![]() |
市場調查報告書
商品編碼
1910594
電力電子:市場佔有率分析、產業趨勢與統計、成長預測(2026-2031)Power Electronics - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2026 - 2031) |
||||||
※ 本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。
預計電力電子市場規模將從 2025 年的 268.4 億美元成長到 2026 年的 287.8 億美元,到 2031 年將達到 408.1 億美元,2026 年至 2031 年的複合年成長率為 7.24%。

這項進展主要得益於傳統矽系統向碳化矽 (SiC) 和氮化鎵 (GaN) 解決方案的持續轉型,這些轉型在關鍵應用中實現了更高的效率、功率密度和更小的外形規格。隨著汽車製造商擴大電動車產量、電力公司更新逆變器以適應可再生能源以及資料中心營運商採用高壓直流 (HVDC) 架構,市場需求加速成長。此外,區域政策也促進了國內半導體製造和電動車基礎設施建設,從而推動了寬能能隙材料的應用。同時,供應鏈多元化舉措,尤其是在亞太地區,提高了基板、外延和先進封裝的本地化生產能力,縮短了前置作業時間並降低了運輸風險。
為了達到併網效率目標,歐洲充電網路營運商優先採用800V架構,該架構需要1200V和1700V的碳化矽(SiC)MOSFET。獎勵計劃支持了SiC功率級標準化的計劃,這些項目降低了能量損耗並縮小了冷卻子系統的尺寸。系統整合商和半導體供應商之間的合作縮短了設計週期,而與汽車製造商的合作協議則確保了長期的大規模生產。互通性法規進一步為基於寬能能隙裝置的模組化、高密度充電器創造了更公平的競爭環境。成功的部署吸引了全球的關注,使歐洲成為下一代快速充電解決方案的標竿市場。
中國、印度和越南的公用事業級太陽能發電廠正在用碳化矽(SiC)組件取代傳統的矽逆變器,這些組件能夠在高溫高濕環境下承受高開關頻率。 Wolfspeed 最新推出的公用事業級組件能夠滿足集中式 3MW 至 5MW 逆變器所需的熱循環可靠性。離岸風電開發商也正在採用類似的功率等級,以滿足渦輪機機艙的尺寸和重量限制。區域契約製造製造商正在推動本地組裝,以避免進口關稅,從而加快與傳統矽產品的價格競爭。這些升級符合各國政府的可再生能源部署標準,並有助於在新興經濟體中維持具有競爭力的電力價格。
長期的基板短缺限制了產能擴張,導致平均售價居高不下。 Wolfspeed 暫時的融資挑戰增加了依賴其 200mm 晶圓藍圖的合作夥伴的風險,最終導致瑞薩電子計劃退出 SiC 平台。中國的新參與企業加快了產能擴張,但在獲得汽車製造商客戶的認證方面面臨挑戰。晶圓廠宣布投產到量產準備就緒之間存在多年的滯後,這使得裝置製造商和系統 OEM 的需求預測變得複雜。因此,一些汽車製造商採取了雙重採購策略來確保晶圓配額。
到2031年,功率模組的複合年成長率將達到8.49%,這主要得益於設計團隊選擇預封裝組件,從而簡化了散熱佈局和電磁屏蔽。 2025年,分立電晶體和二極體的收入佔比將達到45.92%,它們在消費性電子產品和低功率工廠設備領域保持了柔軟性。 50kW以上的牽引逆變器和可再生能源轉換設備對模組的需求激增,其中閘極驅動器、溫度感測器和隔離功能的整合縮短了開發週期。整合式冷卻基板正進入試生產階段,這提高了模組的功率密度,並使電動車的逆變器機殼得以縮小。整合功率IC在100W以下快速充電適配器市場佔據了更大的佔有率,它將控制和開關功能整合到單一塑膠封裝中,滿足了嚴格的尺寸限制。智慧型手機製造商採用了這些單晶片GaN解決方案,實現了透過緊湊型牆插進行65W充電。隨著汽車供應商向800V平台過渡,功率電子模組市場預計將穩定成長。同時,消費性電子產品設計的應用也推動了分立元件的銷售成長。
市場上的轉注成型封裝標準化為在惡劣氣候下運作的工業驅動器帶來了成本節約和卓越的防潮性能。製造商已利用自動化組裝來滿足不斷成長的生產需求,尤其是在亞太地區。然而,在照明安定器、家用電器和機器人控制設備等應用領域,分立元件仍然佔據主導地位,因為在這些應用中,客製化的基板佈局和多樣化的電壓等級比整合化更具優勢。在預測期內,碳化矽晶圓供應量的增加將進一步推動模組化,而分立元件的銷售量預計將逐步下降,而非急劇下降。
到2025年,MOSFET將佔總營收的43.62%,成為規模最大且成長最快的裝置類別,複合年成長率(CAGR)為8.98%。這種架構有利於漸進式研發,例如Wolfspeed的第四代平台,該平台在保持傳統閘極驅動要求的同時降低了導通電阻。充電適配器和太陽能微型逆變器中的高頻諧振拓撲結構越來越傾向於使用GaN增強MOSFET,而SiC平面MOSFET則在100kW以上的車輛驅動級中佔據主導地位。 IGBT在鐵路推進系統和大型工業驅動裝置中仍然至關重要,能夠滿足超出MOSFET實際應用範圍的功率等級需求。閘流體繼續用於併網緩衝啟動器和高壓直流輸電線路,但其整體佔有率有所下降。
裝置製造商已推出用於碳化矽 MOSFET 和肖特基二極體的共封裝技術,從而緩解反向恢復限制並簡化基板佈局;與此同時,氮化鎵供應商正在改進動態導通電阻 (RDS(on)) 特性,以延長裝置在硬開關條件下的使用壽命。電力電子市場持續重視 MOSFET 的創新,因為其外形尺寸與現有驅動系統相容,並降低了系統工程師的設計門檻。未來市佔率的波動將取決於寬能能隙晶圓的價格趨勢以及新一代 MOSFET 閘極技術的汽車級認證速度。
電力電子市場按組件(分立元件、模組、整合功率 IC)、裝置類型(MOSFET、IGBT、閘流體、二極體)、材料(矽、碳化矽、其他)、終端用戶產業(家用電子電器、汽車、ICT 和通訊、工業、能源和電力、航太和國防等)以及地區(北美、歐洲、亞太地區、中東、中東和歐洲)進行細分、中東和國防等地區(北美、歐洲、亞洲)。
到2025年,亞太地區將佔全球營收的53.88%,以10.05%的複合年成長率進一步擴大領先優勢。中國、日本和韓國的國家級專案已為晶圓廠、模組組裝和電動車供應鏈提供資金支持,確保基板和先進封裝的在地採購。日本政府承諾投入670億美元扶持國內半導體產業,扶持SONY和三菱電機等公司,同時加強與大學的研究合作。中國當地雖然在最尖端科技方面存在滯後,但已利用材料成長和後端組裝的規模經濟優勢,實現了向區域客戶更快的供貨速度和更低的到岸成本。
北美仍然是第二大市場,其創新實力與人工智慧伺服器、電動皮卡和可再生能源微電網等充滿活力的終端市場相結合。各州政府的獎勵措施吸引了新的碳化矽晶圓廠,並促進了向200毫米晶圓過渡的資金投入。國防採購持續資助抗輻射氮化鎵(GaN)的研究,後來被應用於商業通訊系統。隨著資料中心營運商採用400V直流架構以減少銅用量並提高機架密度,北美電力電子市場規模正在不斷擴大。歐洲將資源集中於電動車充電走廊和電網級儲能。政策制定者強制要求充電硬體互通性,由於碳化矽在800V電壓下的效率,間接推動了其應用。一級汽車供應商與半導體供應商合作,共同開發牽引逆變器,建構整合參考平台並加速型式認證。中東和非洲地區投資建造了大型太陽能發電廠和海水淡化廠,儘管佔地面積較小,但這些項目仍需要強大的逆變器等級。在南美洲,巴西和阿根廷的風能走廊以及鼓勵在該地區組裝功率模組的在地採購政策,正在創造新的機會。這些趨勢共同推動電力電子市場在全球各大洲的擴張,儘管不同地區在產業成熟度和政策支持力度方面存在差異。
The power electronics market is expected to grow from USD 26.84 billion in 2025 to USD 28.78 billion in 2026 and is forecast to reach USD 40.81 billion by 2031 at 7.24% CAGR over 2026-2031.

Continued migration from legacy silicon systems toward silicon-carbide and gallium-nitride solutions underpins this advance, enabling higher efficiency, power density, and smaller form factors in critical applications. Demand accelerated as automakers scaled electric-vehicle production, utilities upgraded renewable-energy inverters, and data-center operators adopted high-voltage direct-current architectures. Wide-bandgap adoption also benefited from regional policy support that encouraged domestic semiconductor manufacturing and electric-mobility infrastructure. Meanwhile, supply-chain diversification initiatives, especially across Asia-Pacific, bolstered localized production of substrates, epitaxy, and advanced packaging, reducing lead times and transportation risk.
European charging-network operators prioritized 800 V architectures that require 1,200 V and 1,700 V SiC MOSFETs to meet grid-connection efficiency targets. Projects backed by incentive programs are standardized on SiC power stages that cut energy losses and shrink cooling subsystems. Collaboration between system integrators and semiconductor suppliers shortened design cycles, while alliance agreements with automotive OEMs ensured long-term volume commitments. Interoperability regulations further created a level playing field that favors modular, high-density chargers based on wide-bandgap devices. Successful deployments draw global attention, positioning Europe as the reference market for next-generation fast-charging solutions.
Utility-scale solar farms in China, India, and Vietnam replaced legacy silicon inverters with SiC-based modules that withstand high switching frequencies in hot, humid environments. Wolfspeed's latest utility modules provided the thermal-cycling reliability demanded by centralized 3 MW to 5 MW inverters. Offshore wind developers adopted similar power stages to meet size and weight limits on turbine nacelles. Regional contract manufacturers localized assembly to avoid import duties, accelerating price parity with conventional silicon alternatives. These upgrades align with government renewable portfolio standards, keeping energy tariffs competitive across emerging economies.
Chronic substrate shortages constrained volume ramps, keeping average selling prices elevated. Wolfspeed's temporary liquidity challenges increased risk exposure for partners that relied on its 200 mm roadmap, leading Renesas to exit its planned SiC platform. Chinese entrants accelerated capacity additions yet faced qualification hurdles with automotive customers. The multiyear lag between announced fabs and production readiness complicated demand-forecast accuracy for both device makers and system OEMs. As a result, several automakers executed dual-sourcing strategies to hedge wafer allocations.
Other drivers and restraints analyzed in the detailed report include:
For complete list of drivers and restraints, kindly check the Table Of Contents.
Power modules delivered 8.49% CAGR through 2031 as design teams opted for pre-packaged assemblies that simplify thermal layout and electromagnetic shielding. In 2025, discrete transistors and diodes still contributed 45.92% of revenue, preserving flexibility in consumer and low-power factory equipment. Demand for modules surged in traction inverters and renewable-energy converters above 50 kW where integrating gate drivers, temperature sensors, and isolation reduced development cycles. Embedded-cooling substrates entered pilot production, pushing module power density upward and enabling smaller inverter housings in electric vehicles. Integrated power ICs gained share in fast-charger adapters below 100 W, combining control and switching in a single plastic package that meets stringent size constraints. Smartphone brands adopted these monolithic GaN solutions to achieve 65 W charging in compact wall plugs. The power electronics market size for modules is forecast to expand steadily as automotive suppliers transition to 800 V platforms, while consumer design wins sustain volume in discrete devices.
Market-wide standardization on transfer-molded packages offered cost reductions and better moisture resistance for industrial drives operating in harsh climates. Manufacturers leveraged automated assembly lines to meet rising output needs, particularly across Asia-Pacific. Discrete devices nevertheless preserved a sizeable presence in lighting ballasts, home appliances, and robotic controllers, where customized board layouts and diverse voltage classes outweighed the integration advantage. Over the forecast span, increased silicon-carbide wafer availability will further tilt the share toward modules, yet discrete volumes will decline gradually rather than collapse.
MOSFETs captured 43.62% of 2025 revenue and their 8.98% CAGR positions them as both the largest and fastest-growing device category. The architecture lends itself to incremental R&D, evident in Wolfspeed's Gen 4 platform that reduced on-state resistance while maintaining familiar gate-drive requirements. High-frequency resonance topologies in charger adapters and solar micro-inverters gravitated to GaN enhancement-mode MOSFETs, whereas SiC planar MOSFETs excelled in vehicle traction stages above 100 kW. IGBTs remained essential in rail propulsion and large industrial drives, sustaining demand in power classes beyond practical MOSFET limits. Thyristors continued serving grid-tied soft-starters and HVDC links, though their overall contribution shrank.
Device-makers introduced co-packaged Schottky diodes with SiC MOSFETs, easing reverse-recovery constraints and simplifying board layouts. Meanwhile, gallium-nitride suppliers improved dynamic-RDS(on) behavior to extend device life in hard-switching conditions. The power electronics market continues to reward MOSFET innovation because the form factor aligns with existing driver ecosystems, lowering design barriers for system engineers. Future share shifts will hinge on wide-bandgap wafer pricing and the speed of automotive qualification for next-generation MOSFET gates.
Power Electronics Market is Segmented by Component (Discrete, Module, and Integrated Power IC), Device Type (MOSFET, IGBT, Thyristor, and Diode), Material (Silicon, Silicon Carbide, and More), End-User Industry (Consumer Electronics, Automotive, ICT and Telecommunication, Industrial, Energy and Power, Aerospace and Defense, and More), and Geography (North America, Europe, Asia-Pacific, South America, Middle East and Africa).
Asia-Pacific generated 53.88% of global revenue in 2025 and is widening its lead with a 10.05% CAGR. National programs in China, Japan, and South Korea funded wafer fabs, module assembly, and electric-vehicle supply chains, ensuring local availability of substrates and advanced packaging. Japanese authorities pledged USD 67 billion to support domestic semiconductor fleets, aiding companies such as Sony and Mitsubishi Electric, and reinforcing university research collaborations. Mainland China leveraged economies of scale in material growth and backend assembly to supply regional customers quickly, lowering landed cost despite technology gaps in the leading edge.
North America remained the second-largest region, pairing innovation strengths with thriving end-markets in AI servers, electric pickup trucks, and renewable microgrids. State-level incentives attracted new SiC wafer plants and helped secure capital for 200 mm transitions. Defense procurement continued to fund radiation-tolerant GaN research, which later filtered into commercial telecom systems. The power electronics market size in North America is on an upward trajectory as data-center operators adopt 400 V DC architectures that reduce copper usage and improve rack density. Europe focused resources on e-mobility charging corridors and grid-level storage. Policymakers mandated interoperability of charging hardware, indirectly favoring SiC adoption due to its efficiency at 800 V. Automotive Tier 1 suppliers partnered with semiconductor vendors to co-develop traction inverters, creating integrated reference platforms that accelerate homologation. The Middle East and Africa region, while starting from a smaller base, invested in large photovoltaic plants and desalination facilities that require robust inverter stages. South America's opportunities emerged from wind corridors in Brazil and Argentina and from local content rules that encourage assembly of power modules within the region. Collectively, these dynamics keep the power electronics market expanding on every continent, though rates vary with industrial maturity and policy support.