封面
市場調查報告書
商品編碼
1844611

光纖壓力感測器:市場佔有率分析、行業趨勢、統計數據和成長預測(2025-2030)

Fiber Optic Pressure Sensors - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 120 Pages | 商品交期: 2-3個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

預計光纖壓力感測器市場規模到 2025 年將達到 38 億美元,到 2030 年將成長至 59.6 億美元,複合年成長率為 9.42%。

光纖壓力感測器市場-IMG1

由於該技術適用於地下油井和電動車電池組等惡劣環境下的即時監控,因此需求強勁。法布里-珀羅微腔的日益小型化,加上自2020年以來單位解調成本下降了60%,使其在工業自動化、醫療保健、移動出行等領域得到了廣泛應用。連接複用技術的提升推動了光纖布拉格光柵 (FBG) 的普及,而邊緣分析在智慧工廠和嵌入式設備中的整合則凸顯了新的成長途徑。儘管成本比壓阻感測器高出2-3倍,但整體擁有成本的不斷提升、員工技能的提升以及連接器標準化舉措,正在持續降低應用門檻。

全球光纖壓力感測器趨勢與洞察

法布里-珀羅 MEMS 腔體的快速小型化

大批量微影術可使腔體尺寸達到 10µm 或更小,同時保持 +/-0.01% 的滿量程精度。這項突破使空間受限的醫療設備能夠檢測低至 2 kPa 的壓力,靈敏度比傳統聚合物感測器高 80%。緊湊的腔體可實現遵循矽光電製程的晶圓級整合,從而縮短響應時間並降低單位成本。微型感測器現已支援基於導管的心血管監測、高速航太驅動回饋和嵌入式電池單元診斷,且不會損害結構完整性。隨著產量的增加,光纖壓力感測器市場的有線和無線部分都將受益於更高的性能,同時降低每通道價格。

降低分散式光纖詢問單元的成本

自2020年以來,矽光電的整合已使檢測單元的價格下降了約60%,使亞奈米波長解析度進入常規工業預算範圍。低成本單元現已實現2.5με的精度和亞秒響應時間,加速了橋樑、隧道和管道結構健康監測的應用。中國以11.3%的市佔率領先全球,檢驗了大規模智慧工廠部署的成本競爭力。邊緣分析韌體進一步減少了數據回程傳輸的需求,增強了遠端資產的價值提案,並推動了光纖壓力感測器市場的整體成長。

與壓阻感測器相比,平均售價更高

2-3倍的單價溢價仍然存在,尤其是在預算緊張的多感測器工業自動化計劃中。與簡單的應變計調節器相比,專用讀取硬體會增加資本成本。然而,在腐蝕性或高溫環境下,維護成本的節省可以抵消資產生命週期內的初始成本,從而推動逐步更換。預計到2028年,矽光電的規模化將使量產生產線上的差距縮小到接近平價,進而緩解光纖壓力感測器市場的此限制因素。

細分分析

到2024年,有線設備將佔總收入的73%,鞏固其在井下完井、管線舷梯和工業爐等高可靠性資產中的地位。隨著煉油廠升級和LNG接收站擴建,有線光纖壓力感測器單元的市場規模預計將穩定成長。在無線傳播不可靠的環境中,實體連接可確保數公里光纖上的訊號完整性。

無線節點將以 12% 的複合年成長率成長,以適應佈線增加重量、複雜性和安全風險的安裝需求。植入式醫療設備、電池單元和旋轉機械將使用非同步讀取的無電池被動標籤。超低功耗光學讀取器成本的持續下降將擴大早期採用者以外的潛在用戶群,從而推動整個光纖壓力感測器市場的需求[3]。

法布里-珀羅感測器憑藉其亞毫巴解析度和在200°C下的穩定性,佔據了47%的收入佔有率。小於10µm的微腔設計使其能夠整合到皮下注射針和狹窄的地質鑽孔中,從而鞏固了光纖壓力感測器的市場佔有率領先地位。

然而,FBG陣列的擴張速度最快,複合年成長率高達13.5%。數百個光柵可在單一光纖上復用,從而降低結構安全監控和遠距管道計劃的單點成本。高速解調器可達到±1 pm的穩定性,增強高層建築的地震監測和風荷載分析。隨著解調成本的下降,FBG的採用將削弱法布里-珀羅的主導地位,並擴大光纖壓力感測器市場的總潛在收益。

區域分析

由於嚴格的安全規範以及頁岩氣領域電動汽車電池工廠的擴張,北美地區將在2024年佔據38%的收益,佔據領先地位。聯邦政府對先進製造業的激勵措施以及油田服務巨頭的進駐,正在推動快速原型製作和早期商業化。航太計畫也在飛行關鍵系統中採用光學儀表,鞏固了該地區在光纖壓力感測器市場的創新主導地位。

預計到2030年,亞太地區將迎來最強勁的複合年成長率,達到12.2%。中國在全球分散式感測應用中所佔的11.3%佔有率,證明了政府主導的智慧工廠部署。一家日本精密汽車巨頭正在將光學感測器整合到電池冷卻迴路中,而印度煉油廠的擴建則需要高溫測量。矽光電的區域成本優勢將加速詢問單元的產量,擴大國內供應,並刺雷射纖壓力感測器市場的整體成長。

歐洲正穩步成長,以汽車製造、石化加工和離岸風力發電為主導。德國在全球光纖安裝量中所佔佔有率為9.4%,反映了其在工業自動化領域的長期領先地位。英國海底營運商正在北海新一輪的壽命延長計劃中採用濕式光纖連接器。法國航太部門越來越青睞用於即時結構診斷的光學陣列,這為整個光纖壓力感測器市場增添了穩定的成長動力。

其他福利:

  • Excel 格式的市場預測 (ME) 表
  • 3個月的分析師支持

目錄

第1章 引言

  • 研究假設和市場定義
  • 調查範圍

第2章調查方法

第3章執行摘要

第4章 市場狀況

  • 市場概況
  • 市場促進因素
    • 法布里-珀羅 MEMS 腔體的快速小型化
    • 分散式光纖檢查單元的成本降低
    • 電動汽車電池組熱失控安全中的 OEM 整合
    • 井下數位化目標(OandG)授權
    • 智慧工廠中的邊緣分析(報告不足)
    • 植入式智慧導管資金籌措激增(未通報)
  • 市場限制
    • 高 ASP 與壓阻感測器
    • 海底系統連接器標準化延遲。
    • 合格視光學技術人員短缺問題未充分通報
    • 微腔設計的智慧財產權碎片化(通報不足)
  • 價值/供應鏈分析
  • 監管狀況
  • 技術展望
  • 波特五力分析
    • 新進入者的威脅
    • 買方的議價能力
    • 供應商的議價能力
    • 替代品的威脅
    • 競爭的激烈程度

第5章市場規模及成長預測

  • 按類型
    • 有線
    • 無線的
  • 依技術
    • 法布里-珀羅
    • 光纖布拉格光柵
    • 基於實力
    • 其他技術
  • 按用途
    • 石油和天然氣
    • 工業自動化
    • 醫療保健和醫療設備
    • 汽車與移動出行
    • 消費性電子產品
    • 石化
    • 其他用途
  • 按安裝環境
    • 井下/地下
    • 工業地面設備
    • 體內/生物醫學
    • 航太和無人機
    • 海洋/海底結構
  • 按地區
    • 北美洲
      • 美國
      • 加拿大
    • 歐洲
      • 英國
      • 德國
      • 法國
      • 俄羅斯
      • 其他歐洲國家
    • 亞太地區
      • 中國
      • 印度
      • 日本
      • 其他亞太地區
    • 南美洲
      • 巴西
      • 阿根廷
      • 南美洲其他地區
    • 中東和非洲
      • 海灣合作理事會國家
      • 土耳其
      • 南非
      • 其他中東和非洲地區

第6章 競爭態勢

  • 市場集中度
  • 策略舉措
  • 市佔率分析
  • 公司簡介
    • AP Sensing GmbH
    • Baker Hughes Company
    • Halliburton Company
    • Honeywell International Inc.
    • Infineon Technologies AG
    • Luna Innovations Incorporated(incl. FISO Technologies)
    • NXP Semiconductors NV
    • Omron Corporation
    • Opsens Inc.
    • Panasonic Holdings Corporation
    • Pressure Profile Systems Inc.
    • Robert Bosch GmbH
    • Schlumberger Limited(SLB)
    • STMicroelectronics NV
    • Texas Instruments Incorporated
    • Yokogawa Electric Corporation
    • ABB Ltd.
    • Broadcom Inc.
    • Rockwell Automation Inc.
    • Sumitomo Electric Industries Ltd.

第7章 市場機會與未來展望

簡介目錄
Product Code: 53925

The fiber optic pressure sensors market size is valued at USD 3.8 billion in 2025 and is forecast to rise to USD 5.96 billion by 2030, advancing at a 9.42% CAGR.

Fiber Optic Pressure Sensors - Market - IMG1

Robust demand stems from the technology's suitability for real-time monitoring in harsh environments such as downhole oil wells and electric-vehicle battery packs. Ongoing miniaturization of Fabry-Perot micro-cavities and a 60% fall in interrogation-unit costs since 2020 have broadened adoption across industrial automation, healthcare, and mobility. Multiplexing gains have lifted Fiber Bragg Grating (FBG) uptake, while edge analytics integration in smart factories and implantable devices underscores new avenues of growth. Despite a 2-3 X cost premium over piezo-resistive sensors, rising total-cost-of-ownership advantages, workforce upskilling, and connector standardization initiatives continue to mitigate adoption barriers.

Global Fiber Optic Pressure Sensors Market Trends and Insights

Rapid Miniaturization of Fabry-Perot MEMS Cavities

Mass-production lithography now delivers cavity dimensions below 10 µm while preserving +-0.01% full-scale accuracy. This leap enables pressure detection as low as 2 kPa in space-constrained medical devices, outperforming conventional polymer sensors by 80% sensitivity. Smaller cavities shorten response times and lower unit cost through wafer-level integration that follows silicon-photonics process flows. Miniature sensors now support catheter-based cardiovascular monitoring, high-speed aerospace actuation feedback, and embedded battery-cell diagnostics without compromising structural integrity. As production volumes climb, the wired and wireless segments of the fiber optic pressure sensors market both benefit from higher performance at reduced price per channel.

Cost-Down of Distributed Fiber-Optic Interrogation Units

The integration of silicon photonics has trimmed interrogation-unit pricing by roughly 60% since 2020, placing sub-nanometer wavelength resolution within reach of routine industrial budgets. Low-cost units now achieve 2.5 µε accuracy and sub-1 s response time, accelerating structural-health-monitoring adoption in bridges, tunnels, and pipelines. China leads global deployments with 11.3% share, validating cost competitiveness in large-scale smart-factory rollouts. Edge-analytics firmware further reduces data-backhaul needs, strengthening the value proposition in remote assets and boosting overall uptake of the fiber optic pressure sensors market.

High ASP Versus Piezo-Resistive Sensors

A 2-3 X unit-price premium persists, particularly in multi-sensor industrial automation projects where budget ceilings remain strict. Specialized interrogation hardware inflates capital cost compared to simple strain-gauge conditioners. Yet maintenance savings in corrosive or high-temperature sites offset initial spend over asset life cycles, encouraging gradual substitution. Silicon-photonics scale-up is expected to shrink the gap to near parity in high-volume lines by 2028, easing this restraint on the fiber optic pressure sensors market.

Other drivers and restraints analyzed in the detailed report include:

  1. OEM Integration in EV Battery-Pack Thermal-Runaway Safety
  2. Mandatory Down-Hole Digitalization Targets in Oil & Gas
  3. Connector Standardization Lag in Subsea Systems

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

Wired devices represented 73% of revenue in 2024, cementing their role in high-integrity assets such as downhole completions, pipeline corridors, and industrial furnaces. The fiber optic pressure sensors market size for wired units is projected to rise steadily alongside refinery upgrades and LNG terminal expansions. Physical connectivity guarantees signal integrity across kilometers of fiber in environments where wireless propagation is unreliable.

Wireless nodes, growing at a 12% CAGR, address installations where cabling adds weight, complexity, or safety risk. Implantable medical devices, battery cells, and rotating machinery capitalize on battery-free passive tags interrogated asynchronously. Continuous cost declines in ultra-low-power optical interrogators widen the addressable base beyond early adopters, lifting overall demand within the broader fiber optic pressure sensors market.[3]

Fabry-Perot sensors held 47% revenue share thanks to sub-milli-bar resolution and robustness at 200 °C. Their micro-cavity designs, now below 10 µm, allow integration in hypodermic needles and narrow geological perforations, reinforcing leadership within the fiber optic pressure sensors market share.

FBG arrays, however, will expand the fastest at 13.5% CAGR. A single fiber multiplexes hundreds of gratings, trimming per-point cost for structural-health-monitoring and long-haul pipeline projects. High-speed demodulators achieve +-1 pm stability, enhancing earthquake-resilient building surveillance and high-rise wind-load analysis. As interrogation costs fall, FBG uptake moderates Fabry-Perot dominance while enlarging total addressable revenue for the fiber optic pressure sensors market.

The Fiber Optic Pressure Sensors Market Report is Segmented by Type (Wired, Wireless), Technology (Fabry-Perot, Fiber Bragg Grating, and More), Application (Oil & Gas, Industrial Automation, Healthcare & Medical Devices, and More), Installation Environment (Down-hole/Sub-surface, Industrial Surface Plants, In-vivo/Biomedical, and More), and Geography. The Market Forecasts are Provided in Terms of Value (USD).

Geography Analysis

North America led with 38% revenue in 2024, supported by rigorous safety codes across shale plays and expanding EV battery plants. Federal incentives for advanced manufacturing and the presence of oilfield service majors foster rapid prototyping and early commercial launches. Aerospace programs also adopt optical gauges for flight-critical systems, reinforcing the region's innovation edge within the fiber optic pressure sensors market.

Asia-Pacific posts the strongest 12.2% CAGR to 2030. China's 11.3% share of global distributed sensing deployments evidences government-driven smart-factory rollouts. Japan's precision automotive giants integrate optical sensors in battery cooling loops, while India's refinery expansions demand high-temperature gauging. Regional cost advantages in silicon photonics accelerate interrogation-unit output, broadening domestic availability and stimulating overall growth in the fiber optic pressure sensors market.

Europe records stable uptake anchored in automotive manufacturing, petrochemical processing, and offshore wind. Germany's 9.4% share of global optical deployments reflects long-standing leadership in industrial automation. United Kingdom subsea operators embrace wet-mate optical connectors for a new wave of North Sea life-extension projects. France's aerospace sector increasingly favors optical arrays for real-time structural diagnostics, adding to steady momentum across the fiber optic pressure sensors market.

  1. AP Sensing GmbH
  2. Baker Hughes Company
  3. Halliburton Company
  4. Honeywell International Inc.
  5. Infineon Technologies AG
  6. Luna Innovations Incorporated (incl. FISO Technologies)
  7. NXP Semiconductors N.V.
  8. Omron Corporation
  9. Opsens Inc.
  10. Panasonic Holdings Corporation
  11. Pressure Profile Systems Inc.
  12. Robert Bosch GmbH
  13. Schlumberger Limited (SLB)
  14. STMicroelectronics N.V.
  15. Texas Instruments Incorporated
  16. Yokogawa Electric Corporation
  17. ABB Ltd.
  18. Broadcom Inc.
  19. Rockwell Automation Inc.
  20. Sumitomo Electric Industries Ltd.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET LANDSCAPE

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Rapid miniaturisation of Fabry-Perot MEMS cavities
    • 4.2.2 Cost-down of distributed fiber-optic interrogation units
    • 4.2.3 OEM integration in EV battery-pack thermal-runaway safety
    • 4.2.4 Mandatory down-hole digitalisation targets (OandG)
    • 4.2.5 Edge-analytics in smart factories (under-reported)
    • 4.2.6 Implantable smart-catheter RandD funding spike (under-reported)
  • 4.3 Market Restraints
    • 4.3.1 High ASP vs piezo-resistive sensors
    • 4.3.2 Connector standard-isation lag in subsea systems
    • 4.3.3 Scarcity of opto-qualified technicians (under-reported)
    • 4.3.4 IP fragmentation around micro-cavity designs (under-reported)
  • 4.4 Value / Supply-Chain Analysis
  • 4.5 Regulatory Landscape
  • 4.6 Technological Outlook
  • 4.7 Porter's Five Forces Analysis
    • 4.7.1 Threat of New Entrants
    • 4.7.2 Bargaining Power of Buyers
    • 4.7.3 Bargaining Power of Suppliers
    • 4.7.4 Threat of Substitutes
    • 4.7.5 Intensity of Rivalry

5 MARKET SIZE and GROWTH FORECASTS (VALUE)

  • 5.1 By Type
    • 5.1.1 Wired
    • 5.1.2 Wireless
  • 5.2 By Technology
    • 5.2.1 Fabry-Perot
    • 5.2.2 Fiber Bragg Grating
    • 5.2.3 Intensity-Based
    • 5.2.4 Other Technologies
  • 5.3 By Application
    • 5.3.1 Oil and Gas
    • 5.3.2 Industrial Automation
    • 5.3.3 Healthcare and Medical Devices
    • 5.3.4 Automotive and Mobility
    • 5.3.5 Consumer Electronics
    • 5.3.6 Petrochemical
    • 5.3.7 Other Applications
  • 5.4 By Installation Environment
    • 5.4.1 Down-hole / Sub-surface
    • 5.4.2 Industrial Surface Plants
    • 5.4.3 In-vivo / Biomedical
    • 5.4.4 Aerospace and UAV
    • 5.4.5 Marine and Subsea Structures
  • 5.5 By Geography
    • 5.5.1 North America
      • 5.5.1.1 United States
      • 5.5.1.2 Canada
    • 5.5.2 Europe
      • 5.5.2.1 United Kingdom
      • 5.5.2.2 Germany
      • 5.5.2.3 France
      • 5.5.2.4 Russia
      • 5.5.2.5 Rest of Europe
    • 5.5.3 Asia-Pacific
      • 5.5.3.1 China
      • 5.5.3.2 India
      • 5.5.3.3 Japan
      • 5.5.3.4 Rest of Asia-Pacific
    • 5.5.4 South America
      • 5.5.4.1 Brazil
      • 5.5.4.2 Argentina
      • 5.5.4.3 Rest of South America
    • 5.5.5 Middle East and Africa
      • 5.5.5.1 GCC Countries
      • 5.5.5.2 Turkey
      • 5.5.5.3 South Africa
      • 5.5.5.4 Rest of Middle East and Africa

6 COMPETITIVE LANDSCAPE

  • 6.1 Market Concentration
  • 6.2 Strategic Moves
  • 6.3 Market Share Analysis
  • 6.4 Company Profiles (includes Global level Overview, Market level overview, Core Segments, Financials as available, Strategic Information, Market Rank/Share for key companies, Products and Services, and Recent Developments)
    • 6.4.1 AP Sensing GmbH
    • 6.4.2 Baker Hughes Company
    • 6.4.3 Halliburton Company
    • 6.4.4 Honeywell International Inc.
    • 6.4.5 Infineon Technologies AG
    • 6.4.6 Luna Innovations Incorporated (incl. FISO Technologies)
    • 6.4.7 NXP Semiconductors N.V.
    • 6.4.8 Omron Corporation
    • 6.4.9 Opsens Inc.
    • 6.4.10 Panasonic Holdings Corporation
    • 6.4.11 Pressure Profile Systems Inc.
    • 6.4.12 Robert Bosch GmbH
    • 6.4.13 Schlumberger Limited (SLB)
    • 6.4.14 STMicroelectronics N.V.
    • 6.4.15 Texas Instruments Incorporated
    • 6.4.16 Yokogawa Electric Corporation
    • 6.4.17 ABB Ltd.
    • 6.4.18 Broadcom Inc.
    • 6.4.19 Rockwell Automation Inc.
    • 6.4.20 Sumitomo Electric Industries Ltd.

7 MARKET OPPORTUNITIES AND FUTURE OUTLOOK

  • 7.1 White-space and Unmet-Need Assessment