封面
市場調查報告書
商品編碼
1625202

2030 年分子育種市場預測:按產品類型、性狀類型、技術、方法、應用、最終用戶和地區進行的全球分析

Molecular Breeding Market Forecasts to 2030 - Global Analysis By Product Type (Seeds, Aquatic Species, Livestock Genetics, and Other Product Types), Trait Type, Technology, Method, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據Stratistics MRC預測,2024年全球分子育種市場規模將達47億美元,預計2030年將達到134.2億美元,預測期內複合年成長率為19.1%。

分子育種是應用先進的分子生物學技術來改善微生物、植物和動物的遺傳特性的過程。與傳統育種技術相比,基因編輯、基因組選擇和標記輔助選擇(MAS)等技術可以更有效地發現、修改和整合優勢基因。為了克服農業問題,分子育種促進了作物和牲畜生產的改良,例如提高產量、抗病性、耐旱性和提高營養價值。

糧食安全需求不斷成長

對糧食安全日益成長的需求是推動分子育種產業的主要因素之一。隨著世界人口持續成長,對農業韌性和增加產量的需求變得越來越迫切,特別是在新興國家。分子育種可以培育出更能抵抗害蟲、疾病以及氣候變遷導致的炎熱和乾旱等惡劣天氣條件的作物和牲畜。分子育種是透過提高產量、品質和永續性來確保穩定和健康的糧食供應的重要對策,對於應對未來糧食安全的挑戰至關重要。

缺乏熟練勞動力

分子育種使用基因組選擇、CRISPR 基因編輯和次世代定序等複雜技術,需要遺傳學、生物資訊學和生物技術方面的專業知識。由於缺乏具有這些最尖端科技經驗的合格人員,公司和研究機構沒有充分利用分子育種的前景。缺乏專業知識可能會阻礙分子育種技術的採用、增加營運成本並推遲研發活動。為了解決人才短缺的問題,隨著對這些技術的需求增加,對培訓計劃和學術合作夥伴關係的投資將至關重要。

更多採用基改作物和基因編輯

CRISPR/Cas9 等基因編輯和基因修飾方法為提高作物產量和抗病蟲害不斷成長的需求提供了精確有效的解決方案。這些技術能夠在傳統育種技術所需時間的一小部分內生長出具有所需品質的作物。隨著基因作物和基因編輯作物獲得監管部門的核准,它們擴大進入農業領域。這一趨勢有助於解決與永續性、氣候變遷抵禦能力和糧食安全相關的問題,進一步推動農業分子育種的發展。

傳統耕作方法的延遲採用

許多農民仍然使用傳統的養殖方法,特別是在農村和人煙稀少的地區,因為他們熟悉這些方法,而且初始成本較低。儘管分子育種具有許多優點,例如提高產量和抗病性,但它通常需要對基礎設施、技術純熟勞工和設備進行大量投資。由於對基改作物(GMO) 的道德擔憂、監管障礙以及對其有效性的質疑,農民也可能對新技術持謹慎態度。這種對分子育種的抵制阻礙了其廣泛使用,並降低了其解決農業永續性和糧食安全重要問題的能力。

COVID-19 的影響

COVID-19 大流行對分子育種市場產生了各種影響。由於全球供應鏈中斷、研究經費減少、田間實驗取消,一些分子育種工作進展緩慢。這場大流行凸顯了對有彈性的農業系統和糧食安全的需求,導致人們對分子育種等技術的興趣增加。疫情爆發後,各國政府和私人企業意識到提高作物產量和增強抵禦能力以確保糧食安全的重要性,並重新關注農業進步和投資。

基因組選擇(GS)領域預計在預測期內規模最大

基因組選擇(GS)領域估計是最大的,因為它可以提高育種的效率和準確性。透過利用全基因組標記,基因組選擇可以更快地識別所需的性狀,例如抗病性或增加產量,而無需進行廣泛的表現型測試。這加快了育種過程,降低了成本,並能夠發展優質作物和牲畜。隨著對產量、有彈性和永續農產品的需求增加,基因組選擇正在成為世界各地育種者的重要工具。

研究機構細分市場預計在預測期內複合年成長率最高

研究機構正在為育種和遺傳技術的發展做出貢獻,因此預計在預測期內將出現最高的複合年成長率。研究機構的活動正在加速開發具有改良特性的作物和牲畜,例如更高的產量、抗病性和對氣候變遷的適應能力。透過促進與政府、私營部門和學術界的合作,這些機構在幫助擴大分子育種技術、應對糧食安全挑戰以及推動全球永續農業實踐方面發揮著重要作用。

佔比最大的地區:

由於對糧食安全、大規模農業基地和對氣候適應作物的需求不斷增加,預計亞太地區將在預測期內佔據最大的市場佔有率。中國和印度等國家正大力投資生物技術和分子育種,以提高作物產量、抗病性和耐旱性。此外,人們對永續農業實踐的認知不斷提高、政府的支持以及基因作物和基因編輯作物的日益採用,正在進一步加速該地區的市場成長。

複合年成長率最高的地區:

預計北美地區在預測期內的複合年成長率最高。這是由於該地區先進的研究基礎設施、生物技術的高採用率以及政府對農業創新的大力支持。美國和加拿大在利用分子育種技術開發基改作物方面處於主導,以提高作物產量、害蟲抗性和氣候適應性。此外,對永續農業實踐不斷成長的需求和對糧食安全的需求正在推動對分子育種的投資,使北美成為農業創新的重要中心。

免費客製化服務:

訂閱此報告的客戶可以存取以下免費自訂選項之一:

  • 公司簡介
    • 其他市場公司的綜合分析(最多 3 家公司)
    • 主要企業SWOT分析(最多3家企業)
  • 區域分割
    • 根據客戶興趣對主要國家的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭標基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 資料分析
    • 資料檢驗
    • 研究途徑
  • 研究資訊來源
    • 主要研究資訊來源
    • 二次研究資訊來源
    • 先決條件

第3章市場趨勢分析

  • 促進因素
  • 抑制因素
  • 機會
  • 威脅
  • 產品分析
  • 技術分析
  • 應用分析
  • 最終用戶分析
  • 新興市場
  • COVID-19 的影響

第4章波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭公司之間的敵對關係

第5章全球分子育種市場:依產品類型

  • 種子
  • 水生生物
  • 家畜遺傳學
  • 其他產品類型

第6章全球分子育種市場:依性狀類型

  • 產量提高
  • 非生物脅迫耐受性
  • 品質特徵
  • 生物脅迫耐受性

第7章全球分子育種市場:依技術分類

  • 基因組選擇(GS)
  • 保鮮盒/Cas9
  • 標記輔助選擇 (MAS)
  • 次世代定序(NGS)
  • 單核苷酸多態性 (SNP) 基因分型
  • 數量性狀位點 (QTL) 作圖
  • DNA條碼

第8章全球分子育種市場:依方法分類

  • 常規養殖方法
  • 利用生物技術的育種方法
  • 雜交育種方法

第9章全球分子育種市場:依應用分類

  • 作物育種
    • 油籽和豆類
    • 穀物/穀物
    • 蔬菜
    • 其他作物
  • 水產養殖
  • 畜牧養殖
    • 家禽
  • 園藝育種
  • 其他用途

第10章全球分子育種市場:依最終用戶分類

  • 調查機構
  • 農業生物技術公司
  • 獸醫和動物遺傳學公司
  • 農民/商業種植者
  • 水產養殖場
  • 其他最終用戶

第11章全球分子育種市場:按地區

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東/非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲

第12章 主要進展

  • 合約、夥伴關係、合作和合資企業
  • 收購和合併
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第13章 公司概況

  • Kaltura, Inc.
  • Syngenta AG
  • DuPont de Nemours, Inc.
  • Corteva Agriscience
  • BASF SE
  • Limagrain
  • KWS SAAT SE & Co. KGaA
  • Bayer CropScience
  • Inari Agriculture
  • Evogene Ltd.
  • Genezen Laboratories
  • Ceres, Inc.
  • Bioceres Crop Solutions
  • Phytocontrol
  • Vilmorin & Cie
  • AgBiome, Inc.
  • Zymergen
  • Plant Health Care Plc
Product Code: SMRC28157

According to Stratistics MRC, the Global Molecular Breeding Market is accounted for $4.70 billion in 2024 and is expected to reach $13.42 billion by 2030 growing at a CAGR of 19.1% during the forecast period. Molecular breeding is the process of improving the genetic characteristics of microbes, plants, or animals by applying sophisticated molecular biology techniques. Compared to conventional breeding techniques, it uses technologies like gene editing, genomic selection, and marker-assisted selection (MAS) to more effectively find, modify, and incorporate advantageous genes. In order to overcome agricultural issues, molecular breeding expedites the production of crops and livestock with improved traits like increased yield, disease resistance, drought tolerance, and improved nutritional content.

Market Dynamics:

Driver:

Increasing demand for food security

The growing need for food security is one of the main factors propelling the molecular breeding industry. The demand for increased agricultural resilience and production is become more urgent as the world's population continues to rise, especially in emerging nations. Through molecular breeding, it is possible to create crops and livestock that are more resilient to pests, illnesses, and harsh weather conditions like heat or drought, which are becoming more common as a result of climate change. Molecular breeding is a vital respond to guarantee a steady, wholesome food supply by enhancing yield, quality, and sustainability, making it indispensable to addressing upcoming issues with food security.

Restraint:

Lack of skilled workforce

Complex methods like genomic selection, CRISPR gene editing, and next-generation sequencing are used in molecular breeding, and they call for specific expertise in genetics, bioinformatics, and biotechnology. Companies and research institutes are unable to fully utilize the promise of molecular breeding due to a lack of qualified personnel with experience in these cutting-edge technologies. This lack of expertise might hinder the implementation of molecular breeding technologies, raise operating expenses, and postpone research and development activities. In order to close this workforce gap, it will be essential to make investments in training initiatives and academic collaborations as the demand for these technologies increases.

Opportunity:

Rising adoption of GMOs and gene editing

Gene editing and genetic modification methods like CRISPR/Cas9 provide accurate and effective solutions to the growing demand for increased crop yields, better resistance to pests and diseases. In a fraction of the time needed by conventional breeding techniques, these technologies allow the growth of crops with desired qualities. GMOs and gene-edited crops are becoming increasingly prevalent in agriculture due to increasing regulatory approval. This trend is assisting in addressing issues related to sustainability, climate change resilience, and food security, which is further propelling the development of molecular breeding in agriculture.

Threat:

Slow adoption in traditional farming practices

Many farmers still use traditional breeding methods because they are familiar with them as well as are less expensive initially, particularly in rural or underdeveloped areas. Even though molecular breeding has many benefits, such as increased yields and resistance to disease, it frequently necessitates a large investment in infrastructure, skilled labor, and equipment. Farmers may also be cautious of new technology because of ethical concerns about genetically modified organisms (GMOs), regulatory barriers, or doubts about their efficacy. This resistance to molecular breeding hinders its broad use and reduces its ability to solve important issues with agricultural sustainability and food security.

Covid-19 Impact

The COVID-19 pandemic had a mixed impact on the molecular breeding market. Some molecular breeding efforts were slowed down by the disruption of global supply chains, decreased research funding, and stopped field experiments. Interest in technologies like molecular breeding increased as a result of the pandemic's emphasis on the necessity of resilient agricultural systems and food security. After the epidemic, governments and private businesses realized how crucial it was to increase crop yields and resilience in order to guarantee food stability, which sparked a renewed focus on agricultural advances and investment.

The genomic selection (GS) segment is expected to be the largest during the forecast period

The genomic selection (GS) segment is estimated to be the largest, due to its ability to enhance breeding efficiency and precision. By utilizing genome-wide markers, genomic selection enables faster identification of desirable traits, such as disease resistance and yield improvement, without the need for extensive phenotypic testing. This accelerates the breeding process, reduces costs, and allows for the development of superior crops and livestock. As the demand for high-yielding, resilient, and sustainable agricultural products increases, genomic selection is becoming an essential tool for breeders worldwide.

The research institutes segment is expected to have the highest CAGR during the forecast period

The research institutes segment is anticipated to witness the highest CAGR during the forecast period, due to their contribution to the development of breeding techniques and genetic technologies. Their work accelerates the development of crops and livestock with improved traits, such as higher yield, disease resistance, and climate resilience. By fostering collaboration with governments, private sectors, and academia, these institutes play a crucial role in scaling molecular breeding techniques, addressing food security challenges, and promoting sustainable agricultural practices globally.

Region with largest share:

Asia Pacific is expected to have the largest market share during the forecast period fuelled by the increasing demand for food security, a large agricultural base, and the need for climate-resilient crops. Countries like China and India are investing heavily in biotechnology and molecular breeding to improve crop yields, disease resistance, and drought tolerance. Additionally, rising awareness of sustainable farming practices, government support, and growing adoption of genetically modified and gene-edited crops are further accelerating the market's growth in this region.

Region with highest CAGR:

During the forecast period, the North America region is anticipated to register the highest CAGR, owing to the region's advanced research infrastructure, high adoption of biotechnology, and strong government support for agricultural innovation. The U.S. and Canada are leading the development of genetically modified crops, utilizing molecular breeding techniques to enhance crop yields, pest resistance, and climate adaptability. Additionally, increasing demand for sustainable farming practices and the need for food security are encouraging investments in molecular breeding, making North America a key hub for innovation in agriculture.

Key players in the market

Some of the key players profiled in the Molecular Breeding Market include Kaltura, Inc., Syngenta AG, DuPont de Nemours, Inc., Corteva Agriscience, BASF SE, Limagrain, KWS SAAT SE & Co. KGaA, Bayer CropScience, Inari Agriculture, Evogene Ltd., Genezen Laboratories, Ceres, Inc., Bioceres Crop Solutions, Phytocontrol, Vilmorin & Cie, AgBiome, Inc., Zymergen, and Plant Health Care Plc.

Key Developments:

In September 2023, Corteva Agriscience introduced a new insect-resistant trait in corn, leveraging molecular breeding technologies to improve the resistance of corn against major pests.

In May 2023, Syngenta announced the launch of a soybean variety developed through molecular breeding techniques for enhanced tolerance to drought and extreme temperatures. The new variety is designed to help farmers in regions affected by climate change, ensuring better productivity under stress conditions.

In February 2023, Bayer CropScience launched a new seed applied technology for wheat that integrates molecular breeding techniques to improve disease resistance and overall plant health. The technology aims to address the challenges of wheat rusts and other fungal diseases, thus increasing yields for wheat farmers.

Product Types Covered:

  • Seeds
  • Aquatic Species
  • Livestock Genetics
  • Other Product Types

Trait Types Covered:

  • Yield Improvement
  • Abiotic Stress Tolerance
  • Quality Traits
  • Biotic Stress Resistance

Technologies Covered:

  • Genomic Selection (GS)
  • CRISPR/Cas9
  • Marker-Assisted Selection (MAS)
  • Next-Generation Sequencing (NGS)
  • Single Nucleotide Polymorphism (SNP) Genotyping
  • Quantitative Trait Loci (QTL) Mapping
  • DNA Barcoding

Methods Covered:

  • Conventional Breeding Techniques
  • Biotechnology-Assisted Breeding
  • Hybrid Breeding Techniques

Applications Covered:

  • Crop Breeding
  • Aquaculture Breeding
  • Livestock Breeding
  • Horticultural Breeding
  • Other Applications

End Users Covered:

  • Research Institutes
  • Agricultural Biotechnology Companies
  • Veterinary and Animal Genetics Firms
  • Farmers/Commercial Growers
  • Aquaculture Farms
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Technology Analysis
  • 3.8 Application Analysis
  • 3.9 End User Analysis
  • 3.10 Emerging Markets
  • 3.11 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Molecular Breeding Market, By Product Type

  • 5.1 Introduction
  • 5.2 Seeds
  • 5.3 Aquatic Species
  • 5.4 Livestock Genetics
  • 5.5 Other Product Types

6 Global Molecular Breeding Market, By Trait Type

  • 6.1 Introduction
  • 6.2 Yield Improvement
  • 6.3 Abiotic Stress Tolerance
  • 6.4 Quality Traits
  • 6.5 Biotic Stress Resistance

7 Global Molecular Breeding Market, By Technology

  • 7.1 Introduction
  • 7.2 Genomic Selection (GS)
  • 7.3 CRISPR/Cas9
  • 7.4 Marker-Assisted Selection (MAS)
  • 7.5 Next-Generation Sequencing (NGS)
  • 7.6 Single Nucleotide Polymorphism (SNP) Genotyping
  • 7.7 Quantitative Trait Loci (QTL) Mapping
  • 7.8 DNA Barcoding

8 Global Molecular Breeding Market, By Method

  • 8.1 Introduction
  • 8.2 Conventional Breeding Techniques
  • 8.3 Biotechnology-Assisted Breeding
  • 8.4 Hybrid Breeding Techniques

9 Global Molecular Breeding Market, By Application

  • 9.1 Introduction
  • 9.2 Crop Breeding
    • 9.2.1 Oilseeds & Pulses
    • 9.2.2 Cereals & Grains
    • 9.2.3 Vegetables
    • 9.2.4 Other Crops
  • 9.3 Aquaculture Breeding
  • 9.4 Livestock Breeding
    • 9.4.1 Cattle
    • 9.4.2 Poultry
  • 9.5 Horticultural Breeding
  • 9.6 Other Applications

10 Global Molecular Breeding Market, By End User

  • 10.1 Introduction
  • 10.2 Research Institutes
  • 10.3 Agricultural Biotechnology Companies
  • 10.4 Veterinary and Animal Genetics Firms
  • 10.5 Farmers/Commercial Growers
  • 10.6 Aquaculture Farms
  • 10.7 Other End Users

11 Global Molecular Breeding Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Kaltura, Inc.
  • 13.2 Syngenta AG
  • 13.3 DuPont de Nemours, Inc.
  • 13.4 Corteva Agriscience
  • 13.5 BASF SE
  • 13.6 Limagrain
  • 13.7 KWS SAAT SE & Co. KGaA
  • 13.8 Bayer CropScience
  • 13.9 Inari Agriculture
  • 13.10 Evogene Ltd.
  • 13.11 Genezen Laboratories
  • 13.12 Ceres, Inc.
  • 13.13 Bioceres Crop Solutions
  • 13.14 Phytocontrol
  • 13.15 Vilmorin & Cie
  • 13.16 AgBiome, Inc.
  • 13.17 Zymergen
  • 13.18 Plant Health Care Plc

List of Tables

  • Table 1 Global Molecular Breeding Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Molecular Breeding Market Outlook, By Product Type (2022-2030) ($MN)
  • Table 3 Global Molecular Breeding Market Outlook, By Seeds (2022-2030) ($MN)
  • Table 4 Global Molecular Breeding Market Outlook, By Aquatic Species (2022-2030) ($MN)
  • Table 5 Global Molecular Breeding Market Outlook, By Livestock Genetics (2022-2030) ($MN)
  • Table 6 Global Molecular Breeding Market Outlook, By Other Product Types (2022-2030) ($MN)
  • Table 7 Global Molecular Breeding Market Outlook, By Trait Type (2022-2030) ($MN)
  • Table 8 Global Molecular Breeding Market Outlook, By Yield Improvement (2022-2030) ($MN)
  • Table 9 Global Molecular Breeding Market Outlook, By Abiotic Stress Tolerance (2022-2030) ($MN)
  • Table 10 Global Molecular Breeding Market Outlook, By Quality Traits (2022-2030) ($MN)
  • Table 11 Global Molecular Breeding Market Outlook, By Biotic Stress Resistance (2022-2030) ($MN)
  • Table 12 Global Molecular Breeding Market Outlook, By Technology (2022-2030) ($MN)
  • Table 13 Global Molecular Breeding Market Outlook, By Genomic Selection (GS) (2022-2030) ($MN)
  • Table 14 Global Molecular Breeding Market Outlook, By CRISPR/Cas9 (2022-2030) ($MN)
  • Table 15 Global Molecular Breeding Market Outlook, By Marker-Assisted Selection (MAS) (2022-2030) ($MN)
  • Table 16 Global Molecular Breeding Market Outlook, By Next-Generation Sequencing (NGS) (2022-2030) ($MN)
  • Table 17 Global Molecular Breeding Market Outlook, By Single Nucleotide Polymorphism (SNP) Genotyping (2022-2030) ($MN)
  • Table 18 Global Molecular Breeding Market Outlook, By Quantitative Trait Loci (QTL) Mapping (2022-2030) ($MN)
  • Table 19 Global Molecular Breeding Market Outlook, By DNA Barcoding (2022-2030) ($MN)
  • Table 20 Global Molecular Breeding Market Outlook, By Method (2022-2030) ($MN)
  • Table 21 Global Molecular Breeding Market Outlook, By Conventional Breeding Techniques (2022-2030) ($MN)
  • Table 22 Global Molecular Breeding Market Outlook, By Biotechnology-Assisted Breeding (2022-2030) ($MN)
  • Table 23 Global Molecular Breeding Market Outlook, By Hybrid Breeding Techniques (2022-2030) ($MN)
  • Table 24 Global Molecular Breeding Market Outlook, By Application (2022-2030) ($MN)
  • Table 25 Global Molecular Breeding Market Outlook, By Crop Breeding (2022-2030) ($MN)
  • Table 26 Global Molecular Breeding Market Outlook, By Oilseeds & Pulses (2022-2030) ($MN)
  • Table 27 Global Molecular Breeding Market Outlook, By Cereals & Grains (2022-2030) ($MN)
  • Table 28 Global Molecular Breeding Market Outlook, By Vegetables (2022-2030) ($MN)
  • Table 29 Global Molecular Breeding Market Outlook, By Other Crops (2022-2030) ($MN)
  • Table 30 Global Molecular Breeding Market Outlook, By Aquaculture Breeding (2022-2030) ($MN)
  • Table 31 Global Molecular Breeding Market Outlook, By Livestock Breeding (2022-2030) ($MN)
  • Table 32 Global Molecular Breeding Market Outlook, By Cattle (2022-2030) ($MN)
  • Table 33 Global Molecular Breeding Market Outlook, By Poultry (2022-2030) ($MN)
  • Table 34 Global Molecular Breeding Market Outlook, By Horticultural Breeding (2022-2030) ($MN)
  • Table 35 Global Molecular Breeding Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 36 Global Molecular Breeding Market Outlook, By End User (2022-2030) ($MN)
  • Table 37 Global Molecular Breeding Market Outlook, By Research Institutes (2022-2030) ($MN)
  • Table 38 Global Molecular Breeding Market Outlook, By Agricultural Biotechnology Companies (2022-2030) ($MN)
  • Table 39 Global Molecular Breeding Market Outlook, By Veterinary and Animal Genetics Firms (2022-2030) ($MN)
  • Table 40 Global Molecular Breeding Market Outlook, By Farmers/Commercial Growers (2022-2030) ($MN)
  • Table 41 Global Molecular Breeding Market Outlook, By Aquaculture Farms (2022-2030) ($MN)
  • Table 42 Global Molecular Breeding Market Outlook, By Other End Users (2022-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.