![]() |
市場調查報告書
商品編碼
1850977
電動汽車動力傳動系統:市場佔有率分析、行業趨勢、統計數據和成長預測(2025-2030 年)Electric Vehicle Powertrain - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030) |
||||||
※ 本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。
預計到 2025 年,電動車動力傳動系統市場規模將達到 2,599.2 億美元,到 2030 年將達到 6,875.5 億美元,年複合成長率為 21.48%。

這項擴張的驅動力來自內燃機的加速淘汰、電池組價格持續下降至115美元/千瓦時以及800V架構的快速普及。寬能能隙半導體將逆變器效率提升至96%以上,而從電芯到電池組的一體化設計則降低了重量和成本。北美和歐洲正在推出強力的在地化獎勵,而亞太地區則憑藉電池、馬達和電子元件的一體化叢集,在供應鏈中佔據領先地位。
預計到2024年,電動車註冊量將超過1700萬輛,其中插電式電動車將佔全球輕型車銷量的20%以上,這將推動對馬達、逆變器和電池組的需求。僅中國就實現了1100萬輛的銷量,這已經改變了供應商的產量計劃;儘管面臨宏觀經濟逆風,歐洲的獎勵仍然維持了兩位數的成長。新型電動車每輛車大約需要80公斤高等級銅和大量的稀土,這促使零件製造商在擴大產能的同時增加長期供應合約。到2024年,電池需求將超過1太瓦時(TWh),其中近一半是磷酸鋰鐵,促使原始設備製造商(OEM)重新設計電池組結構,以利用這種電池的成本優勢。雖然產量成長將降低系統總成本,但也會加劇供應商對鎖定2030年價格預測的長期合約的競爭。
歐盟將於2035年禁止銷售新的燃油汽車,而美國的「先進清潔汽車II」(Advanced Clean Car II)法規也將在同一期限實施。類似的零排放法規也正在加拿大、韓國和多個拉丁美洲市場蔓延,這使得汽車製造商幾乎沒有時間推遲電氣化轉型。傳統內燃機平台的合規成本已經超過了推出現代電動動力傳動系統所需的額外費用,研發預算也轉向整合式電力驅動橋解決方案和新一代逆變器。為了在法規要求下保持領先地位,汽車製造商必須最佳化其生產週期,將傳統的五年周期縮短至三年,這使得那些已經掌握全新電氣設計技術的供應商在平台採購中擁有更大的議價能力。
22個開發中國家加起來僅安裝了14,100個公共充電樁,這一數量限制了車輛電氣化進程,並削弱了消費者的信心。專為400V電網設計的動力傳動系統雖然續航里程足夠,但無法充分利用800V硬體的能源效率優勢,而800V硬體需要高功率的充電樁。投資不足的原因在於電網薄弱和私人資金有限。因此,汽車製造商必須根據當地基礎設施調整動力系統配置,通常會選擇更大的電池組和車載發電機,這會增加車輛重量並減緩能源效率提升。
到2024年,電池組將佔電動車總銷量的38.32%,成為電動車動力傳動系統市場中最大的單一組件。然而,由於寬能能隙帶裝置能夠實現更快的開關速度,電力電子模組的複合年成長率(CAGR)高達29.42%。到2024年,乘用車電池組的平均容量將提升至62千瓦時,這將推動對更最佳化的散熱路徑和整合結構設計的需求。碳化矽逆變器的尖峰效率可達97%,可將高速公路行駛時的功率損耗降低兩位數,並在不增加電池重量的情況下延長續航里程。驅動單元供應商正在將永磁馬達與髮夾式繞組和緊湊型減速齒輪相結合,以實現更精細的扭力控制,同時降低傳動系統噪音。單車附加價值的提升將促使逆變器、馬達和變速箱供應商之間展開整合浪潮,以追求利潤率達兩位數的電力驅動橋捆綁產品。同時,溫度控管專家將推出多通道冷板組件,該組件可在單一迴路中冷卻電池模組和電力電子設備,從而將系統重量減輕 15%。
整合式DC-DC轉換器與共用通用,從而減少了緊湊型跨界車型的引擎室空間需求。馬達製造商擴大採用無永磁設計,例如銅轉子感應和開關磁阻拓撲結構,從而減少了對鏑和釹的依賴。主要一級供應商已宣布與國內外晶片製造商簽訂多年供貨協議,以確保為2028年即將上市的晶粒提供下一代1200V碳化矽晶片。隨著供應商垂直整合程度的提高,圍繞閘極驅動演算法和散熱器佈局的智慧財產權之爭也日益激烈。
預計到2024年,純電動車將佔71.24%的市場佔有率,複合年成長率高達24.80%,這印證了市場正從插電式混合動力車和增程型電動車轉向純電動車。專為純電動車設計的滑板式平台可減少30公斤的線束,並透過將電池組整合到底底盤受力部件中簡化組裝。中國、歐盟和美國12個州的監管補貼計畫為汽車製造商提供了每輛純電動車比混合動力汽車3000至5000美元的顯著價格優勢,從而推動了純電動車的廣泛普及。德國、法國和挪威快速充電站的建設提升了公眾信心,並促進了小型電池組緊湊型純電動車的發展。汽車製造商正在採用電池組一體化(Cell-to-pack)和電池底盤一體化(Cell-to-Bistill)策略,透過去除模組外殼來提高高達20%的體積能量密度,從而間接增加了溫度控管方面的投入。
燃料電池電動車的銷量佔不到1%,但在加州、日本和韓國等氫燃料加註網路集中的大型物流走廊地區,燃料電池電動車的研發工作正在如火如荼地進行中。在預測期內,純電動車(BEV)將在城市公車、市政車隊和叫車營運商中逐步取代輕度動力傳動系統和傳統動力車,從而降低整體擁有成本。零件供應商提供可擴展的逆變器系列,能夠在400V和800V之間切換,無需更改設計即可支援純電動車和插電式混合動力車平台;此外,軟體定義的動力傳動系統控制器可處理過渡架構的雙動力源。
到2024年,亞太地區將佔據全球電動車動力傳動系統市場57.66%的佔有率,並在2030年之前以26.64%的複合年成長率成長,這主要得益於中國向拉丁美洲和東歐出口高價電動跨界車。中國電池巨頭佔據全球37.9%的市場佔有率,並利用該地區的規模經濟優勢,將電池組價格推高至每千瓦時90美元。印度的生產連結獎勵計畫提供高達國內增加價值15%的補貼,正在推動馬達、控制器和磷酸鋰鐵鋰電池的本地組裝。日本正利用其功率元件技術向全球供應碳化矽MOSFET,而韓國則向歐洲超級工廠供應高鎳NCM正極材料。
北美電池產量雖落後於其他國家,但自2022年中期以來,已宣佈在電池、馬達和逆變器工廠投資2,500億美元,從中受益匪淺。 《通膨降低法案》的清潔汽車信貸計畫要求到2025年,北美電池組件價值的60%必須來自清潔汽車信貸,這促使韓國和日本供應商在肯塔基州、田納西州和魁北克省建設正極活性材料工廠。墨西哥將成為低成本電動馬達的產地,這些馬達將出口到美國和歐洲的工廠。加拿大豐富的礦產資源將支持一項正極材料精煉項目,該項目旨在到2030年滿足北美一半的鋰需求。
歐洲電動車發展勢頭不平衡:德國和法國保持兩位數的純電動車滲透率,而英國2024年的電動車產量卻下降了20%。歐盟的「Fit-for-55」計畫和二氧化碳排放標準將支撐長期需求,像採埃孚(ZF)這樣的供應商將於2024年10月在伯明罕附近開設一家800V測試實驗室。東歐國家正利用其具競爭力的人事費用吸引最終組裝廠,以填補內燃機零件市場萎縮留下的空白。同時,中東和非洲仍在發展中,但年增率較為溫和,僅40%,主要得益於海灣主權財富基金對沙烏地阿拉伯和阿拉伯聯合大公國電池製造的融資。
The electric vehicle powertrain market size stands at USD 259.92 billion in 2025 and is projected to reach USD 687.55 billion by 2030, translating into a 21.48% CAGR.

Accelerated phase-outs of combustion engines, steady battery-pack price drops to USD 115 per kWh, and rapid adoption of 800-V architectures propel this expansion. Wide-bandgap semiconductors push inverter efficiency above 96%, while cell-to-pack engineering trims both weight and cost. Asia-Pacific leads the supply chain with integrated battery, motor, and electronics clusters, even as North America and Europe deploy powerful localization incentives.
Electric-vehicle registrations crossed 17 million units in 2024, lifting plug-in share above 20% of world light-vehicle sales and boosting demand for motors, inverters and battery packs that are three times more semiconductor-intensive than comparable combustion drivetrains. China's 11 million-unit tally alone reshaped volume planning for every supplier, while Europe's incentives preserved double-digit growth despite macro headwinds. Each new EV requires around 80 kg of high-grade copper and significant rare-earth content, so component makers have ramped long-term supply contracts in tandem with capacity additions. Battery demand topped 1 TWh in 2024; with almost half now lithium iron phosphate, OEMs are redesigning pack formats to exploit the chemistry's cost edge. Volume scale pushes total system costs down, yet intensifies supplier competition for long-run contracts that lock in price visibility through 2030.
The European Union will prohibit sales of new combustion cars by 2035, and California's Advanced Clean Cars II rule enforces the same deadline in the United States . Similar zero-emission mandates cascade across Canada, South Korea and several Latin American markets, stripping automakers of any remaining latitude to delay electrification. Compliance costs for legacy internal-combustion platforms are now higher than the incremental spend required to launch a modern e-powertrain, redirecting R&D budgets toward integrated e-axle solutions and next-generation inverters. Suppliers already proficient in clean-sheet electric designs therefore gain bargaining power in platform sourcing rounds, because OEMs must compress traditional five-year cycles into three-year refreshes to stay ahead of regulation.
Twenty-two developing nations together host barely 14,100 public chargers, a level that deters fleet electrification and weakens consumer confidence . Powertrains tuned for 400-V networks offer sufficient range but miss the full efficiency upside of 800-V hardware that requires higher-powered chargers. The investment deficit stems from fragile utility grids and limited private-sector financing. Vehicle makers must therefore tailor drivetrain configurations to local infrastructure realities, often opting for larger battery packs or onboard generators, which inflate curb weight and blunt energy efficiency gains.
Other drivers and restraints analyzed in the detailed report include:
For complete list of drivers and restraints, kindly check the Table Of Contents.
Battery packs contributed 38.32% revenue in 2024, making them the single largest element of the electric vehicle powertrain market, yet the power-electronics block is growing faster at 29.42% CAGR as wide-bandgap devices unlock higher switching speeds. Average pack capacity rose to 62 kWh in 2024 for passenger cars, a level that pushes demand for improved thermal paths and integrated structural designs. Silicon-carbide inverters now reach 97% peak efficiency, slicing highway power losses by double digits and extending vehicle range without adding battery mass. Drive-unit suppliers layer permanent-magnet motors with hairpin windings and compact reduction gears, allowing finer torque control while shaving drivetrain noise. Higher-value content per vehicle spurs a wave of mergers among inverter, motor, and gearbox suppliers that pursue e-axle bundles promising double-digit margins. Concurrently, thermal-management specialists introduce multi-channel cold-plate assemblies that cool battery modules and power electronics from a single loop, saving 15% system weight.
Integrated DC-DC converters share common cooling plates with on-board chargers, shrinking under-hood space requirements in compact crossover models. Motor suppliers increase permanent-magnet free designs that use copper-rotor induction or switched-reluctance topologies to reduce dependence on dysprosium and neodymium. Tier-1 giants announce multi-year supply accords with domestic and Chinese chip fabricators to secure next-generation 1,200-V SiC dies for 2028 vehicle launches. As suppliers vertically integrate, intellectual-property battles intensify around gate-drive algorithms and heat-spreader layouts that deliver the last two points of efficiency.
Battery electric vehicles captured 71.24% of share in 2024 and are forecast to clip along at 24.80% CAGR, confirming the market's pivot away from plug-in hybrids and range-extended architectures. Dedicated BEV skateboard platforms shave 30 kg of wiring and simplify assembly by integrating the battery pack as a stressed chassis member. Regulatory credit regimes in China, the European Union, and twelve U.S. states give carmakers an effective price advantage of USD 3,000-USD 5,000 per BEV compared with hybrid equivalents, widening BEV adoption. Fast-charger build-outs across Germany, France, and Norway raise public confidence, enabling compact-segment BEVs with smaller packs, which in turn shift component demand toward higher power-density inverters. Automakers employ cell-to-pack and cell-to-chassis strategies to strip module casings and increase volumetric energy density by up to 20%, indirectly boosting thermal-management spending.
Fuel-cell electric vehicles remain below 1% of unit volume yet draw significant R&D within heavy-duty logistics corridors in California, Japan, and South Korea, where hydrogen fueling networks cluster. Over the forecast horizon, BEVs siphon share from mild-hybrid and conventional powertrains in urban buses, municipal fleets and ride-hail operators that optimize around lower total cost of ownership. Component suppliers respond with scalable inverter families that toggle between 400 V and 800 V to serve both BEV and PHEV platforms without redesign, while software-defined powertrain controllers handle dual traction sources for transitional architectures.
The Electric Vehicle Powertrain Market Report is Segmented by Component (Battery Pack, Power Electronics, and More), Propulsion Type (Battery Electric Vehicle (BEV) and More), Vehicle Class (Passenger Cars, Light Commercial Vehicles, and More), Voltage Architecture (800 V Systems and More), Sales Channel (OEM-Fitted Powertrains and More) and Geography. The Market Forecasts are Provided in Terms of Value (USD).
Asia-Pacific commanded 57.66% of the electric vehicle powertrain market in 2024 and is projected to grow at 26.64% CAGR through 2030 as China exports value-priced electric crossovers to Latin America and Eastern Europe. Chinese battery champions held 37.9% global share, giving the region scale advantages that drive pack prices toward USD 90 per kWh. India's Production-Linked Incentive program disburses subsidies equal to up to 15% of domestic value added, spurring local assembly of motors, controllers and lithium iron phosphate cells. Japan leverages power-device know-how to ship SiC MOSFETs worldwide, while South Korea supplies high-nickel NCM cathodes to European gigafactories.
North America trails in volume but benefits from USD 250 billion of announced investment across batteries, motors and inverter fabs since mid-2022. The Inflation Reduction Act's clean-vehicle credit requires 60% North-American battery-component value in 2025, prompting Korean and Japanese suppliers to build cathode-active-material plants in Kentucky, Tennessee and Quebec. Mexico rises as a low-cost e-motor hub exporting to both U.S. and European plants. Canada's mineral wealth underpins cathode refining ventures that aim to supply half of the continent's lithium needs by 2030.
Europe wrestles with uneven momentum: Germany and France sustain double-digit BEV penetration, yet the United Kingdom saw a 20% retreat in electric-vehicle output during 2024 due to stalled incentives and battery-capacity shortfalls. The European Union's Fit-for-55 package and CO2 fleet mandates keep long-term demand intact, driving suppliers such as ZF to open an 800 V testing lab near Birmingham in October 2024. Eastern European countries pitch competitive labor costs to attract final-assembly plants, filling the gap left by ICE component contraction. Meanwhile, Middle East and Africa remain nascent but post 40% annual growth from a small base, aided by Gulf sovereign-wealth funds that bankroll battery-cell manufacturing in Saudi Arabia and the United Arab Emirates.