封面
市場調查報告書
商品編碼
1851215

抗輻射加固電子產品:市場佔有率分析、行業趨勢、統計數據和成長預測(2025-2030 年)

Radiation Hardened Electronics - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 151 Pages | 商品交期: 2-3個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

預計到 2025 年,抗輻射電子產品市場規模將達到 18.8 億美元,到 2030 年將達到 22.7 億美元,年複合成長率為 3.84%。

抗輻射電子產品市場-IMG1

市場需求仍呈現兩極化:一方面是用於深空和戰略防禦任務的超高可靠性組件,另一方面是用於蓬勃發展的低地球軌道(LEO)衛星群和平流層平台的成本效益型抗輻射加固裝置。地緣政治因素,特別是北約的核現代化計畫、亞洲核能發電廠建設的重啟以及活性化,正在再形成產品藍圖和認證優先級。商業代工廠正與國防主承包商合作,擴展成熟的矽節點,同時整合氮化鎵(GaN)和碳化矽(SiC)以用於下一代電源系統。 90奈米以下抗輻射加固製程(RHBP)能力的供應鏈瓶頸,以及不斷變化的出口限制,正推動著人們轉向抗輻射加固設計(RHBD)方法,以縮短開發週期並降低成本。

全球抗輻射電子產品市場趨勢及洞察

低地球軌道和深空衛星星系的激增

低地球軌道衛星星系正在推動新的性能目標層級:量產衛星採用耐輻射30-50 krad(Si)的組件,而地球靜止軌道和深空衛星則採用耐輻射100 krad(Si)的組件。裝置供應商目前正在並行開發產品線,例如兼具高整合度和低屏蔽品質的微型氮化鎵功率級。同時,利用抗輻射FPGA進行在軌重構,使得操作員無需物理存取即可更新衛星群軟體,從而延長星座的使用壽命。月球補給衛星和火星中繼衛星的大量訂單進一步推動了對深空元件的需求。

北約地區的戰略和戰術防禦電子設備現代化

美國和歐洲國防部正在投資研發可靠的國產微電子產品,以保護關鍵系統免受高空電磁脈衝(HSEP)的影響。美國國防部2025財政年度預算撥款2,488.4萬美元,用於加速研發抗輻射射頻及光電原型產品。測試基礎設施也在同步升級:海軍水面作戰中心克萊恩的短脈衝伽馬射線設施正在進行一項耗資1億美元的現代化改造,以支援同步進行的核子現代化計畫。

高可靠性成本和長檢驗週期

開發抗輻射加固型專用積體電路 (ASIC) 的成本是市售同類產品的 5 到 10 倍。戰略抗輻射加固電子委員會預測,到 2025 年,單光子發射 (SEE) 測試光束的需求將每年超出 6000 小時,這一缺口導致認證隊列不斷延長。因此,航太業者正試圖簡化基於商用現貨 (COTS) 的選擇流程,以縮短前置作業時間,並在發射時間和在軌壽命風險之間取得平衡。

細分市場分析

2024年,太空領域將佔據抗輻射電子產品市場46.3%的佔有率,滿足總電離劑量和單粒子效應抗擾度等規範基準。營運商正從客製化的地球同步軌道(GEO)太空船過渡到蓬勃發展的低地球軌道(LEO)衛星群,他們為了降低成本和加快更新速度,犧牲了部分抗輻射能力,從而催生了混合產品線,這些產品線能夠在滿足30 krad(Si)設計目標的同時,降低屏蔽品質。美國太空總署(NASA)的阿爾忒彌斯登月計畫和商業性太陽系物流,也為能夠承受深空輻射帶的100 krad(Si)+裝置提供了穩定的需求。

預計到2030年,高空無人機/高空平台(HAPS)市場將成長4.2%,從而將航太電子產品的應用範圍擴展到近宇宙輻射頻譜。設計人員正在利用輻射加固型FPGA實現自適應有效載荷,並使用寬能能隙功率級來滿足嚴格的能量預算要求。隨著6G網路回程傳輸測試從原型階段過渡到實際運作階段,該細分領域的抗輻射電子產品市場規模預計將會擴大。

到2024年,積體電路將佔據抗輻射電子產品市場31.5%的佔有率,其中混合訊號ASIC將多個類比前端和電源管理功能整合到單一晶粒上,從而降低電路板的重量。與單粒子效應(SEE)相關的束流時間供應風險正促使晶片廠商同時在兩個代工廠流程中對相同的IP模組進行認證,以加強連續性計畫。

隨著衛星營運商將軌道重配置列為優先事項,現場閘陣列(FPGA)正以4.6%的複合年成長率(CAGR)保持成長。最新的Kintex UltraScale XQRKU060系列產品整合了200萬個邏輯單元和一個片上擦除控制器,可有效緩解配置記憶體故障。在抗輻射電子市場,FPGA正在彌合固定功能矽晶片和純軟體故障緩解之間的差距,並從分立邏輯電路手中奪取市場佔有率。

區域分析

2024年,北美地區佔全球銷售額的39.8%,這得益於持續的國防預算和NASA的探勘計畫。可靠的國內晶圓代工廠和專用光束線設施(例如NSWC Crane)縮短了認證週期,並為眾多主承包商的供應鏈提供了支援。太空商業向月球通訊和小行星探勘任務的多元化發展,將進一步推動該地區的需求。

到2030年,亞太地區將以4.1%的複合年成長率成為成長最快的地區,這主要得益於中國、印度和韓國不斷擴大火箭運載能力並試運行新的核子反應爐。各國政府航太機構正與當地大學合作,投資興建輻射加固型設計中心,以減少對進口零件的依賴。新興的商業發射服務供應商也正在採用抗輻射加固型FPGA,以支援其靈活的衛星經營模式。

在歐洲,歐空局龐大的任務儲備與強大的核能發電廠維修計畫相輔相成。諸如NEUROSPACE舉措等神經型態機載處理項目凸顯了該地區向超低功耗計算的轉型。位於阿拉伯聯合大公國和沙烏地阿拉伯的中東航太局正在推進火星探勘和地球觀測叢集,這為本地組裝和測試創造了獨特的機會。南美洲雖然仍在發展中,但巴西和阿根廷的小型衛星計劃正受益於對本土航空電子設備的需求。

其他福利:

  • Excel格式的市場預測(ME)表
  • 3個月的分析師支持

目錄

第1章 引言

  • 研究假設和市場定義
  • 調查範圍

第2章調查方法

第3章執行摘要

第4章 市場情勢

  • 市場概覽
  • 市場促進因素
    • 低地球軌道和深空衛星星座的擴散
    • 北約地區的戰略和戰術防禦電子設備現代化
    • 亞洲和中東新建核能發電廠的勢頭強勁
    • 高空無人機和超音速飛機的電子設備可靠性需求
    • 醫療圖像診斷的強制性輻射耐受標準(美國FDA、歐盟MDR)
    • SiC/GaN抗輻射加強型功率元件迅速應用於太空船PPU
  • 市場限制
    • 高可靠性設計成本和較長的認證週期
    • 用於抗輻射加固製程(RHBP)節點的代工廠產能將限制在90奈米。
    • 與商用現成晶片相比的效能權衡(速度、密度)
    • ITAR/出口管制供應鏈瓶頸
  • 生態系分析
  • 技術展望
  • 波特五力分析
    • 供應商的議價能力
    • 買方的議價能力
    • 新進入者的威脅
    • 替代品的威脅
    • 競爭程度

第5章 市場規模與成長預測

  • 最終用戶
    • 宇宙
    • 航太與國防(空軍、陸軍、海軍)
    • 核能發電和燃料循環
    • 醫學影像及放射治療
    • 高空無人機/HAPS平台
    • 工業粒子加速器與實驗室
  • 按組件
    • 離散半導體
    • 感測器(光學、成像、環境)
    • 積體電路(ASIC、SoC)
    • 微控制器和微處理器
    • 記憶體(SRAM、MRAM、FRAM、EEPROM)
    • 現場可程式閘陣列(FPGA)
    • 電源管理積體電路
  • 依產品類型
    • 類比和混合訊號
    • 數位邏輯
    • 功率和線性
    • 處理器和控制器
  • 透過製造技術
    • 硬核設計 (RHBD)
    • 硬性購買流程 (RHBP)
    • RAD 硬體軟體/韌體緩解
  • 透過半導體材料
    • 碳化矽(SiC)
    • 氮化鎵(GaN)
    • 其他(InP、GaAs)
  • 按輻射類型
    • 總電離劑量(TID)
    • 單事件效應(SEE)
    • 位移損傷劑量(DDD)
    • 中子和質子注量
  • 按地區
    • 北美洲
    • 歐洲
    • 亞太地區
    • 南美洲
    • 中東和非洲

第6章 競爭情勢

  • 市場集中度
  • 策略性措施(併購、合資、資金籌措、技術藍圖)
  • 市佔率分析
  • 公司簡介
    • Honeywell International Inc.
    • BAE Systems plc
    • CAES(Cobham Advanced Electronic Solutions)
    • Texas Instruments Inc.
    • STMicroelectronics NV
    • Microchip Technology Inc.
    • Infineon Technologies AG
    • Frontgrade Technologies
    • Teledyne e2v Semiconductors
    • Xilinx(RT Series, AMD)
    • Renesas Electronics Corp.
    • Solid State Devices Inc.
    • Micropac Industries Inc.
    • Everspin Technologies Inc.
    • Vorago Technologies
    • Analog Devices HiRel
    • International Rectifier HiRel(Infineon)
    • Maxwell Technologies(ES-capacitors)
    • 3D Plus
    • GSI Technology, Inc.

第7章 市場機會與未來展望

簡介目錄
Product Code: 68030

The radiation hardened electronics market size stands at USD 1.88 billion in 2025 and is forecast to climb to USD 2.27 billion by 2030, reflecting a 3.84% CAGR.

Radiation Hardened Electronics - Market - IMG1

Demand continues to bifurcate between ultra-high-reliability parts for deep-space and strategic defense missions and cost-optimized, radiation-tolerant devices for proliferated low-Earth-orbit (LEO) constellations and stratospheric platforms. Geopolitical drivers-most notably NATO nuclear-modernization programs, renewed nuclear-power construction in Asia, and the ramp-up of small-satellite launches-are reshaping product road maps and qualification priorities. Commercial foundries are partnering with defense primes to stretch mature silicon nodes while integrating gallium nitride (GaN) and silicon carbide (SiC) for next-generation power systems. Supply-chain bottlenecks in <=90 nm radiation-hard-by-process (RHBP) capacity, together with evolving export-control regimes, spur a parallel push toward radiation-hard-by-design (RHBD) methodologies that shorten development cycles and lower cost.

Global Radiation Hardened Electronics Market Trends and Insights

Surge in LEO and Deep-Space Satellite Constellations

LEO mega-constellations are driving a new stratification of performance targets: 30-50 krad(Si) tolerant parts for mass-manufactured satellites versus >=100 krad(Si) parts for geostationary and deep-space assets. Device vendors now run parallel product lines, such as miniaturized GaN power stages that blend higher integration with lower shielding mass.Smaller spacecraft footprints intensify the need for size-, weight-, and power-optimized (SWaP) solutions while preserving single-event-effect immunity. Concurrently, on-orbit reconfigurability via radiation-tolerant FPGAs allows operators to refresh mission software without physical access, extending constellation life cycles. Strong backlog for lunar logistics and Mars relay satellites further cements deep-space demand.

Modernisation of Strategic and Tactical Defense Electronics in NATO Region

The United States and European defense ministries are channeling funds into trusted domestic microelectronics to shield critical systems from high-altitude electromagnetic pulse scenarios. The FY 2025 United States DoD budget allocates USD 24.884 million to accelerate radiation-hardened RF and opto-electronic prototypes. Test infrastructure follows suit: Naval Surface Warfare Center Crane's Short Pulse Gamma facility underpins a USD 100 million modernization drive, enabling concurrent nuclear-modernization programs.

High Design-for-Reliability Cost & Long Qualification Cycles

Developing radiation-hardened ASICs costs 5-10 times more than commercial equivalents. The Strategic Radiation-Hardened Electronics Council forecasts SEE test-beam oversubscription of up to 6,000 hours annually by 2025, a gap that stretches qualification queues. Space operators therefore pilot streamlined COTS-based selection processes to cut lead times, balancing life-orbit risk against launch cadence.

Other drivers and restraints analyzed in the detailed report include:

  1. Nuclear-New-Build Momentum in Asia and Middle-East
  2. High-Altitude UAV and Supersonic Aircraft Electronics Resilience Needs
  3. Restricted Foundry Capacity for RHBP Nodes <= 90 nm

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

The space segment accounted for 46.3% of the radiation hardened electronics market in 2024, anchoring specification baselines for total-ionizing-dose and single-event-effect immunity. Operators moving from bespoke GEO spacecraft to proliferated LEO constellations now trade some resilience for lower cost and rapid refresh, catalyzing hybrid product lines that mate 30 krad(Si) design targets with lower shielding mass. NASA's Artemis lunar program and commercial cislunar logistics underpin steady demand for >=100 krad(Si) devices that survive deep-space radiation belts.

High-Altitude UAV/HAPS platforms, forecast to grow at 4.2% to 2030, extend aerospace electronics into a quasi-space radiation spectrum. Designers leverage RHBD FPGAs for adaptive payloads and use wide-band-gap power stages to meet tight energy budgets. The radiation hardened electronics market size for this sub-segment is projected to broaden as 6G network backhaul trials migrate from prototypes to operational fleets.

Integrated circuits held 31.5% radiation hardened electronics market share in 2024, with mixed-signal ASICs consolidating multiple analog front ends and power-management functions onto a single die to trim board-level mass. Supply risks around SEE-capable beam time are prompting chip houses to qualify identical IP blocks simultaneously on two foundry flows, bolstering continuity plans.

Field-programmable gate arrays represent the fastest 4.6% CAGR as satellite operators prize in-orbit reconfiguration. The latest Kintex UltraScale XQRKU060 class blends 2 million logic cells with on-chip scrub controllers that mitigate configuration memory upsets. The radiation hardened electronics market sees FPGAs bridging the gap between fixed-function silicon and software-only fault mitigation, carving share from discrete logic.

The Radiation Hardened Electronics Market Report is Segmented by End-User (Space, and More), Component (Discrete Semiconductors, and More), Product Type (Analog and Mixed-Signal, Digital Logic, and More), Manufacturing Technique (Rad-Hard-By-Design (RHBD), and More), Semiconductor Material (Silicon, and More), Radiation Type (Total Ionizing Dose (TID), and More), Geography. The Market Forecasts are Provided in Terms of Value (USD).

Geography Analysis

North America generated 39.8% of 2024 sales, buoyed by sustained defense budgets and NASA exploration initiatives. Trusted domestic foundries, plus dedicated beam-line capacity at facilities such as NSWC Crane, shorten certification loops and anchor many prime-contractor supply chains. Space commerce diversification into lunar communications and asteroid-prospecting missions should further support regional demand.

Asia Pacific posts the quickest 4.1% CAGR to 2030 as China, India, and South Korea scale rocket fleets and commission new-build nuclear reactors. Government space agencies co-invest with local universities in RHBD design centers to decrease reliance on imported parts. Emerging commercial launch providers likewise adopt radiation-tolerant FPGAs to meet agile-satellite business models.

Europe combines ESA's large mission pipeline with strong nuclear-plant refurbishment schedules. Neuromorphic on-board processing programs such as the NEUROSPACE initiative underscore the region's pivot toward ultra-low-power compute. Middle-East space offices in the UAE and Saudi Arabia pursue Mars probes and Earth-observation clusters, opening niche opportunities for localized assembly and test. South America remains nascent but benefits from Brazilian and Argentine small-satellite projects seeking home-grown avionics.

  1. Honeywell International Inc.
  2. BAE Systems plc
  3. CAES (Cobham Advanced Electronic Solutions)
  4. Texas Instruments Inc.
  5. STMicroelectronics N.V.
  6. Microchip Technology Inc.
  7. Infineon Technologies AG
  8. Frontgrade Technologies
  9. Teledyne e2v Semiconductors
  10. Xilinx (RT Series, AMD)
  11. Renesas Electronics Corp.
  12. Solid State Devices Inc.
  13. Micropac Industries Inc.
  14. Everspin Technologies Inc.
  15. Vorago Technologies
  16. Analog Devices HiRel
  17. International Rectifier HiRel (Infineon)
  18. Maxwell Technologies (ES-capacitors)
  19. 3D Plus
  20. GSI Technology, Inc.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET LANDSCAPE

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Surge in LEO and Deep-Space Satellite Constellations
    • 4.2.2 Modernisation of Strategic and Tactical Defence Electronics in NATO Region
    • 4.2.3 Nuclear-New-Build Momentum in Asia and Middle-East
    • 4.2.4 High-Altitude UAV and Supersonic Aircraft Electronics Resilience Needs
    • 4.2.5 Mandated Radiation-Tolerance Standards in Medical Imaging (U-S FDA, EU MDR)
    • 4.2.6 Rapid Adoption of SiC/GaN Rad-Hard Power Devices in Spacecraft PPU
  • 4.3 Market Restraints
    • 4.3.1 High Design-for-Reliability Cost and Long Qualification Cycles
    • 4.3.2 Restricted Foundry capacity for RHBP (Rad-Hard-by-Process) Nodes ? 90 nm
    • 4.3.3 Performance Trade-offs vs COTS Chips (Speed, Density)
    • 4.3.4 ITAR/Export-Control Supply-Chain Bottlenecks
  • 4.4 Industry Ecosystem Analysis
  • 4.5 Technological Outlook
  • 4.6 Porter's Five Forces Analysis
    • 4.6.1 Bargaining Power of Suppliers
    • 4.6.2 Bargaining Power of Buyers
    • 4.6.3 Threat of New Entrants
    • 4.6.4 Threat of Substitute Products
    • 4.6.5 Degree of Competition

5 MARKET SIZE AND GROWTH FORECASTS (VALUES)

  • 5.1 By End-User
    • 5.1.1 Space
    • 5.1.2 Aerospace and Defense (Air, Land, Naval)
    • 5.1.3 Nuclear Power Generation and Fuel Cycle
    • 5.1.4 Medical Imaging and Radiotherapy
    • 5.1.5 High-Altitude UAV/HAPS Platforms
    • 5.1.6 Industrial Particle Accelerators and Research Labs
  • 5.2 By Component
    • 5.2.1 Discrete Semiconductors
    • 5.2.2 Sensors (Optical, Image, Environmental)
    • 5.2.3 Integrated Circuits (ASIC, SoC)
    • 5.2.4 Microcontrollers and Microprocessors
    • 5.2.5 Memory (SRAM, MRAM, FRAM, EEPROM)
    • 5.2.6 Field-Programmable Gate Arrays (FPGA)
    • 5.2.7 Power Management ICs
  • 5.3 By Product Type
    • 5.3.1 Analog and Mixed-Signal
    • 5.3.2 Digital Logic
    • 5.3.3 Power and Linear
    • 5.3.4 Processors and Controllers
  • 5.4 By Manufacturing Technique
    • 5.4.1 Rad-Hard-by-Design (RHBD)
    • 5.4.2 Rad-Hard-by-Process (RHBP)
    • 5.4.3 Rad-Hard-by-Software/Firmware Mitigation
  • 5.5 By Semiconductor Material
    • 5.5.1 Silicon
    • 5.5.2 Silicon Carbide (SiC)
    • 5.5.3 Gallium Nitride (GaN)
    • 5.5.4 Others (InP, GaAs)
  • 5.6 By Radiation Type
    • 5.6.1 Total Ionizing Dose (TID)
    • 5.6.2 Single-Event Effects (SEE)
    • 5.6.3 Displacement Damage Dose (DDD)
    • 5.6.4 Neutron and Proton Fluence
  • 5.7 By Geography
    • 5.7.1 North America
    • 5.7.2 Europe
    • 5.7.3 Asia-Pacific
    • 5.7.4 South America
    • 5.7.5 Middle East and Africa

6 COMPETITIVE LANDSCAPE

  • 6.1 Market Concentration
  • 6.2 Strategic Moves (M&A, JV, Funding, Tech-Roadmaps)
  • 6.3 Market Share Analysis
  • 6.4 Company Profiles (includes Global-Level Overview, Market-Level Overview, Core Segments, Financials, Strategic Information, Market Rank/Share, Products and Services, Recent Developments)
    • 6.4.1 Honeywell International Inc.
    • 6.4.2 BAE Systems plc
    • 6.4.3 CAES (Cobham Advanced Electronic Solutions)
    • 6.4.4 Texas Instruments Inc.
    • 6.4.5 STMicroelectronics N.V.
    • 6.4.6 Microchip Technology Inc.
    • 6.4.7 Infineon Technologies AG
    • 6.4.8 Frontgrade Technologies
    • 6.4.9 Teledyne e2v Semiconductors
    • 6.4.10 Xilinx (RT Series, AMD)
    • 6.4.11 Renesas Electronics Corp.
    • 6.4.12 Solid State Devices Inc.
    • 6.4.13 Micropac Industries Inc.
    • 6.4.14 Everspin Technologies Inc.
    • 6.4.15 Vorago Technologies
    • 6.4.16 Analog Devices HiRel
    • 6.4.17 International Rectifier HiRel (Infineon)
    • 6.4.18 Maxwell Technologies (ES-capacitors)
    • 6.4.19 3D Plus
    • 6.4.20 GSI Technology, Inc.

7 MARKET OPPORTUNITIES AND FUTURE OUTLOOK

  • 7.1 White-Space and Unmet-Need Assessment
  • 7.2 Emerging Opportunities in Modular Small-Sat Avionics
  • 7.3 On-Orbit Servicing and Manufacturing Electronics
  • 7.4 Radiation-Tolerant AI Accelerators for Edge-Space Computing
  • 7.5 Additive Manufacturing of Rad-Hard Packages