封面
市場調查報告書
商品編碼
1797624

觸覺感測器的中國市場(2025年)

Tactile Sensor Research Report, 2025

出版日期: | 出版商: ResearchInChina | 英文 190 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

融合多感知技術路線,滿足多維度需求

在實際應用中,觸覺感測器需滿足多維資訊感知的需求,包括壓力、溫度、濕度、材質辨別等。例如,當機器人抓取物體時,需要運用 "力、溫、質" 多模態感知,區分物體是滑的(力的變化)、熱的(溫度的)還是易碎的(硬度的)。同樣,醫療復健義肢的皮膚需要同時感知壓力(預防褥瘡)、溫度(預防燙傷)和濕度(監測皮膚狀態)。

然而,單一技術路線(例如電阻膜、電容)難以涵蓋所有需求,需要整合才能達到 "1+1>2" 的效果。融合多感知技術路線是觸覺感測器實現多模態感知的核心手段。透過融合不同原理、材料和結構的技術,感測器可以同時感知力、溫度、濕度、紋理、硬度等多種物理量。

塔山科技的TS-V視覺-觸覺融合技術平台融合了雙眼視覺觸覺感知和電容式觸覺感知,實現了0.01N的三維力測量精度、1mm的分辨率,並能夠區分30多種材料,同時還具備近距離感知能力,空氣感知距離可達2cm。

觸覺感測器為機器人帶來類人感知

觸覺感測器透過模擬皮膚對壓力、摩擦力、應變等外界刺激的感知,為機器人提供類人感知能力,感知物體的硬度、紋理、溫度、濕度等物理特性,並將這些物理訊號轉換為電訊號,最終實現與外界環境的精準互動。

機器人中的觸覺感測器圍繞 "物理互動核心區域" 安裝,其主要作用是保障安全並提高操作精度。目前,機器人領域的觸覺感測器主要應用於機械手的指尖和靈巧手指,部分應用也延伸至指腹和手掌。未來,預計將應用於機器人的手臂、下肢、軀幹等部位,覆蓋全身。

本報告對中國觸覺感測器市場進行了研究和分析,涵蓋了觸覺感測器的基本概念、技術原理、技術發展趨勢、應用場景、國內外供應商及產品等資訊。

目錄

第1章 觸覺感測器的基本概念和技術

  • 觸覺感測器的定義
  • 觸覺感測器產業鏈
  • 觸覺感測器的技術原理
    • 不同原理的觸覺感測器概述
    • 壓阻式觸覺感測器的原理、優缺點
    • 壓阻式觸覺感測器的核心:主動層和材料
    • 電容式觸覺感測器的原理、優缺點
    • 電容式三維力觸覺感測器的結構與原理
    • 壓電式觸覺感測器的原理、優缺點感測器
    • 視覺觸覺感測器的原理、優缺點
    • 視覺觸覺感測器的應用範例
    • 磁電(霍爾)觸覺感測器的原理、優缺點
    • 多模態整合式磁觸覺感測器降低磁場對測量結果的影響
    • 光電觸覺感測器的原理、優缺點
    • 不同原理觸覺感測器的感測功能和性能比較
  • 觸覺感測器的技術趨勢與技術壁壘
    • 多種技術路線的融合使觸覺感測器能夠實現多模態識別
    • 觸覺感測器的彈性是重要的發展方向
    • 觸覺感測器的技術壁壘
  • 市場准入觸覺感測器的障礙
  • 觸覺感測器的市場規模與競爭格局

第二章 觸覺感測器的應用

  • 觸覺感測器在機器人中的應用
    • 觸覺感測器在機器人中的應用概述
    • 觸覺感測器在機器人中的應用場景
    • 基於不同原理的觸覺感測器在機器人中的應用場景
    • 觸覺感測器在機器人靈巧手中的應用
    • 靈巧手觸覺感應器產品概述
    • 配備觸覺感應器的靈巧手產品
  • 觸覺感測器在電子皮膚中的應用
    • 觸覺感測器在電子皮膚中的應用概述
    • 觸覺感測器可以偵測人體機械電子皮膚上的刺激。
    • 電子皮膚 "真皮層" 中的觸覺感測器。
    • 電子皮膚觸覺感測器產品概述
    • 有觸覺感測器的電子皮膚
  • 觸覺感測器在汽車領域的應用
  • 觸覺感測器在汽車領域的應用範例
  • 觸覺感測器在工業自動化的應用
  • 觸覺感測器在智慧家庭的應用

第三章 國內觸覺感測器供應商

  • 國內觸覺感測器供應商概況
  • 國內觸覺感測器供應商產品
  • 漢威電子-Leanstar
  • 塔山科技
  • Sycsense
  • PaXini科技
  • 墨仙科技
  • Daimon Robotics
  • PhlexSense
  • 福萊新材料
  • 新緯科技
  • TacSense科技
  • Xense機器人技術
  • 維泰機器人
  • 元盛科技

第四章:海外觸覺感測器供應商

  • 海外觸覺感測器供應商概覽
  • 海外觸覺感測器供應商產品
  • Tekscan
  • XELA
  • JDI
  • Novasentis
  • Brighter Signals
  • PPS(壓力曲線系統)
  • Baumer
  • GelSight
  • SynTouch
簡介目錄
Product Code: BHY009

ResearchInChina has released the "Tactile Sensor Research Report, 2025", which conducts research, analysis and summary on the basic concepts, technical principles, advantages and disadvantages of different technical routes, technical development trends, applications of tactile sensors (including robotic dexterous hands, electronic skin, automobiles, industrial automation, smart homes, etc.), domestic suppliers and their products, and foreign suppliers and their products.

Tactile sensors are devices that can perceive and measure tactile information such as surface normal force (pressure), tangential force, temperature, hardness, and texture. According to the sensing principle, they can be divided into piezoresistive sensors, capacitive sensors, piezoelectric sensors, visual-tactile sensors, magnetoelectric (Hall) sensors, and photoelectric sensors.

Various Technical Routes of Tactile Sensors Flourish

The six types of tactile sensors based on different principles - piezoresistive, capacitive, piezoelectric, visual-tactile, magnetoelectric (Hall), and photoelectric - each have their own advantages, attracting many scholars and enterprises to conduct research. At present, various technical routes of tactile sensors are flourishing and have not converged.

Among them, the principle of the piezoresistive tactile sensor is that the force changes the resistance value of the conductive material, and the change in external pressure or contact state is reflected by detecting the change in resistance. Due to the low manufacturing cost of piezoresistive sensors, they are currently the most widely used. Typical suppliers include Hanwei Electronics - Leanstar, Moxian Technology, PhlexSense, and Fulai New Materials.

Capacitive tactile sensors obtain force information based on capacitance changes caused by external stimuli. Capacitive tactile sensors have higher spatial resolution and sensitivity than resistive tactile sensors, are easy to integrate in arrays, and can measure three-dimensional forces. In addition, capacitive tactile sensors are the only tactile sensors that can measure proximity perception, with many researchers at home and abroad. Representative suppliers include Hanwei Electronics - Leanstar, Tashan Technology, Sycsense, New Degree Technology, TacSense Technology, PPS, and Baumer.

Principle of piezoelectric tactile sensors: The force applied to the device deforms the piezoelectric material, causing charge polarization inside the material and opposite charges on the surface of the material. This effect can be used to detect external stimuli (such as pressure, vibration, etc.). Piezoelectric tactile sensors have a wide range and high signal linearity, but the acquisition circuit is slightly complex. At present, foreign suppliers are dominant, such as Tekscan, JDI, and Novasentis.

Vision-based tactile sensors can be analogous to miniature "contact imaging systems" and achieve high spatial resolution and a wide dynamic response range using optical principles. For example, the GelSight vision-based tactile sensor is based on the principle of photometric stereo. It identifies the morphological changes caused by the compression of the soft elastomer on the textured surface, amplifies the micro deformation and converts it into a clear image, that is, it infers the force change by photographing the deformation of the image. Domestic suppliers include Tashan Technology, Daimon Robotics, ViTai Robotics, etc.

Magnetoelectric (Hall-effect) tactile sensors utilize the Hall effect to convert input force into induced electromotive force for output. They have a fast response speed, reaching the millisecond level. The principle of photoelectric tactile sensors is that external pressure changes the optical properties of the medium, the light propagation path, and the intensity of transmitted light, converting changes in optical signals into electrical signals to realize the perception of tactile information such as pressure. Photoelectric tactile sensors can achieve multimodal perception, including the detection of various tactile features such as pressure, hardness, vibration, and sliding.

Integration of multi-perception technology routes to meet multi-dimensional needs

In practical applications, tactile sensors need to meet the needs of multi-dimensional information perception such as pressure, temperature, humidity, and material identification. For example, when a robot grabs an object, it needs to use "force-temperature-texture" multimodal perception to identify whether the object is slipping (force change), whether it is at a high temperature (temperature), and whether it is fragile (hardness); the skin of medical rehabilitation prosthetics needs to simultaneously perceive pressure (to avoid pressure ulcers), temperature (to prevent scalds), humidity (to monitor skin conditions), etc.

However, a single technical route (such as resistive, capacitive) is difficult to cover all needs, so it is necessary to achieve the effect of "1 + 1 > 2" through integration. The integration of multi-sensing technology routes is the core means to realize multimodal perception of tactile sensors. By integrating technologies with different principles, materials or structures, the sensor can simultaneously perceive multiple physical quantities such as force, temperature, humidity, texture, and hardness.

Tashan Technology's TS-V visual-tactile fusion technology platform integrates binocular vision-based tactile and capacitive tactile perception, achieving a three-dimensional force measurement accuracy of 0.01N, a resolution of 1mm, and can identify more than 30 different materials. It also has proximity perception, with an air perception distance of 2cm.

Tactile sensors enable robots to have human-like perception

Tactile sensors can bring human-like perception capabilities to robots, simulating the skin's perception of external stimuli such as pressure, friction, and strain. They can also perceive physical properties of target objects such as hardness, texture, temperature, and humidity, and convert these physical signals into electrical signals, ultimately achieving precise interaction with the external environment.

The installation positions of tactile sensors in robots are around the "core area of physical interaction", and their core role is to ensure safety and improve operation accuracy. Currently, tactile sensors in the robotics field are mainly applied to the end of robotic hands and the fingertips of dexterous hands, and some have extended to the finger pads and palms. In the future, they will be applied to robotic arms/arms, lower limbs, trunks and cover the whole body.

Table of Contents

1 Basic Concepts and Technologies of Tactile Sensors

  • 1.1 Definition of Tactile Sensors
  • 1.2 Industrial Chain of Tactile Sensors
  • 1.3 Technical Principles of Tactile Sensors
    • 1.3.1 Overview of Tactile Sensors with Different Principles
    • 1.3.2 Principles, Advantages and Disadvantages of Piezoresistive Tactile Sensors
    • 1.3.3 Core of Piezoresistive Tactile Sensors: Active Layer and Materials
    • 1.3.4 Principles, Advantages and Disadvantages of Capacitive Tactile Sensors
    • 1.3.5 Structure and Principle of Capacitive Three-Dimensional Force Tactile Sensors
    • 1.3.6 Principles, Advantages and Disadvantages of Piezoelectric Tactile Sensors
    • 1.3.7 Principles, Advantages and Disadvantages of Visual-Tactile Sensors
    • 1.3.8 Application Cases of Visual-Tactile Sensors
    • 1.3.9 Principles, Advantages and Disadvantages of Magnetoelectric (Hall) Tactile Sensors
    • 1.3.10 Multimodal Integrated Magnetic Tactile Sensors to Reduce the Impact of Magnetic Fields on Measurement Results
    • 1.3.11 Principles, Advantages and Disadvantages of Photoelectric Tactile Sensors
    • 1.3.12 Comparison of Sensing Functions and Performances of Tactile Sensors with Different Principles
  • 1.4 Technical Trends and Barriers of Tactile Sensors
    • 1.4.1 Integration of Multiple Technical Routes Enables Multimodal Perception of Tactile Sensors
    • 1.4.2 Flexibility of Tactile Sensors is an Important Development Direction
    • 1.4.3 Technical Barriers of Tactile Sensors
  • 1.5 Market Entry Barriers of Tactile Sensors
  • 1.6 Market Size and Competitive Pattern of Tactile Sensors

2 Applications of Tactile Sensors

  • 2.1 Application of Tactile Sensors in the Field of Robotics
    • 2.1.1 Overview of the Application of Tactile Sensors in the Field of Robotics
    • 2.1.2 Application Scenarios of Tactile Sensors in the Field of Robotics
    • 2.1.3 Application Scenarios of Tactile Sensors with Different Principles in the Field of Robotics
    • 2.1.4 Application of Tactile Sensors in Robotic Dexterous Hands
    • 2.1.5 Summary of Tactile Sensor Products for Dexterous Hands
    • 2.1.6 Dexterous Hand Products Equipped with Tactile Sensors
  • 2.2 Application of Tactile Sensors in Electronic Skin
    • 2.2.1 Application Overview of Tactile Sensors in Electronic Skin
    • 2.2.2 Tactile Sensors Undertake Tasks of Perceiving Human Mechanical Stimuli in Electronic Skin
    • 2.2.3 Tactile Sensors in the "Dermis Layer" of Electronic Skin
    • 2.2.4 Summary of Electronic Skin Tactile Sensor Products
    • 2.2.5 Electronic Skins Equipped with Tactile Sensors
  • 2.3 Application of Tactile Sensors in Automotive Field
  • 2.4 Application Examples of Tactile Sensors in Automotive Field
  • 2.5 Application of Tactile Sensors in Industrial Automation
  • 2.6 Application of Tactile Sensors in Smart Home

3 Domestic Tactile Sensor Suppliers

  • 3.1 Overview of Domestic Tactile Sensor Suppliers
  • 3.2 Products of Domestic Tactile Sensor Suppliers
  • 3.3 Hanwei Electronics - Leanstar
    • 3.3.1 Profile
    • 3.3.2 Flexible Tactile Sensor Product: Flexible Micro-Pressure Sensor
    • 3.3.3 Flexible Tactile Sensor Product: Thin-Film Pressure Sensor
    • 3.3.4 Flexible Tactile Sensor Product: Flexible Pressure Sensor
    • 3.3.5 Flexible Tactile Sensor Product: Flexible Piezoelectric Sensor
    • 3.3.6 Flexible Tactile Sensor Product: Flexible Capacitive Sensor
    • 3.3.7 Flexible Tactile Sensor Product: Flexible Thermosensitive Sensor
    • 3.3.8 Flexible Tactile Sensor Product: Flexible Thin-Film Bending Sensor
    • 3.3.9 Flexible Tactile Perception Solution: Robotics
    • 3.3.10 Flexible Tactile Perception Solution: IoT
    • 3.3.11 Flexible Tactile Perception Solution: Medical and Health
  • 3.4 Tashan Technology
    • 3.4.1 Profile
    • 3.4.2 Product Overview
    • 3.4.3 Tactile Sensor Products
    • 3.4.4 Tactile Perception Solutions
    • 3.4.5 Application Cases of Tactile Products
    • 3.4.6 Solutions to Pain Points in the Tactile Sensing Industry
    • 3.4.7 Tactile Technology: Multifunctional Layer Patent Technology
  • 3.5 Sycsense
    • 3.5.1 Profile
    • 3.5.2 Core Technology: Nano-Interface Ion-Electronic Capacitance
    • 3.5.3 Tactile Sensor Products
    • 3.5.4 Tactile Solution for Humanoid Robots
  • 3.6 PaXini Technology
    • 3.6.1 Profile
    • 3.6.2 Independently Developed ITPU Multidimensional Tactile Sensing Technology
    • 3.6.3 Product Overview
    • 3.6.4 Tactile Sensor Products
  • 3.7 Moxian Technology
    • 3.7.1 Profile
    • 3.7.2 Development Strategy
    • 3.7.3 Main Products in the Robotics Field
    • 3.7.4 Tactile Sensor Products
  • 3.8 Daimon Robotics
    • 3.8.1 Profile
    • 3.8.2 Tactile Sensor Products
  • 3.9 PhlexSense
    • 3.9.1 Profile
    • 3.9.2 Tactile Sensor Products
  • 3.10 Fulai New Material
    • 3.10.1 Profile
    • 3.10.2 Overview of Flexible Tactile Sensor Products
    • 3.10.3 Flexible Tactile Sensor Product: Robotic Tactile Sensor
  • 3.11 New Degree Technology
    • 3.11.1 Profile
    • 3.11.2 Application of Tactile Sensors: Robotics
    • 3.11.3 Application of Tactile Sensors: Automotive Intelligent Cockpit
  • 3.12 TacSense Technology
    • 3.12.1 Profile
    • 3.12.2 Tactile Perception Technology
    • 3.12.3 Tactile Sensor Products
  • 3.13 Xense Robotics
    • 3.13.1 Profile
    • 3.13.2 Tactile Sensor Products
  • 3.14 ViTai Robotics
    • 3.14.1 Profile
    • 3.14.2 Tactile Sensor Products
  • 3.15 Yuansheng Technology
    • 3.15.1 Profile
    • 3.15.2 Tactile Sensor Products

4 Foreign Tactile Sensor Suppliers

  • 4.1 Overview of Foreign Tactile Sensor Suppliers
  • 4.2 Products of Foreign Tactile Sensor Suppliers
  • 4.3 Tekscan
    • 4.3.1 Profile
    • 4.3.2 Overview of Sensor Products
    • 4.3.3 Tactile Sensor Products
    • 4.3.4 Typical Application Cases of Sensor Products in Robotics and Automotive Fields
  • 4.4 XELA
    • 4.4.1 Profile
    • 4.4.2 Tactile Sensor Products
    • 4.4.3 Application Cases of Tactile Perception in Dexterous Hands
  • 4.5 JDI
    • 4.5.1 Profile
    • 4.5.2 Overview of Sensor Products
    • 4.5.3 Tactile Sensor Products
  • 4.6 Novasentis
    • 4.6.1 Profile
    • 4.6.2 Core Technologies
    • 4.6.3 Tactile Sensor Products
  • 4.7 Brighter Signals
    • 4.7.1 Profile
    • 4.7.2 Tactile Perception Technology
    • 4.7.3 Industrial Applications of Tactile Technology
  • 4.8 PPS (Pressure Profile Systems)
    • 4.8.1 Profile
    • 4.8.2 Tactile Sensor Products
    • 4.8.3 Robotic Tactile Solutions
  • 4.9 Baumer
    • 4.9.1 Profile
    • 4.9.2 Tactile Sensor Products
  • 4.10 GelSight
    • 4.10.1 Profile
    • 4.10.2 Development History
    • 4.10.3 Tactile Sensor Products
  • 4.11 SynTouch
    • 4.11.1 Profile
    • 4.11.2 Tactile Sensor Products