農業物聯網市場(按地區)

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第12章:企業概況

  • John Deere & Company
  • Hitachi, Ltd.
  • International Business Machines Corporation
  • AGCO Corporation
  • Trimble Inc.
  • Climate Corporation
  • AKVA Group
  • Decisive Farming Corp
  • Topcon Positioning Systems, Inc.
  • Cisco Systems, Inc.
  • Farmers Edge Inc.
  • Komatsu, Ltd
  • SlantRange, Inc.
  • CNH Industrial NV
  • Raven Industries, Inc.
  • Kubota Corporation
Product Code: SMRC30139

According to Stratistics MRC, the Global IOT in Agriculture Market is accounted for $46.74 billion in 2025 and is expected to reach $121.34 billion by 2032 growing at a CAGR of 14.6% during the forecast period. The Internet of Things (IoT) is transforming agriculture by enabling smart farming practices that enhance productivity, efficiency, and sustainability. Farmers can track the movements of livestock, crops, weather, and soil moisture in real time by using sensors and connected devices. By using a data-driven approach, precise pest control, fertilization, and irrigation are made possible, which lowers waste and increases yields. To improve efficiency, IoT technologies also enable automated machinery like tractors and drones. Ultimately, IoT in agriculture enables farmers to make well-informed choices, maximize the use of resources, and guarantee food security in a climate that is changing quickly.

According to a study by OnFarm (cited by FAO), farms deploying IoT systems experienced a 1.75 % rise in yield, energy costs dropping by US $7-13 per acre, and an 8 % reduction in irrigation water use-clear evidence of efficiency gains and resource savings.

Market Dynamics:

Driver:

Growing interest in precision farming

One of the main forces behind the adoption of IoT is the transition from conventional to precision farming. Using real-time data to inform decisions about pest control, irrigation, fertilization, and planting is known as precision farming. Variable rate technology (VRT), GPS-guided tractors, and soil moisture sensors are examples of IoT-enabled devices that assist farmers in applying inputs only where necessary, lowering expenses and their impact on the environment. Moreover, precision agriculture enabled by IoT is becoming critical to improving productivity and sustainability as the world's food demand rises and arable land becomes more limited.

Restraint:

Expensive start-up and ongoing expenses

Even though IoT technologies have long-term advantages, small and medium-sized farmers may find the initial expenses of setup, equipment, and system integration to be unaffordable. IoT-enabled irrigation systems, drones, automated machinery, smart sensors, and GPS modules can all be costly, particularly in developing nations where farm income is scarce. Furthermore, the financial burden is increased by continuing operational costs such as maintenance, software upgrades, cloud storage, and data subscription services. This high price still acts as a major deterrent to adoption in the absence of financial incentives or subsidies.

Opportunity:

Integration with machine learning and artificial intelligence

Advanced capabilities like predictive analytics, anomaly detection, and automated decision-making in farming operations are made possible by the convergence of IoT with AI and ML. AI models trained on IoT sensor data, for instance, can automate pesticide application based on environmental triggers, optimize irrigation schedules, and forecast crop disease outbreaks. More proactive and accurate farming is made possible by this synergy. Additionally, the need for intelligent agriculture systems that do more than just gather data will be better served by businesses that provide integrated IoT-AI platforms.

Threat:

Risks to cyber security and data breach

Farms are increasingly vulnerable to cyber attacks as a result of their increased connectivity through IoT devices. Threats like ransom ware attacks, data theft, or automated system sabotage can jeopardize vital processes like fertilization, irrigation, and animal feeding in addition to operational data. Agricultural IoT systems are more susceptible because they frequently lack strong cyber security protocols and frequent updates, in contrast to traditional IT environments. Moreover, a significant breach might undermine consumer, investor, and farmer trust, slowing adoption and drawing regulatory attention.

Covid-19 Impact:

The COVID-19 pandemic affected the IoT in the agriculture market in a variety of ways. Initially, the deployment of IoT devices and infrastructure on farms was hindered by labor shortages, delays in equipment delivery, and disruptions in global supply chains. However, as the necessity of automation, contactless operations, and remote monitoring became more apparent, the crisis also hastened the digital transformation of agriculture. In order to handle labour shortages, remotely check on crop health, and maintain food supply during lockdowns, farmers are increasingly using IoT solutions. Furthermore, the pandemic served as a driving force behind long-term adoption, emphasizing the importance of robust, data-driven farming systems.

The on-premise segment is expected to be the largest during the forecast period

The on-premise segment is expected to account for the largest market share during the forecast period. The need for improved data security, real-time responsiveness, and continuous operation in remote farming areas where internet connectivity is frequently erratic is primarily to blame for this dominance. On-premise solutions give farmers and agribusinesses complete control over sensitive data pertaining to crop health, livestock tracking, and equipment operations by enabling them to manage and store their data locally. Moreover, large farms and agricultural businesses with the infrastructure and technical know-how to manage their own servers and networks are especially fond of these systems. Because on-premise deployments guarantee data ownership and operational stability, they remain the favored option for precision agriculture.

The LPWAN segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the LPWAN segment is predicted to witness the highest growth rate. The unique capacity of LPWAN to provide long-range communication with low energy consumption, which makes it perfect for extensive agricultural deployments across expansive and remote farmlands, is what is driving this rapid growth. Sensors that track soil moisture, crop health, and livestock conditions can transmit data seamlessly for years on a single battery owing to technologies like LoRaWAN, Sigfox, and NB-IoT. Even in places without strong cellular infrastructure, LPWAN offers affordable, scalable connectivity in contrast to Wi-Fi and Bluetooth, which have range limitations. Additionally, the increasing demand for precision agriculture solutions that don't require high-speed networks is driving its growing adoption, making LPWAN a crucial global enabler of smart farming.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by its extensive agricultural landscape, growing concerns about food security, and robust government backing for smart farming technologies. To increase sustainability and productivity, nations like China, India, and Japan are making significant investments in digital agriculture technologies like sensor-based crop monitoring, automated irrigation, and precision farming. Demand for IoT solutions is being further fueled by the adoption of modern farming methods, the expansion of the rural population, and the development of better connectivity infrastructure. Thus, in terms of agricultural adoption and technological development, Asia Pacific remains at the forefront of the global market.

Region with highest CAGR:

Over the forecast period, the South America region is anticipated to exhibit the highest CAGR. This quick expansion is being driven by the growing use of precision farming techniques in nations like Brazil and Argentina, where extensive farming operations are utilizing IoT technologies to boost output, effectively manage resources, and satisfy the rising demand for food exports worldwide. Growing agri-tech investments, encouraging government programs, and alliances with tech companies are speeding up the digital transformation of the farming industry in the area. Moreover, Latin America is positioned to emerge as a major IoT growth hub for agriculture as connectivity infrastructure advances and the advantages of smart farming become more widely recognized.

Key players in the market

Some of the key players in IOT in Agriculture Market include John Deere & Company, Hitachi, Ltd., International Business Machines Corporation, AGCO Corporation, Trimble Inc., Climate Corporation, AKVA Group, Decisive Farming Corp, Topcon Positioning Systems, Inc., Cisco Systems, Inc., Farmers Edge Inc., Komatsu, Ltd, SlantRange, Inc., CNH Industrial N.V., Raven Industries, Inc. and Kubota Corporation.

Key Developments:

In July 2025, AGCO Corporation announced that it has entered into a fourth amendment to its existing agreement with Tractors and Farm Equipment Limited (TAFE). The amendment extends the expiration date of the Amended and Restated Letter Agreement, or until funds and shares have been deposited in escrow related to the closing of a previously disclosed Buyback Agreement, whichever comes first. According to InvestingPro data, AGCO maintains strong financial health with a current ratio of 1.53, indicating solid liquidity.

In January 2025, John Deere and Wiedenmann announce closer commercial partnership. Under a strategic marketing agreement covering the UK, Ireland and Europe, Wiedenmann turf equipment is available for purchase through John Deere dealerships. The agreement has been extended to provide all John Deere dealers with access to the ever-growing Wiedenmann range of market-leading specialist machinery for turf maintenance and regeneration.

In June 2024, Hitachi, Ltd. and Microsoft Corporation announced projected multi-billion dollar collaboration over the next three years that will accelerate social innovation with generative AI. Through this strategic alliance, Hitachi will propel growth of the Lumada business, with a planned revenue of 2.65 trillion yen (18.9 billion USD)*1 in FY2024, and will promote operational efficiency and productivity improvements for Hitachi Group's 270 thousand employees.

Components Covered:

  • Hardware
  • Software
  • Service

Deployment Models Covered:

  • On-Premise
  • Cloud-Based

Farm Types Covered:

  • Large Farms
  • Mid Size Farms
  • Small Farms

Connectivities Covered:

  • Wi-Fi
  • Bluetooth
  • Zigbee
  • LPWAN
  • Satellite
  • Other Connectivities

Applications Covered:

  • Precision Crop Farming
  • Livestock Monitoring and Management
  • Indoor Farming
  • Aquaculture
  • Smart Greenhouse
  • Fish Farm Monitoring
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global IOT in Agriculture Market, By Component

  • 5.1 Introduction
  • 5.2 Hardware
    • 5.2.1 Sensors
    • 5.2.2 Automation & Control Devices
    • 5.2.3 Monitoring & Navigation
    • 5.2.4 Computing & Display
    • 5.2.5 Lighting
  • 5.3 Software
    • 5.3.1 Farm Management Software
    • 5.3.2 Data Analytics Platforms
    • 5.3.3 IoT Platform Software
    • 5.3.4 Application Software
  • 5.4 Service
    • 5.4.1 Consulting & Integration
    • 5.4.2 Support & Maintenance
    • 5.4.3 Connectivity Services
    • 5.4.4 Managed Services

6 Global IOT in Agriculture Market, By Deployment Model

  • 6.1 Introduction
  • 6.2 On-Premise
  • 6.3 Cloud-Based

7 Global IOT in Agriculture Market, By Farm Type

  • 7.1 Introduction
  • 7.2 Large Farms
  • 7.3 Mid Size Farms
  • 7.4 Small Farms

8 Global IOT in Agriculture Market, By Connectivity

  • 8.1 Introduction
  • 8.2 Wi-Fi
  • 8.3 Bluetooth
  • 8.4 Zigbee
  • 8.5 LPWAN
  • 8.6 Satellite
  • 8.7 Other Connectivities

9 Global IOT in Agriculture Market, By Application

  • 9.1 Introduction
  • 9.2 Precision Crop Farming
  • 9.3 Livestock Monitoring and Management
  • 9.4 Indoor Farming
  • 9.5 Aquaculture
  • 9.6 Smart Greenhouse
  • 9.7 Fish Farm Monitoring
  • 9.8 Other Applications

10 Global IOT in Agriculture Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 John Deere & Company
  • 12.2 Hitachi, Ltd.
  • 12.3 International Business Machines Corporation
  • 12.4 AGCO Corporation
  • 12.5 Trimble Inc.
  • 12.6 Climate Corporation
  • 12.7 AKVA Group
  • 12.8 Decisive Farming Corp
  • 12.9 Topcon Positioning Systems, Inc.
  • 12.10 Cisco Systems, Inc.
  • 12.11 Farmers Edge Inc.
  • 12.12 Komatsu, Ltd
  • 12.13 SlantRange, Inc.
  • 12.14 CNH Industrial N.V.
  • 12.15 Raven Industries, Inc.
  • 12.16 Kubota Corporation

List of Tables

  • Table 1 Global IOT in Agriculture Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global IOT in Agriculture Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global IOT in Agriculture Market Outlook, By Hardware (2024-2032) ($MN)
  • Table 4 Global IOT in Agriculture Market Outlook, By Sensors (2024-2032) ($MN)
  • Table 5 Global IOT in Agriculture Market Outlook, By Automation & Control Devices (2024-2032) ($MN)
  • Table 6 Global IOT in Agriculture Market Outlook, By Monitoring & Navigation (2024-2032) ($MN)
  • Table 7 Global IOT in Agriculture Market Outlook, By Computing & Display (2024-2032) ($MN)
  • Table 8 Global IOT in Agriculture Market Outlook, By Lighting (2024-2032) ($MN)
  • Table 9 Global IOT in Agriculture Market Outlook, By Software (2024-2032) ($MN)
  • Table 10 Global IOT in Agriculture Market Outlook, By Farm Management Software (2024-2032) ($MN)
  • Table 11 Global IOT in Agriculture Market Outlook, By Data Analytics Platforms (2024-2032) ($MN)
  • Table 12 Global IOT in Agriculture Market Outlook, By IoT Platform Software (2024-2032) ($MN)
  • Table 13 Global IOT in Agriculture Market Outlook, By Application Software (2024-2032) ($MN)
  • Table 14 Global IOT in Agriculture Market Outlook, By Service (2024-2032) ($MN)
  • Table 15 Global IOT in Agriculture Market Outlook, By Consulting & Integration (2024-2032) ($MN)
  • Table 16 Global IOT in Agriculture Market Outlook, By Support & Maintenance (2024-2032) ($MN)
  • Table 17 Global IOT in Agriculture Market Outlook, By Connectivity Services (2024-2032) ($MN)
  • Table 18 Global IOT in Agriculture Market Outlook, By Managed Services (2024-2032) ($MN)
  • Table 19 Global IOT in Agriculture Market Outlook, By Deployment Model (2024-2032) ($MN)
  • Table 20 Global IOT in Agriculture Market Outlook, By On-Premise (2024-2032) ($MN)
  • Table 21 Global IOT in Agriculture Market Outlook, By Cloud-Based (2024-2032) ($MN)
  • Table 22 Global IOT in Agriculture Market Outlook, By Farm Type (2024-2032) ($MN)
  • Table 23 Global IOT in Agriculture Market Outlook, By Large Farms (2024-2032) ($MN)
  • Table 24 Global IOT in Agriculture Market Outlook, By Mid Size Farms (2024-2032) ($MN)
  • Table 25 Global IOT in Agriculture Market Outlook, By Small Farms (2024-2032) ($MN)
  • Table 26 Global IOT in Agriculture Market Outlook, By Connectivity (2024-2032) ($MN)
  • Table 27 Global IOT in Agriculture Market Outlook, By Wi-Fi (2024-2032) ($MN)
  • Table 28 Global IOT in Agriculture Market Outlook, By Bluetooth (2024-2032) ($MN)
  • Table 29 Global IOT in Agriculture Market Outlook, By Zigbee (2024-2032) ($MN)
  • Table 30 Global IOT in Agriculture Market Outlook, By LPWAN (2024-2032) ($MN)
  • Table 31 Global IOT in Agriculture Market Outlook, By Satellite (2024-2032) ($MN)
  • Table 32 Global IOT in Agriculture Market Outlook, By Other Connectivities (2024-2032) ($MN)
  • Table 33 Global IOT in Agriculture Market Outlook, By Application (2024-2032) ($MN)
  • Table 34 Global IOT in Agriculture Market Outlook, By Precision Crop Farming (2024-2032) ($MN)
  • Table 35 Global IOT in Agriculture Market Outlook, By Livestock Monitoring and Management (2024-2032) ($MN)
  • Table 36 Global IOT in Agriculture Market Outlook, By Indoor Farming (2024-2032) ($MN)
  • Table 37 Global IOT in Agriculture Market Outlook, By Aquaculture (2024-2032) ($MN)
  • Table 38 Global IOT in Agriculture Market Outlook, By Smart Greenhouse (2024-2032) ($MN)
  • Table 39 Global IOT in Agriculture Market Outlook, By Fish Farm Monitoring (2024-2032) ($MN)
  • Table 40 Global IOT in Agriculture Market Outlook, By Other Applications (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.