封面
市場調查報告書
商品編碼
1755966

2032 年智慧作物行動市場預測:按產品、農場、應用、最終用戶和地區進行的全球分析

Smart Crop Mobility Market Forecasts to 2032 - Global Analysis By Product (Autonomous Tractors, Robotic Harvesters, Drones/UAVs, Mobile Robots, Seeders and Planters Robots and Other Products), Farm, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球智慧作物行動市場預計在 2025 年達到 57.4 億美元,預計到 2032 年將達到 158 億美元,預測期內的複合年成長率為 15.6%。

「智慧作物移動」指整合GPS、物聯網、人工智慧和行動平台等最尖端科技,以改善整個農業價值鏈中作物的運輸、監測和管理。該技術將促進作物種植、生長、收穫和分配的自動化決策、即時數據收集和預測分析。這種方法確保資源得到最大程度的利用,同時提高效率並消除浪費。在技​​術主導、移動優先的農業環境中,智慧作物移動透過促進智慧物流以及農場營運和市場之間的互聯互通,促進永續農業和糧食安全。

精密農業的需求

精密農業需要先進的技術來實現精準的種植、收穫和監測,而智慧作物移動解決方案正是實現這一目標的途徑。這些解決方案能夠即時收集和分析作物健康和土壤狀況數據,從而提高效率。智慧型移動設備正成為農民尋求最大限度提高產量和減少資源浪費的必備工具。智慧型行動裝置與GPS和物聯網技術的整合,可以支援有針對性的干涉措施並減少對環境的影響。因此,精密農業的發展正在顯著推動智慧作物行動市場的成長和創新。

初期投資高

先進技術和設備需要大量的初始投資,許多中小型農戶難以承受。這限制了市場准入,並減緩了應用速度。此外,高投資風險可能會嚇跑潛在的投資者和相關人員。因此,在成本變得更實惠或資金籌措選擇改善之前,市場成長將受到限制。

新興市場數位化

這些地區快速的都市化和收入成長推動了智慧農業技術的採用。數位化可以透過物聯網設備和數據分析對作物進行精準監測和管理。智慧行動解決方案因其產量提升和資源浪費減少而更具吸引力。此外,開發中國家的政府計畫正在鼓勵數位農業作為提高糧食安全的手段。這些因素共同加速了智慧作物移動領域的技術進步和產業發展。

監管和數據所有權問題

嚴格的規則限制了農業資料的交換和使用,阻礙了創新與合作。數據所有權的不確定性阻礙了農民和其他相關人員採用智慧技術。遵守不同地域的法規增加了企業的營運成本和複雜性。這些問題也會減緩新產品的研發和新市場的開拓。總體而言,市場擴張和技術創新受到監管障礙和數據問題的限制。

COVID-19的影響

新冠疫情擾亂了智慧作物運輸市場,導致供應鏈停滯,勞動力短缺和田間作業受限,技術應用放緩。然而,疫情也加速了對自動化和精密農業的需求,以解決人手不足並提高效率。越來越多的農民開始使用智慧作物運輸解決方案進行遠端監控和管理,這有助於推動市場的長期成長。總體而言,儘管疫情初期遭遇挫折,但它凸顯了智慧農業技術的重要性,並在後疫情時代推動了更強勁的採用。

預計自動駕駛曳引機市場將成為預測期內最大的市場

由於自動化技術提高了營運效率,自動駕駛曳引機領域預計將在預測期內佔據最大的市場佔有率。這些曳引機減少了對體力勞動的需求,使農民能夠精準管理廣闊的田地,並最大限度地減少人工干預。先進的感測器和GPS技術的整合實現了即時數據收集和作物管理最佳化。自動駕駛曳引機還能最大限度地減少土壤壓實和燃料消耗,從而支持永續農業。因此,它們的應用將加速農業現代化,並推動作物生產中智慧移動解決方案的成長。

預計農業合作社部門在預測期內將以最高的複合年成長率成長。

在預測期內,農業合作社預計將實現最高成長率,這得益於先進農業技術的集體投資。這些合作社促進了智慧移動解決方案的聯合使用,從而降低了農民的個人成本。它們也促進了知識交流,並加速了精密農業工具的採用。此外,合作社透過協作使用智慧作物移動技術來提高供應鏈效率。這種集體合作方式增加了對智慧農業的需求,並推動了創新,從而推動了市場成長。

佔比最大的地區:

在預測期內,由於糧食需求成長、可耕地面積減少以及農業現代化的推動,亞太地區預計將佔據最大的市場佔有率。中國、印度和日本等國家正大力投資機器人技術、主導監控系統和自動化田間機械,以提高農業效率。政府補貼以及智慧型手機和網路在農民中的普及率不斷提高,正在推動農業的數位轉型。該地區的農業較為分散,這對可擴展、經濟高效的行動解決方案既是挑戰,也是機會。

複合年成長率最高的地區:

在預測期內,由於精密農業技術的採用和政府的支持措施,北美地區預計將呈現最高的複合年成長率。美國和加拿大在物聯網農業機械、GPS追蹤系統和數據分析的整合方面處於領先地位,旨在提高作物產量。勞動力短缺問題日益嚴重以及對永續農業方法的需求不斷成長,推動了自動駕駛曳引機和無人機的使用。成熟的農業技術公司以及創業投資支持的新興企業正在加速該領域的創新。

提供免費客製化:

訂閱此報告的客戶可享有以下免費自訂選項之一:

  • 公司簡介
    • 全面分析其他市場參與者(最多 3 家公司)
    • 主要企業的SWOT分析(最多3家公司)
  • 地理細分
    • 根據客戶興趣對主要國家市場進行估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 研究範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 主要研究資料
    • 次級研究資訊來源
    • 先決條件

第3章市場走勢分析

  • 驅動程式
  • 限制因素
  • 機會
  • 威脅
  • 產品分析
  • 應用分析
  • 最終用戶分析
  • 新興市場
  • COVID-19的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買家的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球智慧作物行動市場(按產品)

  • 自動曳引機
  • 機器人收割機
  • 無人機
  • 移動機器人
  • 播種種植機器人
  • 除草機器人
  • 自主噴霧器
  • 自主灌溉系統
  • 可變速率技術(VRT)系統
  • 其他產品

6. 全球智慧作物行動市場(依農場規模)

  • 小型農場
  • 中型農場
  • 大型農場

7. 全球智慧作物行動市場(按應用)

  • 田間作物
  • 果園和葡萄園
  • 溫室管理
  • 特色作物
  • 其他

8. 全球智慧作物行動市場(依最終用戶)

  • 農民
  • 農業合作社
  • 政府
  • 研究組織
  • 農業相關企業
  • 其他最終用戶

9. 全球智慧作物行動市場(按地區)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第10章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第11章 公司概況

  • AGCO Corporation
  • CNH Industrial
  • Raven Industries
  • Kubota Corporation
  • Trimble Inc.
  • CLAAS Group
  • Syngenta
  • Yara International
  • Ag Leader Technology
  • Blue River Technology
  • Prospera Technologies
  • Robert Bosch GmbH
  • Small Robot Company
  • Indigo Agriculture
  • FarmWise Labs, Inc.
  • ecoRobotix
Product Code: SMRC29860

According to Stratistics MRC, the Global Smart Crop Mobility Market is accounted for $5.74 billion in 2025 and is expected to reach $15.8 billion by 2032 growing at a CAGR of 15.6% during the forecast period. The term "smart crop mobility" describes how cutting-edge technologies like GPS, IoT, AI, and mobile platforms are integrated to improve crop movement, monitoring, and management across the agricultural value chain. For the planting, growth, harvesting, and distribution of crops, it facilitates automated decision-making, real-time data collection, and predictive analysis. This approach guarantees the best possible use of resources while increasing efficiency and decreasing waste. In a tech-driven, mobile-first agricultural environment, Smart Crop Mobility promotes sustainable agriculture and food security by facilitating smart logistics and connection between farm operations and markets.

Market Dynamics:

Driver:

Precision agriculture demand

It requires sophisticated technologies for accurate planting, harvesting, and monitoring, which smart crop mobility solutions offer. By making it possible to collect and analyse data on crop health and soil conditions in real time, these solutions increase efficiency. Smart mobility devices are becoming indispensable tools for farmers looking to maximise yields and minimise resource waste. By supporting targeted interventions and reducing environmental impact, integration with GPS and IoT technologies is made possible. As a result, the development of precision agriculture significantly drives the market for smart crop mobility's growth and innovation.

Restraint:

High initial investment

The advanced technology and equipment required demand substantial upfront capital. Many small and medium-scale farmers find it difficult to afford these costs. This limits the market's accessibility and slows widespread adoption. Additionally, high investment risks may deter potential investors and stakeholders. Consequently, market growth is restrained until costs become more affordable or financing options improve.

Opportunity:

Emerging markets & digitization

Smart farming technology adoption is being fuelled by these regions' rapid urbanisation and rising incomes. With the use of IoT devices and data analytics, digitisation makes it possible to precisely monitor and manage crops. Smart mobility solutions become more appealing as a result of increased production and less resource waste. Furthermore, government programs in developing nations encourage digital agriculture as a means of increasing food security. These elements work together to speed up technological advancements and industry growth in smart crop mobility.

Threat:

Regulatory & data ownership issues

Innovation and cooperation are slowed by stringent rules that restrict the exchange and use of agricultural data. Uncertain data ownership rights may make farmers and other stakeholders hesitant to embrace smart technologies. Companies' operational costs and complexity grow when they have to comply with different geographical regulations. These problems may also postpone the creation of new products and the introduction of new markets. In general, the market's expansion and technological innovation are constrained by regulatory obstacles and data concerns.

Covid-19 Impact

The Covid-19 pandemic disrupted the Smart Crop Mobility market by slowing supply chains and delaying technology adoption due to labor shortages and restricted field access. However, it also accelerated the demand for automation and precision farming to reduce human contact and increase efficiency. Farmers increasingly turned to smart crop mobility solutions for remote monitoring and management, boosting long-term market growth. Overall, while initial setbacks occurred, the pandemic highlighted the importance of smart agricultural technologies, driving stronger adoption post-Covid.

The autonomous tractors segment is expected to be the largest during the forecast period

The autonomous tractors segment is expected to account for the largest market share during the forecast period by enhancing operational efficiency through automation. These tractors reduce the need for manual labor, allowing farmers to manage large fields with precision and minimal human intervention. Integration of advanced sensors and GPS technology enables real-time data collection and optimized crop management. Autonomous tractors also support sustainable farming by minimizing soil compaction and fuel consumption. Consequently, their adoption accelerates the modernization of agriculture, driving the growth of smart mobility solutions in crop production.

The agricultural cooperatives segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the agricultural cooperatives segment is predicted to witness the highest growth rate, due to collective investment in advanced farming technologies. These cooperatives facilitate shared access to smart mobility solutions, reducing individual costs for farmers. They also promote knowledge exchange, accelerating the adoption of precision agriculture tools. Furthermore, cooperatives enhance supply chain efficiency through coordinated use of smart crop mobility. This collective approach drives market growth by increasing demand and fostering innovation in smart farming.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share by rising food demand, shrinking arable land, and a push toward agricultural modernization. Countries like China, India, and Japan are investing heavily in robotics, AI-driven monitoring systems, and automated field machinery to enhance farming efficiency. Government subsidies, along with increasing smartphone and internet penetration among farmers, are fostering digital transformation in agriculture. The region's fragmented farming landscape presents both a challenge and an opportunity for scalable, cost-effective mobility solutions.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to the adoption of precision agriculture technologies and supportive government initiatives. The United States and Canada are leading in integrating IoT-enabled farm machinery, GPS-based tracking systems, and data analytics for improved crop productivity. Growing concerns over labor shortages and increasing demand for sustainable farming practices are driving the use of autonomous tractors and drones. Established agri-tech firms and venture capital-backed startups are accelerating innovation in this sector.

Key players in the market

Some of the key players profiled in the Smart Crop Mobility Market include AGCO Corporation, CNH Industrial, Raven Industries, Kubota Corporation, Trimble Inc., CLAAS Group, Syngenta, Yara International, Ag Leader Technology, Blue River Technology, Prospera Technologies, Robert Bosch GmbH, Small Robot Company, Indigo Agriculture, FarmWise Labs, Inc. and ecoRobotix.

Key Developments:

In April 2024, CNH partnered with Intelsat to provide satellite-based mobile internet services for their farm equipment customers. This initiative addresses connectivity issues in remote farming areas, enabling farmers to utilize CNH's digital farming services more effectively.

In September 2023, AGCO announced plans to build a 300-acre sustainable test farm named "Dakota Smart Farm" in Casselton, North Dakota. This initiative focuses on developing sustainable farming practices and high-value retrofit precision technology solutions, serving as a living laboratory for innovation in agriculture.

In April 2023, AGCO partnered with Bosch BASF Smart Farming to integrate and commercialize a Smart Spraying Solution on Fendt Rogator sprayers. This technology enables precise herbicide application, reducing chemical usage without compromising weed control.

Products Covered:

  • Autonomous Tractors
  • Robotic Harvesters
  • Drones/UAVs
  • Mobile Robots
  • Seeders and Planters Robots
  • Weeding Robots
  • Autonomous Sprayers
  • Autonomous Irrigation Systems
  • Variable Rate Technology (VRT) Systems
  • Other Products

Farm Sizes Covered:

  • Small Farms
  • Medium Farms
  • Large Farms

Applications Covered:

  • Field Crops
  • Orchards and Vineyards
  • Greenhouse Operations
  • Specialty Crops
  • Other Applications

End Users Covered:

  • Farmers
  • Agricultural Cooperatives
  • Government Agencies
  • Research Institutions
  • Agribusiness Companies
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Smart Crop Mobility Market, By Product

  • 5.1 Introduction
  • 5.2 Autonomous Tractors
  • 5.3 Robotic Harvesters
  • 5.4 Drones/UAVs
  • 5.5 Mobile Robots
  • 5.6 Seeders and Planters Robots
  • 5.7 Weeding Robots
  • 5.8 Autonomous Sprayers
  • 5.9 Autonomous Irrigation Systems
  • 5.10 Variable Rate Technology (VRT) Systems
  • 5.11 Other Products

6 Global Smart Crop Mobility Market, By Farm Size

  • 6.1 Introduction
  • 6.2 Small Farms
  • 6.3 Medium Farms
  • 6.4 Large Farms

7 Global Smart Crop Mobility Market, By Application

  • 7.1 Introduction
  • 7.2 Field Crops
  • 7.3 Orchards and Vineyards
  • 7.4 Greenhouse Operations
  • 7.5 Specialty Crops
  • 7.6 Other Applications

8 Global Smart Crop Mobility Market, By End User

  • 8.1 Introduction
  • 8.2 Farmers
  • 8.3 Agricultural Cooperatives
  • 8.4 Government Agencies
  • 8.5 Research Institutions
  • 8.6 Agribusiness Companies
  • 8.7 Other End Users

9 Global Smart Crop Mobility Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 AGCO Corporation
  • 11.2 CNH Industrial
  • 11.3 Raven Industries
  • 11.4 Kubota Corporation
  • 11.5 Trimble Inc.
  • 11.6 CLAAS Group
  • 11.7 Syngenta
  • 11.8 Yara International
  • 11.9 Ag Leader Technology
  • 11.10 Blue River Technology
  • 11.11 Prospera Technologies
  • 11.12 Robert Bosch GmbH
  • 11.13 Small Robot Company
  • 11.14 Indigo Agriculture
  • 11.15 FarmWise Labs, Inc.
  • 11.16 ecoRobotix

List of Tables

  • Table 1 Global Smart Crop Mobility Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Smart Crop Mobility Market Outlook, By Product (2024-2032) ($MN)
  • Table 3 Global Smart Crop Mobility Market Outlook, By Autonomous Tractors (2024-2032) ($MN)
  • Table 4 Global Smart Crop Mobility Market Outlook, By Robotic Harvesters (2024-2032) ($MN)
  • Table 5 Global Smart Crop Mobility Market Outlook, By Drones/UAVs (2024-2032) ($MN)
  • Table 6 Global Smart Crop Mobility Market Outlook, By Mobile Robots (2024-2032) ($MN)
  • Table 7 Global Smart Crop Mobility Market Outlook, By Seeders and Planters Robots (2024-2032) ($MN)
  • Table 8 Global Smart Crop Mobility Market Outlook, By Weeding Robots (2024-2032) ($MN)
  • Table 9 Global Smart Crop Mobility Market Outlook, By Autonomous Sprayers (2024-2032) ($MN)
  • Table 10 Global Smart Crop Mobility Market Outlook, By Autonomous Irrigation Systems (2024-2032) ($MN)
  • Table 11 Global Smart Crop Mobility Market Outlook, By Variable Rate Technology (VRT) Systems (2024-2032) ($MN)
  • Table 12 Global Smart Crop Mobility Market Outlook, By Other Products (2024-2032) ($MN)
  • Table 13 Global Smart Crop Mobility Market Outlook, By Farm Size (2024-2032) ($MN)
  • Table 14 Global Smart Crop Mobility Market Outlook, By Small Farms (2024-2032) ($MN)
  • Table 15 Global Smart Crop Mobility Market Outlook, By Medium Farms (2024-2032) ($MN)
  • Table 16 Global Smart Crop Mobility Market Outlook, By Large Farms (2024-2032) ($MN)
  • Table 17 Global Smart Crop Mobility Market Outlook, By Application (2024-2032) ($MN)
  • Table 18 Global Smart Crop Mobility Market Outlook, By Field Crops (2024-2032) ($MN)
  • Table 19 Global Smart Crop Mobility Market Outlook, By Orchards and Vineyards (2024-2032) ($MN)
  • Table 20 Global Smart Crop Mobility Market Outlook, By Greenhouse Operations (2024-2032) ($MN)
  • Table 21 Global Smart Crop Mobility Market Outlook, By Specialty Crops (2024-2032) ($MN)
  • Table 22 Global Smart Crop Mobility Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 23 Global Smart Crop Mobility Market Outlook, By End User (2024-2032) ($MN)
  • Table 24 Global Smart Crop Mobility Market Outlook, By Farmers (2024-2032) ($MN)
  • Table 25 Global Smart Crop Mobility Market Outlook, By Agricultural Cooperatives (2024-2032) ($MN)
  • Table 26 Global Smart Crop Mobility Market Outlook, By Government Agencies (2024-2032) ($MN)
  • Table 27 Global Smart Crop Mobility Market Outlook, By Research Institutions (2024-2032) ($MN)
  • Table 28 Global Smart Crop Mobility Market Outlook, By Agribusiness Companies (2024-2032) ($MN)
  • Table 29 Global Smart Crop Mobility Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.