新量子系統超低損失·高精度電容器,電阻器,感應器:全球市場,技術,機會(2025年~2030年)
市場調查報告書
商品編碼
1799622

新量子系統超低損失·高精度電容器,電阻器,感應器:全球市場,技術,機會(2025年~2030年)

Ultra-Low Loss and Precision Capacitors, Resistors and Inductors For Emerging Quantum Systems: World Markets, Technologies and Opportunities: 2025-2030

出版日期: | 出版商: Paumanok Publications, Inc. | 英文 133 Pages; 17 Tables and Graphs | 商品交期: 最快1-2個工作天內

價格
簡介目錄

摘要整理

本報告探討了專為量子運算應用而設計的被動電子元件市場,並提供了有關量子運算單元 (QPU) 和量子系統基礎設施中電容器、電阻器和電感器的獨特要求、新興技術和機會的資訊。

研究亮點

突破性市場分析

  • 首個針對量子計算被動元件的全面研究
  • 超低損耗介電材料及其精密製造需求分析
  • 低溫工作條件及其對元件性能影響的詳細研究
  • 量子級被動元件市場規模及預測(截至 2030 年)

技術詳情

  • 超低損耗電容器:藍寶石、矽和先進陶瓷基板
  • 精密電阻:量子極限雜訊特性與溫度係數
  • 高 Q 值電感器:超導材料與磁場抗擾度
  • 新材質:石墨烯、鑽石基板、特殊電介質等更多

市場情報

  • 全球量子運算硬體投資及其對組件需求的影響
  • 量子級材料的供應鏈分析與製造能力
  • 進入量子領域的專業組件製造商的競爭格局
  • 量子子組件(包括量子處理器和低溫系統)的終端市場細分

主要市場調查結果

市場規模與成長預測

  • 全球量子被動元件市場
  • 預計2030年將維持強勁成長
  • 電容器:最大的細分市場
  • 北美採用率領先,其次是歐洲和亞太地區

分析的用途

QPU

  • 超導量子位元系統(IBM、Google、Rigetti)
  • 離子阱系統(IonQ、霍尼韋爾)
  • 光子量子處理器
  • 中性原子量子計算機

量子基礎設施

  • 低溫系統
  • 量子控制電子元件
  • 互連裝置
  • 讀出系統
  • 電源
  • 其他元件

新興市場:被動元件類別

新量子電容器的市場(2025年~2030年)

  • 陶瓷微波電容器
  • 塑膠薄膜電容器
  • 矽電容器
  • 六方氮化硼電容器
  • 聚合物鉭電容器
  • 聚合物鋁電解電容器
  • 氧化鈮電容器
  • 鑽石/藍寶石電容器
  • 量子處理器與低溫系統的新技術;新型電介質的開發

新量子電阻器的市場(2025年~2030年)

  • 鎳鉻薄膜和箔電阻器
  • 氮化鉭薄膜電阻器
  • 線繞電阻器
  • 厚膜 (RuO2) 晶片和網絡
  • 薄膜整合式被動元件
  • 量子處理器與低溫系統的新型電阻器開發

新量子感應器的市場(2025年~2030年)

  • 高可靠性鐵氧體珠
  • 高可靠性陶瓷晶片線圈
  • 陶瓷粉筆
  • 量子系統新磁技術

地區市場分析(2025年~2030年)

北美

  • IBM、Google和新創公司引領量子運算投資
  • 國家政府透過量子計畫提供資金
  • 已建立先進電子元件供應鏈

歐洲

  • 量子旗艦計畫推動元件開發
  • 強大的材料科學與製造能力
  • 專注於量子通訊和量子感測應用

亞太地區

  • 來自中國、日本和韓國
  • 規模化生產優勢
  • 拓展量子運算研究策略

競爭情形的分析

市場領導者

  • 供應量子元件的現有和新興電容器、電阻器和電感器供應商
  • 專業低溫元件製造商

新興企業

  • 開發內部組件的量子運算公司 科技硬體公司
  • 顛覆性科技新創公司
  • 獲得突破性材料授權的研究機構

被動元件技術的未滿足需求

  • 電容器的機會:量子系統和sub-assembly的各電介質(2025年~2030年)
  • 電阻器的機會:量子系統和sub-assembly的類別(2025年~2030年)
  • 感應器的機會:量子系統和sub-assembly的類別(2025年~2030年)

預測 (2025-2030)

我們全面的預測模型包括:

  • 量子計算硬體預測 (2025-2030)
  • 各量子系統組件需求分析
  • 新技術價格彈性模型
  • 特定於量子應用的技術採用曲線
  • 量子電容器市場預測 (2025-2030)
  • 量子電阻器市場預測 (2025-2030)
  • 量子感測器市場預測 (2025-2030)
  • 評估未滿足的需求
  • 對超過 45 家量子級被動元件供應商的評估
  • 按元件類型、應用程式和地區劃分的 5 年預測
簡介目錄
Product Code: ISBN: 1-893211-38-X (QPU2025)

Executive Summary

The "Ultra-Low Loss and Precision Capacitors, Resistors and Inductors For Emerging Quantum Systems: World Markets, Technologies and Opportunities: 2025-2030", is a groundbreaking market study on passive electronic components specifically engineered for quantum computing applications. This comprehensive 133 page analysis represents the first dedicated market research examining the specialized requirements, emerging technologies, and commercial opportunities for capacitors, resistors, and inductors in quantum processing units (QPUs) and quantum systems infrastructure.

Study Highlights

Revolutionary Market Analysis

  • First-of-its-kind comprehensive study dedicated to passive components in quantum computing
  • Analysis of ultra-low loss dielectric materials and precision manufacturing requirements
  • Detailed examination of cryogenic operating conditions and their impact on component performance
  • Market sizing and forecasting for quantum-grade passive components through 2030

Technology Deep Dive

  • Ultra-Low Loss Capacitors: Sapphire, silicon, and advanced ceramic substrates
  • Precision Resistors: Quantum-limited noise characteristics and temperature coefficients
  • High-Q Inductors: Superconducting materials and magnetic field immunity
  • Emerging materials including graphene, diamond substrates, and exotic dielectrics

Market Intelligence

  • Global quantum computing hardware investments and their impact on component demand
  • Supply chain analysis for quantum-grade materials and manufacturing capabilities
  • Competitive landscape of specialized component manufacturers entering the quantum space
  • End-market segmentation across quantum sub-assemblies including QPU and Cryogenic systems.

Key Market Findings

Market Size & Growth Projections

  • Global quantum passive components market
  • Projected robust growth through 2030
  • Capacitors representing the largest segment
  • North America leading adoption, followed by Europe and Asia-Pacific regions

Target Applications Analyzed

Quantum Processing Units (QPUs)

  • Superconducting qubit systems (IBM, Google, Rigetti)
  • Trapped ion systems (IonQ, Honeywell)
  • Photonic quantum processors
  • Neutral atom quantum computers

Quantum Infrastructure

  • Cryogenic systems
  • Quantum control electronics
  • Interconnects
  • Read-Out Systems
  • Power Supplies
  • Other Sub-assemblies

Emerging Markets by Passive Component Type

Emerging Quantum Capacitor Markets: 2025-2030

  • Ceramic Microwave Capacitors
  • Plastic Film Capacitors
  • Silicon Capacitors
  • Hexagonal Boron Nitride Capacitors
  • Polymer Tantalum Capacitors
  • Polymer Aluminum Capacitors
  • Niobium Oxide Capacitors
  • Diamond/Sapphire Capacitors
  • New Dielectric Development for QPU and Cryogenic Systems

Emerging Quantum Resistor Markets: 2025-2030

  • Nichrome Film and Foil Resistors
  • Tantalum Nitride Thin Film Resistors
  • Wirewound Resistors
  • Thick Film (Ru02) Chips and Networks
  • Thin Film Integrated Passive Devices
  • New Resistor Development for QPU and Cryogenic Systems

Emerging Quantum Inductor Markets: 2025-2030

  • High Reliability Ferrite Bead
  • High Reliability Ceramic Chip Coil
  • Ceramic Chokes
  • Emerging Magnetic Technologies for Quantum Systems

Regional Market Analysis: 2025-2030

North America

  • Leading quantum computing investments from IBM, Google, and startups
  • Government funding through National Quantum Initiative
  • Established supply chain for advanced electronic components

Europe

  • Quantum Flagship program driving component development
  • Strong materials science and manufacturing capabilities
  • Focus on quantum communication and sensing applications

Asia-Pacific

  • Significant investments from China, Japan, and South Korea
  • Manufacturing scale advantages for volume production
  • Growing quantum computing research initiatives

Competitive Landscape Analysis

Market Leaders

  • Traditional and emerging capacitor, resistor and inductor vendors supplying Quantum Components
  • Specialized cryogenic component manufacturers

Emerging Players

  • Quantum computing hardware companies developing in-house components
  • Startup companies with disruptive technologies
  • Research institutions licensing breakthrough materials

Unmet Needs in Passive Component Technology

  • Opportunities for Capacitors by Dielectric in Quantum Systems and Sub-Assemblies: 2025-2030
  • Opportunities for Resistors by Type in Quantum Systems and Sub-Assemblies: 2025-2030
  • Opportunities for Inductors by Type in Quantum Systems and Sub-Assemblies: 2025-2030

Forecasting 2025-2030

Our comprehensive forecasting model incorporates:

  • Quantum computing hardware forecasts: 2025-2030
  • Component requirement per quantum system analysis
  • Price elasticity modeling for emerging technologies
  • Technology adoption curves specific to quantum applications
  • Quantum Capacitor Market Forecasts: 2025-2030
  • Quantum Resistor Market Forecasts: 2025-2030
  • Quantum Inductor Market Forecasts: 2025-2030
  • Unmet Needs Assessment
  • 45+ Vendors Reviewed for Quantum Grade Passive Components
  • 5-year forecasts by component type, application, and region

Why This Study Matters

As quantum computing transitions from academic research to commercial reality, the demand for specialized passive components is creating entirely new market opportunities. Traditional electronic components fail to meet the extreme performance requirements of quantum systems, driving the need for revolutionary approaches to capacitor, resistor, and inductor design and manufacturing.

This study provides the critical market intelligence needed by:

  • Component manufacturers evaluating quantum market entry strategies
  • Quantum computing companies seeking reliable component suppliers
  • Investors assessing opportunities in the quantum supply chain
  • Materials suppliers understanding quantum-grade requirements
  • Government agencies planning quantum infrastructure investments