全球搜尋增強產生 (RAG) 市場按產品、類型、應用、部署類型、最終用戶和地區分類 - 預測至 2030 年
市場調查報告書
商品編碼
1856029

全球搜尋增強產生 (RAG) 市場按產品、類型、應用、部署類型、最終用戶和地區分類 - 預測至 2030 年

Retrieval-augmented Generation (RAG) Market by Offering (Solution (RAG-enabled platforms, data management and indexing layers, retrieval & search models), Services), Type, Application, End User, and Deployment Type - Global Forecast to 2030

出版日期: | 出版商: MarketsandMarkets | 英文 350 Pages | 訂單完成後即時交付

價格

據估計,搜尋增強生成 (RAG) 市場在 2025 年的價值為 19.4 億美元,預計到 2030 年將達到 98.6 億美元,複合年成長率為 38.4%。

調查範圍
調查年度 2024-2030
基準年 2024
預測期 2025-2030
考慮單位 金額(百萬美元/十億美元)
部分 按產品/服務、類型、應用程式、部署類型、最終用戶、區域
目標區域 北美洲、歐洲、亞太地區、中東和非洲、拉丁美洲

微軟、AWS、Google、Anthropic 和 Cohere 等領先科技公司正在大力投資基於 RAG 的解決方案、整合和夥伴關係。雲端超大規模雲端服務商正在將 RAG 整合到其企業級 AI 服務中,例如 Azure OpenAI 服務和 AWS Bedrock,從而使企業能夠更輕鬆地將搜尋功能整合到其生成式 AI 應用中。這個不斷擴展的生態系統不僅提高了人們對 RAG 的認知度,而且透過為企業提供即用型、擴充性的解決方案,降低了採用 RAG 的門檻。持續的創業投資資金支持新興企業,以及模型提供者和搜尋基礎設施供應商之間的合作,將進一步加速市場成長。

檢索增強生成(RAG)市場-IMG1

隨著企業持續處理大量結構化和非結構化數據,強大的索引和高效的數據管理對於最佳化 RAG 效能至關重要。向量資料庫、嵌入和即時資料擷取技術的進步正在推動這些解決方案的快速普及。在對高品質資料搜尋、低延遲效能和可擴展架構日益成長的需求驅動下,資料管理和索引層預計將以最快的速度成長,尤其是在醫療保健、金融服務和生命科學等處理複雜資料集的行業。

「按類型分類,基本款和擴展款 RAG 細分市場將在預測期內引領市場。

基礎型和增強型 RAG 預計將佔據最大的市場佔有率,這主要得益於尋求可靠搜尋增強生成能力的企業早期採用此類產品。這類產品將大規模語言模型與強大的搜尋架構結合,使組織能夠整合結構化和非結構化資料來源,從而增強決策和知識生成能力。基礎型 RAG 解決方案已廣泛應用於企業搜尋、內容摘要和特定領域資料合成,具有高精度、擴充性和高效的運作效能。增強型 RAG 透過整合微調的領域知識、相關性排序和高階嵌入機制,進一步提升了基礎模型的效能。企業青睞這類產品,是因為它具有穩定性、成熟的應用案例和經證實的投資報酬率,使其成為市場規模最大的細分市場。此外,技術供應商不斷透過預訓練模型和即用即用整合功能來增強基礎型 RAG 平台,進一步鞏固了其市場領先地位。

在強勁的企業需求和快速成長的開發團體的推動下,亞太地區正成為RAG市場的主要成長中心。該地區的企業正在利用RAG來管理醫療保健、物流和能源等複雜且數據密集的行業。雲端基礎系統和5G網路的部署為邊緣端的RAG助手和知識工具開啟了新的機會。亞太地區的成長得益於政府、全球科技巨頭和本地參與企業之間的夥伴關係,確保解決方案符合當地的法規和文化需求。亞太地區不僅是RAG快速普及的地區,也將影響RAG的全球未來發展,尤其是在多模態人工智慧和跨領域人工智慧等領域。

本報告對全球搜尋增強生成 (RAG) 市場進行了分析,並按產品、類型、應用、部署類型、最終用戶、區域趨勢以及市場參與者概況對其進行了細分。

目錄

第1章 引言

第2章調查方法

第3章執行摘要

第4章重要考察

第5章 市場概覽與產業趨勢

  • 介紹
  • 市場動態
  • 搜尋增強生成(RAG)市場:簡史
  • 供應鏈分析
  • 生態系統
  • 案例研究
  • 波特五力模型
  • 專利分析
  • 搜尋增強生成 (RAG) 市場中影響買家/客戶的干擾因素
  • 定價分析
  • 主要相關人員和採購標準
  • 技術分析
  • 監管狀態
  • 大型會議和活動
  • 搜尋增強生成 (RAG) 市場技術藍圖
  • 搜尋增強生成 (RAG) 市場的最佳實踐
  • 當前和新興的經營模式經營模式
  • 搜尋增強生成 (RAG) 市場中使用的工具、框架和技術
  • 投資和資金籌措方案
  • 人工智慧/生成式人工智慧對搜尋增強和生成 (RAG) 市場的影響
  • 美國關稅對2025年RAG市場的影響

第6章搜尋增強生成(RAG)市場(依產品/服務分類)

  • 介紹
  • 解決方案
  • 服務

第7章搜尋增強生成(RAG)市場(按類型分類)

  • 介紹
  • 基本 RAG 和增強型 RAG
  • 智慧體和自適應 RAG
  • 基於知識結構化記憶體的 RAG
  • 隱私保護和去中心化 RAG
  • 其他

第8章搜尋增強生成(RAG)市場(按應用領域分類)

  • 介紹
  • 企業搜尋
  • 領域特定數據綜合
  • 內容摘要和生成
  • 個人化推薦和見解
  • 程式碼和開發者生產力
  • 其他

第9章搜尋增強生成 (RAG) 市場(按部署類型分類)

  • 介紹
  • 本地部署

第10章搜尋增強生成 (RAG) 市場(按最終用戶分類)

  • 介紹
  • 醫療保健和生命科學
  • 零售與電子商務
  • 金融服務
  • 電訊
  • 教育
  • 媒體與娛樂
  • 其他

第11章搜尋增強生成 (RAG) 市場(按地區分類)

  • 介紹
  • 北美洲
    • 北美:宏觀經濟展望
    • 美國
    • 加拿大
  • 歐洲
    • 歐洲:宏觀經濟展望
    • 英國
    • 德國
    • 法國
    • 義大利
    • 其他
  • 亞太地區
    • 亞太地區:宏觀經濟展望
    • 中國
    • 印度
    • 日本
    • 澳洲和紐西蘭
    • 韓國
    • 其他
  • 中東和非洲
    • 中東與非洲:宏觀經濟展望
    • 阿拉伯聯合大公國
    • 沙烏地阿拉伯王國
    • 南非
    • 其他
  • 拉丁美洲
    • 拉丁美洲:宏觀經濟展望
    • 巴西
    • 墨西哥
    • 其他

第12章 競爭格局

  • 介紹
  • 主要參與企業的策略/優勢,2022-2025年
  • 2024年收入分析
  • 2024年市佔率分析
  • 品牌/產品對比
  • 估值和財務指標
  • 公司估值矩陣:主要參與企業,2024 年
  • 公司估值矩陣:Start-Ups/中小企業,2024 年
  • 競爭場景

第13章:公司簡介

  • 介紹
  • 主要參與企業
    • MICROSOFT
    • AWS
    • GOOGLE
    • ANTHROPIC
    • IBM
    • NVIDIA
    • COHERE
    • PINECONE
    • ELASTIC
    • MONGODB
  • 其他公司
    • PROGRESS SOFTWARE
    • RAGIE.AI
    • CLARIFAI
    • VECTARA
    • WEAVIATE
    • CHATBEES
    • ZILLIZ
    • QDRANT

第14章:鄰近/相關市場

  • 介紹
  • 生成式人工智慧市場
  • 大規模語言模型(LLM)市場

第15章附錄

Product Code: TC 9579

The retrieval-augmented generation (RAG) market is estimated to be USD 1.94 billion in 2025 and is projected to reach USD 9.86 billion by 2030 at a CAGR of 38.4%.

Scope of the Report
Years Considered for the Study2024-2030
Base Year2024
Forecast Period2025-2030
Units ConsideredValue (USD Million/ Billion)
SegmentsOffering, Type, Application, End User, Deployment Type, and Region
Regions coveredNorth America, Europe, Asia Pacific, Middle East & Africa, and Latin America

Major technology companies, including Microsoft, AWS, Google, Anthropic, and Cohere, are heavily investing in RAG-powered solutions, integrations, and partnerships. Cloud hyperscalers are embedding RAG into their enterprise AI offerings, such as Azure OpenAI Service and AWS Bedrock, making it easier for businesses to integrate retrieval capabilities into their generative AI applications. This ecosystem expansion not only raises awareness of RAG but also lowers barriers to adoption by providing enterprises with ready-to-use, scalable solutions. Continued venture funding into RAG startups and partnerships between model providers and retrieval infrastructure vendors further accelerate the market's growth trajectory.

Retrieval-augmented Generation (RAG) Market - IMG1

"Data management and indexing layer solution segment to witness significant growth during forecast period."

As enterprises continue to handle massive volumes of structured and unstructured data, robust indexing and efficient data management become critical for optimal RAG performance. Advances in vector databases, embeddings, and real-time data ingestion are driving rapid adoption of these solutions. With increasing demand for high-quality data retrieval, low-latency performance, and scalable architecture, the data management and indexing layer is projected to grow at the fastest rate, particularly in sectors with complex datasets like healthcare, financial services, and life sciences.

"By type, foundational and enhanced RAG segment to lead market during forecast period."

Foundational and enhanced RAG is projected to account for the largest market share due to its early adoption across enterprises seeking reliable retrieval-augmented generative capabilities. This type combines large language models with robust retrieval architectures, enabling organizations to integrate structured and unstructured data sources for enhanced decision-making and knowledge generation. Foundational RAG solutions are widely deployed in enterprise search, content summarization, and domain-specific data synthesis, offering high accuracy, scalability, and operational efficiency. Enhanced RAG variants further improve the performance of foundational models by incorporating fine-tuned domain knowledge, relevance ranking, and advanced embedding mechanisms. Enterprises favor this type for its stability, established use cases, and proven ROI, making it the most prominent sub-segment in terms of market size. Additionally, technology vendors continue to enhance foundational RAG platforms with pre-trained models and plug-and-play integration capabilities, further reinforcing their market leadership.

"Asia Pacific to record highest growth rate during forecast period."

Asia Pacific is becoming a key growth hub for the RAG market, driven by strong enterprise demand and a rapidly growing developer community. Companies in the region are using RAG to manage complex, data-heavy industries like healthcare, logistics, and energy. The rollout of cloud-based systems and 5G networks is opening up new opportunities for RAG-powered assistants and knowledge tools at the edge. Growth in the Asia Pacific comes from partnerships between governments, global tech giants, and local players, which ensures solutions meet local rules and cultural needs. Making Asia Pacific not just a fast adopter, but also a region that will influence the global future of RAG, especially in areas like multimodal and cross-domain AI.

Breakdown of primaries

The study contains insights from various industry experts, from solution vendors to Tier 1 companies. The break-up of the primaries is as follows:

  • By Company Type: Tier 1 - 35%, Tier 2 - 45%, and Tier 3 - 20%
  • By Designation: C-level -35%, D-level - 30%, and Others - 35%
  • By Region: North America - 40%, Europe - 20%, Asia Pacific - 25%, Middle East & Africa - 9%, Latin America - 6%

The major players in the retrieval-augmented generation (RAG) market include Microsoft (US), Amazon Web Services, Inc. (US), Anthropic (US), Google (US), IBM (US), Cohere (Canada), NVIDIA (US), Pinecone (US), Elastic N.V. (US), Progress Software Corporation (US), Vectra AI, Inc. (US), Ragie.ai (US), Clarifai (US), Chatbees (US), Zilliz (US), Weaviate (Netherlands), Qdrant (Berlin), and MongoDB (US). These players have adopted various growth strategies, such as partnerships, agreements, collaborations, new product launches, enhancements, and acquisitions, to expand their market footprint.

Research Coverage

The market study covers the retrieval-augmented generation (RAG) market size and growth potential across different segments, including offering, type, application, end user, deployment type, and region. The offerings studied include solutions (RAG-enabled platforms, data management and indexing layers, retrieval & search models, and other solutions), and services (managed and professional). The type segment includes foundational & enhanced RAG, agentic & adaptive RAG, knowledge-structured & memory-based RAG, privacy-preserving & distributed RAG, and other types. The application segment includes enterprise search, domain-specific data synthesis, content summarization & generation, personalized recommendations & insights, code & developer productivity, and other applications. The end user segment includes healthcare & life sciences, retail & e-commerce, financial services, telecommunications, education, media & entertainment, software & technology providers, and other end users. The deployment type segment includes on-premises and cloud. The regional analysis of the retrieval-augmented generation (RAG) market covers North America, Europe, Asia Pacific, the Middle East & Africa, and Latin America.

Key Benefits of Buying the Report

The report will help market leaders and new entrants with information on the closest approximations of the global retrieval-augmented generation (RAG) market's revenue numbers and subsegments. It will also help stakeholders understand the competitive landscape, gain insights, and plan suitable go-to-market strategies. Moreover, the report will provide insights for stakeholders to understand the market's pulse and provide them with information on key market drivers, restraints, challenges, and opportunities.

The report provides the following insights.

Analysis of key drivers (Enhancing accuracy with context-aware AI responses, accelerating enterprise digitization), restraints (Managing high infrastructure costs, ensuring data privacy and protection), opportunities (Integrating RAG with domain-specific applications, expanding multilingual support), and challenges (Managing vendor fragmentation, mitigating risks of AI hallucinations) that are influencing the growth of the retrieval-augmented generation (RAG) market.

Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, and new product & service launches in the retrieval-augmented generation (RAG) market

Market Development: The report provides comprehensive information about lucrative markets, analyzing the retrieval-augmented generation (RAG) market across various regions.

Market Diversification: Comprehensive information about new products and services, untapped geographies, recent developments, and investments in the retrieval-augmented generation (RAG) market.

Competitive Assessment: In-depth assessment of market shares, growth strategies and service offerings of leading players such as Microsoft (US), Amazon Web Services, Inc. (US), Anthropic (US), Google (US), IBM (US), Cohere (Canada), NVIDIA (US), Pinecone (US), Elastic N.V. (US), Progress Software Corporation (US), Vectra AI, Inc. (US), Ragie.ai (US), Clarifai (US), Chatbees (US), Zilliz (US), Weaviate (Netherlands), Qdrant (Berlin), and MongoDB (US).

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 STUDY OBJECTIVES
  • 1.2 MARKET DEFINITION
  • 1.3 STUDY SCOPE
    • 1.3.1 MARKET SEGMENTATION AND REGIONS COVERED
    • 1.3.2 INCLUSIONS AND EXCLUSIONS
  • 1.4 YEARS CONSIDERED
  • 1.5 CURRENCY CONSIDERED
  • 1.6 STAKEHOLDERS

2 RESEARCH METHODOLOGY

  • 2.1 RESEARCH DATA
    • 2.1.1 SECONDARY DATA
    • 2.1.2 PRIMARY DATA
      • 2.1.2.1 Breakdown of primary profiles
  • 2.2 MARKET SIZE ESTIMATION
    • 2.2.1 TOP-DOWN APPROACH
    • 2.2.2 BOTTOM-UP APPROACH
    • 2.2.3 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET ESTIMATION: DEMAND-SIDE ANALYSIS
  • 2.3 DATA TRIANGULATION
  • 2.4 RISK ASSESSMENT
  • 2.5 RESEARCH ASSUMPTIONS
  • 2.6 RESEARCH LIMITATIONS

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

  • 4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • 4.2 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING
  • 4.3 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION
  • 4.4 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE
  • 4.5 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION
  • 4.6 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE
  • 4.7 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER
  • 4.8 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER AND REGION

5 MARKET OVERVIEW AND INDUSTRY TRENDS

  • 5.1 INTRODUCTION
  • 5.2 MARKET DYNAMICS
    • 5.2.1 DRIVERS
      • 5.2.1.1 Enhancing Accuracy with Context-aware AI Responses
      • 5.2.1.2 Accelerating Enterprise Digitalization
    • 5.2.2 RESTRAINTS
      • 5.2.2.1 Managing High Infrastructure Costs
      • 5.2.2.2 Ensuring Data Privacy and Protection
    • 5.2.3 OPPORTUNITIES
      • 5.2.3.1 Integrating RAG with Domain-specific Applications
      • 5.2.3.2 Expanding Multilingual Support
    • 5.2.4 CHALLENGES
      • 5.2.4.1 Mitigating Risks of AI Hallucinations
      • 5.2.4.2 Managing Vendor Fragmentation
  • 5.3 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: BRIEF HISTORY
  • 5.4 SUPPLY CHAIN ANALYSIS
  • 5.5 ECOSYSTEM
  • 5.6 CASE STUDIES
    • 5.6.1 FILEVINE AND ZILLIZ CLOUD REVOLUTIONIZED CASE MANAGEMENT WITH VECTOR SEARCH
    • 5.6.2 NEOPLE ASSISTANTS TRANSFORMING CUSTOMER SERVICE WITH WEAVIATE
    • 5.6.3 DUST ADDRESSED COMPLEXITIES FACED BY QDRANT BY DEPLOYING LLMS
  • 5.7 PORTER'S FIVE FORCES MODEL
    • 5.7.1 THREAT OF NEW ENTRANTS
    • 5.7.2 THREAT OF SUBSTITUTES
    • 5.7.3 BARGAINING POWER OF BUYERS
    • 5.7.4 BARGAINING POWER OF SUPPLIERS
    • 5.7.5 INTENSITY OF COMPETITIVE RIVALRY
  • 5.8 PATENT ANALYSIS
    • 5.8.1 METHODOLOGY
    • 5.8.2 LIST OF PATENTS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, 2020-2024
  • 5.9 DISRUPTIONS IMPACTING BUYERS/CLIENTS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • 5.10 PRICING ANALYSIS
    • 5.10.1 AVERAGE SELLING PRICE OF KEY PLAYERS, 2024
    • 5.10.2 INDICATIVE PRICING ANALYSIS OF KEY PLAYERS, BY SOLUTION, 2024
  • 5.11 KEY STAKEHOLDERS AND BUYING CRITERIA
    • 5.11.1 KEY STAKEHOLDERS IN BUYING PROCESS
    • 5.11.2 BUYING CRITERIA
  • 5.12 TECHNOLOGY ANALYSIS
    • 5.12.1 KEY TECHNOLOGIES
      • 5.12.1.1 Large Language Models (LLMs) and Transformer-based Generators
      • 5.12.1.2 Embedding Models
      • 5.12.1.3 Dense Retrieval Mechanisms
      • 5.12.1.4 Vector Databases
    • 5.12.2 COMPLEMENTARY TECHNOLOGIES
      • 5.12.2.1 Reranking Models
      • 5.12.2.2 Knowledge Graphs
      • 5.12.2.3 Semantic Search and NLP Techniques
      • 5.12.2.4 Reasoning and Memory Modules
    • 5.12.3 ADJACENT TECHNOLOGIES
      • 5.12.3.1 Multimodal AI Processing
      • 5.12.3.2 Data Privacy and Security Tools
      • 5.12.3.3 AI/ML Frameworks and Orchestration Tools
  • 5.13 REGULATORY LANDSCAPE
    • 5.13.1 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
    • 5.13.2 KEY REGULATIONS
      • 5.13.2.1 North America
        • 5.13.2.1.1 California Consumer Privacy Act (CCPA)
        • 5.13.2.1.2 Canada's Directive on Automated Decision-making
        • 5.13.2.1.3 AI and Automated Decision Systems (AADS) Ordinance (New York City)
      • 5.13.2.2 Europe
        • 5.13.2.2.1 General Data Protection Regulation (GDPR)
        • 5.13.2.2.2 European Union's Artificial Intelligence Act (AIA)
        • 5.13.2.2.3 Ethical Guidelines for Trustworthy AI by the European Commission
      • 5.13.2.3 Asia Pacific
        • 5.13.2.3.1 Personal Information Protection Law (PIPL) - China
        • 5.13.2.3.2 Artificial Intelligence Ethics Guidelines - Japan
        • 5.13.2.3.3 AI Strategy and Governance Framework - Australia
      • 5.13.2.4 Middle East & Africa
        • 5.13.2.4.1 UAE AI Regulation and Ethics Guidelines
        • 5.13.2.4.2 South Africa's Protection of Personal Information Act (POPIA)
        • 5.13.2.4.3 Egypt's Data Protection Law
      • 5.13.2.5 Latin America
        • 5.13.2.5.1 Brazil - General Data Protection Law (LGPD)
        • 5.13.2.5.2 Mexico - Federal Law on the Protection of Personal Data Held by Private Parties (LFPDPPP)
        • 5.13.2.5.3 Argentina - Personal Data Protection Law (PDPL)
  • 5.14 KEY CONFERENCES & EVENTS
  • 5.15 TECHNOLOGY ROADMAP FOR RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
    • 5.15.1 SHORT-TERM ROADMAP (2025-2026)
    • 5.15.2 MID-TERM ROADMAP (2027-2028)
    • 5.15.3 LONG-TERM ROADMAP (2029-2030)
  • 5.16 BEST PRACTICES IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
    • 5.16.1 ENSURE HIGH-QUALITY KNOWLEDGE BASES
    • 5.16.2 IMPLEMENT HYBRID SEARCH TECHNIQUES
    • 5.16.3 ADOPT EXPLAINABLE AI PRACTICES
    • 5.16.4 HUMAN-IN-THE-LOOP MECHANISMS
    • 5.16.5 EMBED SECURITY AND COMPLIANCE FROM THE START
    • 5.16.6 OPTIMIZE FOR LATENCY AND SCALE
    • 5.16.7 MAINTAIN CONTINUOUS FEEDBACK LOOPS
  • 5.17 CURRENT AND EMERGING BUSINESS MODELS
  • 5.18 TOOLS, FRAMEWORKS, AND TECHNIQUES USED IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • 5.19 INVESTMENT AND FUNDING SCENARIO
  • 5.20 IMPACT OF AI/GENERATIVE AI ON RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
    • 5.20.1 USE CASES OF GENERATIVE AI IN RETRIEVAL-AUGMENTED GENERATION (RAG)
  • 5.21 IMPACT OF 2025 US TARIFF - RAG MARKET
    • 5.21.1 INTRODUCTION
    • 5.21.2 KEY TARIFF RATES
    • 5.21.3 PRICE IMPACT ANALYSIS
      • 5.21.3.1 Strategic Shifts and Emerging Trends
    • 5.21.4 IMPACT ON COUNTRY/REGION
      • 5.21.4.1 US
      • 5.21.4.2 Asia Pacific
      • 5.21.4.3 Europe
    • 5.21.5 IMPACT ON END-USE INDUSTRIES
      • 5.21.5.1 Healthcare & Life Sciences
      • 5.21.5.2 Retail & E-commerce
      • 5.21.5.3 Media & Entertainment
      • 5.21.5.4 Financial Services

6 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING

  • 6.1 INTRODUCTION
    • 6.1.1 OFFERING: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET DRIVERS
  • 6.2 SOLUTIONS
    • 6.2.1 RAG SOLUTIONS TO EVOLVE TOWARD MORE AUTONOMOUS AND ADAPTIVE FRAMEWORKS
    • 6.2.2 RAG-ENABLED PLATFORMS
    • 6.2.3 DATA MANAGEMENT AND INDEXING LAYER
      • 6.2.3.1 Need for scalable and intelligent indexing drives solution growth
    • 6.2.4 RETRIEVAL AND SEARCH MODELS
      • 6.2.4.1 Growing enterprise needs for contextual intelligence
    • 6.2.5 OTHER SOLUTIONS
  • 6.3 SERVICES
    • 6.3.1 STREAMLINING ACADEMIC AND ADMINISTRATIVE OPERATIONS VIA INTEGRATED DIGITAL SYSTEMS
    • 6.3.2 MANAGED SERVICES
      • 6.3.2.1 Simplifying RAG Operations and Enhancing Scalability
    • 6.3.3 PROFESSIONAL SERVICES
      • 6.3.3.1 Driving Tailored Implementation and Performance Optimization
      • 6.3.3.2 Support and Maintenance
      • 6.3.3.3 Consulting and Customization
      • 6.3.3.4 Training and Development

7 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE

  • 7.1 INTRODUCTION
    • 7.1.1 TYPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET DRIVERS
  • 7.2 FOUNDATIONAL AND ENHANCED RAG
    • 7.2.1 FOUNDATIONAL AND ENHANCED RAG BUILDING BLOCK FOR ADVANCED AI SYSTEMS
  • 7.3 AGENTIC AND ADAPTIVE RAG
    • 7.3.1 ENABLING DYNAMIC AND AUTONOMOUS INTELLIGENCE
  • 7.4 KNOWLEDGE-STRUCTURED AND MEMORY-BASED RAG
    • 7.4.1 KNOWLEDGE-STRUCTURED & MEMORY-BASED RAG ENHANCING CONTEXTUAL REASONING AND LONG-TERM RECALL
  • 7.5 PRIVACY-PRESERVING AND DISTRIBUTED RAG
    • 7.5.1 PRIVACY-PRESERVING & DISTRIBUTED RAG SECURING KNOWLEDGE RETRIEVAL IN ERA OF DATA COMPLIANCE
  • 7.6 OTHER TYPES

8 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION

  • 8.1 INTRODUCTION
    • 8.1.1 APPLICATION: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET DRIVERS
  • 8.2 ENTERPRISE SEARCH
    • 8.2.1 ENTERPRISE SEARCH FUELED BY EXPONENTIAL GROWTH OF INTERNAL DATA
  • 8.3 DOMAIN-SPECIFIC DATA SYNTHESIS
    • 8.3.1 GROWING COMPLEXITY OF DOMAIN DATA DRIVES ADOPTION
  • 8.4 CONTENT SUMMARIZATION AND GENERATION
    • 8.4.1 AUTOMATE NARRATIVE CREATION TO BOOST KNOWLEDGE THROUGHPUT
  • 8.5 PERSONALIZED RECOMMENDATIONS AND INSIGHTS
    • 8.5.1 FOCUS ON USER-CENTRIC EXPERIENCES DRIVES ITS GROWTH
  • 8.6 CODE AND DEVELOPER PRODUCTIVITY
    • 8.6.1 AI-DRIVEN DEVELOPMENT TOOLS FUEL ADOPTION
  • 8.7 OTHER APPLICATIONS

9 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE

  • 9.1 INTRODUCTION
    • 9.1.1 DEPLOYMENT TYPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET DRIVERS
  • 9.2 ON-PREMISES
    • 9.2.1 LOCALIZED AI-DRIVEN RETRIEVAL AND REASONING TO INCREASE AS REGULATORY SCRUTINY AROUND DATA USAGE INTENSIFIES
  • 9.3 CLOUD
    • 9.3.1 ACCELERATING SCALABILITY AND REAL-TIME INTELLIGENCE

10 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER

  • 10.1 INTRODUCTION
    • 10.1.1 END USER: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET DRIVERS
  • 10.2 HEALTHCARE AND LIFE SCIENCES
    • 10.2.1 ENHANCING CLINICAL INTELLIGENCE AND PATIENT OUTCOMES
  • 10.3 RETAIL & E-COMMERCE
    • 10.3.1 DRIVING PERSONALIZED AND CONTEXTUAL SHOPPING EXPERIENCES
  • 10.4 FINANCIAL SERVICES
    • 10.4.1 FINANCIAL SERVICES REINFORCING COMPLIANCE AND KNOWLEDGE AUTOMATION
  • 10.5 TELECOMMUNICATIONS
    • 10.5.1 POWERING INTELLIGENT NETWORK AND SERVICE AUTOMATION
  • 10.6 EDUCATION
    • 10.6.1 ADVANCING ADAPTIVE AND KNOWLEDGE-RICH LEARNING
  • 10.7 MEDIA & ENTERTAINMENT
    • 10.7.1 ACCELERATING CREATIVE AND CONTEXTUAL CONTENT GENERATION
  • 10.8 OTHER END USERS

11 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION

  • 11.1 INTRODUCTION
  • 11.2 NORTH AMERICA
    • 11.2.1 NORTH AMERICA: MACROECONOMIC OUTLOOK
    • 11.2.2 US
      • 11.2.2.1 Supportive regulatory environment and ecosystem-led commercialization of RAG
    • 11.2.3 CANADA
      • 11.2.3.1 Leveraging RAG technologies to enhance transparency and sectoral innovation
  • 11.3 EUROPE
    • 11.3.1 EUROPE: MACROECONOMIC OUTLOOK
    • 11.3.2 UK
      • 11.3.2.1 Driving enterprise adoption of RAG under strong regulatory frameworks
    • 11.3.3 GERMANY
      • 11.3.3.1 Industrial applications and compliance-driven RAG adoption
    • 11.3.4 FRANCE
      • 11.3.4.1 Strengthening multilingual RAG solutions through public-private collaboration
    • 11.3.5 ITALY
      • 11.3.5.1 Adoption of RAG to modernize knowledge-intensive industries
    • 11.3.6 REST OF EUROPE
  • 11.4 ASIA PACIFIC
    • 11.4.1 ASIA PACIFIC: MACROECONOMIC OUTLOOK
    • 11.4.2 CHINA
      • 11.4.2.1 Domestic Vector & Knowledge-enhanced Models Power Large-scale RAG
    • 11.4.3 INDIA
      • 11.4.3.1 Public Pilots and SI Packages Convert RAG Trials into Production
    • 11.4.4 JAPAN
      • 11.4.4.1 SI-led, Language-aware RAG for Manufacturing and Service Sectors
    • 11.4.5 AUSTRALIA & NEW ZEALAND
      • 11.4.5.1 Government Pilots Driving Trusted RAG Use Cases
    • 11.4.6 SOUTH KOREA
      • 11.4.6.1 Telcos and Domestic Clouds Anchoring Sovereign RAG
    • 11.4.7 REST OF ASIA PACIFIC
  • 11.5 MIDDLE EAST & AFRICA
    • 11.5.1 MIDDLE EAST & AFRICA: MACROECONOMIC OUTLOOK
    • 11.5.2 UNITED ARAB EMIRATES
      • 11.5.2.1 National AI Programs Anchoring RAG Commercialization
    • 11.5.3 KINGDOM OF SAUDI ARABIA
      • 11.5.3.1 Vision 2030 Investments Scaling Knowledge-centric AI
    • 11.5.4 SOUTH AFRICA
      • 11.5.4.1 Academic and Startup Ecosystem Piloting RAG
    • 11.5.5 REST OF MIDDLE EAST & AFRICA
  • 11.6 LATIN AMERICA
    • 11.6.1 LATIN AMERICA: MACROECONOMIC OUTLOOK
    • 11.6.2 BRAZIL
      • 11.6.2.1 Legislative Pilots Driving Public-Sector RAG
    • 11.6.3 MEXICO
      • 11.6.3.1 SI adaptation of Spanish-language RAG for enterprise support
    • 11.6.4 REST OF LATIN AMERICA

12 COMPETITIVE LANDSCAPE

  • 12.1 INTRODUCTION
  • 12.2 KEY PLAYER STRATEGIES/RIGHT TO WIN, 2022-2025
  • 12.3 REVENUE ANALYSIS, 2024
  • 12.4 MARKET SHARE ANALYSIS, 2024
  • 12.5 BRAND/PRODUCT COMPARISON
  • 12.6 COMPANY VALUATION AND FINANCIAL METRICS
  • 12.7 COMPANY EVALUATION MATRIX: KEY PLAYERS, 2024
    • 12.7.1 STARS
    • 12.7.2 EMERGING LEADERS
    • 12.7.3 PERVASIVE PLAYERS
    • 12.7.4 PARTICIPANTS
    • 12.7.5 COMPANY FOOTPRINT: KEY PLAYERS, 2024
      • 12.7.5.1 Company footprint
      • 12.7.5.2 Region footprint
      • 12.7.5.3 Deployment type footprint
      • 12.7.5.4 End user footprint
  • 12.8 COMPANY EVALUATION MATRIX: STARTUPS/SMES, 2024
    • 12.8.1 PROGRESSIVE COMPANIES
    • 12.8.2 RESPONSIVE COMPANIES
    • 12.8.3 DYNAMIC COMPANIES
    • 12.8.4 STARTING BLOCKS
    • 12.8.5 COMPETITIVE BENCHMARKING: STARTUPS/SMES, 2024
      • 12.8.5.1 Detailed list of key startups/SMEs
      • 12.8.5.2 Competitive benchmarking of key startups/SMEs
  • 12.9 COMPETITIVE SCENARIO
    • 12.9.1 PRODUCT LAUNCHES
    • 12.9.2 DEALS

13 COMPANY PROFILES

  • 13.1 INTRODUCTION
  • 13.2 KEY PLAYERS
    • 13.2.1 MICROSOFT
      • 13.2.1.1 Business overview
      • 13.2.1.2 Products/Solutions/Services offered
      • 13.2.1.3 Recent developments
        • 13.2.1.3.1 Product launches
        • 13.2.1.3.2 Deals
      • 13.2.1.4 MnM view
        • 13.2.1.4.1 Key strengths
        • 13.2.1.4.2 Strategic choices
        • 13.2.1.4.3 Weaknesses and competitive threats
    • 13.2.2 AWS
      • 13.2.2.1 Business overview
      • 13.2.2.2 Products/Solutions/Services offered
      • 13.2.2.3 Recent developments
        • 13.2.2.3.1 Deals
      • 13.2.2.4 MnM view
        • 13.2.2.4.1 Key strengths
        • 13.2.2.4.2 Strategic choices
        • 13.2.2.4.3 Weaknesses and competitive threats
    • 13.2.3 GOOGLE
      • 13.2.3.1 Business overview
      • 13.2.3.2 Products/Solutions/Services offered
      • 13.2.3.3 Recent developments
        • 13.2.3.3.1 Deals
      • 13.2.3.4 MnM view
        • 13.2.3.4.1 Key strengths
        • 13.2.3.4.2 Strategic choices
        • 13.2.3.4.3 Weaknesses and competitive threats
    • 13.2.4 ANTHROPIC
      • 13.2.4.1 Business overview
      • 13.2.4.2 Products/Solutions/Services offered
      • 13.2.4.3 Recent developments
        • 13.2.4.3.1 Deals
    • 13.2.5 IBM
      • 13.2.5.1 Business overview
      • 13.2.5.2 Products/Solutions/Services offered
      • 13.2.5.3 Recent developments
        • 13.2.5.3.1 Deals
    • 13.2.6 NVIDIA
      • 13.2.6.1 Business overview
      • 13.2.6.2 Products/Solutions/Services offered
      • 13.2.6.3 Recent developments
        • 13.2.6.3.1 Deals
    • 13.2.7 COHERE
      • 13.2.7.1 Business overview
      • 13.2.7.2 Products/Solutions/Services offered
      • 13.2.7.3 Recent developments
        • 13.2.7.3.1 Deals
    • 13.2.8 PINECONE
      • 13.2.8.1 Business overview
      • 13.2.8.2 Products/Solutions/Services offered
      • 13.2.8.3 Recent developments
        • 13.2.8.3.1 Deals
    • 13.2.9 ELASTIC
      • 13.2.9.1 Business overview
      • 13.2.9.2 Products/Solutions/Services offered
      • 13.2.9.3 Recent developments
        • 13.2.9.3.1 Deals
    • 13.2.10 MONGODB
      • 13.2.10.1 Business overview
      • 13.2.10.2 Products/Solutions/Services offered
      • 13.2.10.3 Recent developments
        • 13.2.10.3.1 Product launches
        • 13.2.10.3.2 Deals
  • 13.3 OTHER PLAYERS
    • 13.3.1 PROGRESS SOFTWARE
    • 13.3.2 RAGIE.AI
    • 13.3.3 CLARIFAI
    • 13.3.4 VECTARA
    • 13.3.5 WEAVIATE
    • 13.3.6 CHATBEES
    • 13.3.7 ZILLIZ
    • 13.3.8 QDRANT

14 ADJACENT/RELATED MARKETS

  • 14.1 INTRODUCTION
  • 14.2 GENERATIVE AI MARKET
    • 14.2.1 MARKET DEFINITION
    • 14.2.2 MARKET OVERVIEW
    • 14.2.3 GENERATIVE AI MARKET, BY OFFERING
    • 14.2.4 GENERATIVE AI MARKET, BY DATA MODALITY
    • 14.2.5 GENERATIVE AI MARKET, BY APPLICATION
    • 14.2.6 GENERATIVE AI MARKET, BY END USER
    • 14.2.7 GENERATIVE AI MARKET, BY REGION
  • 14.3 LARGE LANGUAGE MODEL (LLM) MARKET
    • 14.3.1 MARKET DEFINITION
    • 14.3.2 MARKET OVERVIEW
    • 14.3.3 LARGE LANGUAGE MODEL (LLM) MARKET, BY OFFERING
    • 14.3.4 LARGE LANGUAGE MODEL (LLM) MARKET, BY ARCHITECTURE
    • 14.3.5 LARGE LANGUAGE MODEL (LLM) MARKET, BY MODALITY
    • 14.3.6 LARGE LANGUAGE MODEL (LLM) MARKET, BY MODEL SIZE
    • 14.3.7 LARGE LANGUAGE MODEL (LLM) MARKET, BY APPLICATION
    • 14.3.8 LARGE LANGUAGE MODEL (LLM) MARKET, BY END USER
    • 14.3.9 LARGE LANGUAGE MODEL (LLM) MARKET, BY REGION

15 APPENDIX

  • 15.1 DISCUSSION GUIDE
  • 15.2 KNOWLEDGESTORE: MARKETSANDMARKETS' SUBSCRIPTION PORTAL
  • 15.3 CUSTOMIZATION OPTIONS
  • 15.4 RELATED REPORTS
  • 15.5 AUTHOR DETAILS

List of Tables

  • TABLE 1 USD EXCHANGE RATES, 2020-2024
  • TABLE 2 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: ECOSYSTEM
  • TABLE 3 IMPACT OF PORTER'S FORCES ON RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • TABLE 4 INDICATIVE PRICING ANALYSIS OF KEY RETRIEVAL-AUGMENTED GENERATION (RAG), BY SOLUTION, 2024
  • TABLE 5 INFLUENCE OF STAKEHOLDERS ON BUYING PROCESS FOR KEY END USERS (%)
  • TABLE 6 KEY BUYING CRITERIA FOR TOP THREE END USERS
  • TABLE 7 NORTH AMERICA: REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
  • TABLE 8 EUROPE: REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
  • TABLE 9 ASIA PACIFIC: REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
  • TABLE 10 MIDDLE EAST & AFRICA: REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
  • TABLE 11 LATIN AMERICA: REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
  • TABLE 12 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: KEY CONFERENCES & EVENTS, 2025-2026
  • TABLE 13 US ADJUSTED RECIPROCAL TARIFF RATES
  • TABLE 14 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 15 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 16 SOLUTION: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 17 RAG-ENABLED PLATFORMS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 18 DATA MANAGEMENT AND INDEXING LAYER: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 19 RETRIEVAL AND SEARCH MODELS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 20 OTHER SOLUTIONS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 21 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 22 SERVICES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 23 MANAGED SERVICES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 24 PROFESSIONAL SERVICES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 25 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 26 SUPPORT AND MAINTENANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 27 CONSULTING AND CUSTOMIZATION: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 28 TRAINING AND DEVELOPMENT: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 29 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 30 FOUNDATIONAL AND ENHANCED RAG: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 31 AGENTIC AND ADAPTIVE RAG: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 32 KNOWLEDGE-STRUCTURE AND MEMORY-BASED RAG: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 33 PRIVACY-PRESERVING AND DISTRIBUTED RAG: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 34 OTHER TYPES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 35 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 36 ENTERPRISE SEARCH: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 37 DOMAIN-SPECIFIC DATA SYNTHESIS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 38 CONTENT SUMMARIZATION AND GENERATION: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 39 PERSONALIZED RECOMMENDATIONS AND INSIGHTS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 40 CODE AND DEVELOPER PRODUCTIVITY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 41 OTHER APPLICATIONS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 42 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 43 ON-PREMISES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 44 CLOUD: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 45 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 46 HEALTHCARE & LIFE SCIENCES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 47 RETAIL & E-COMMERCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 48 FINANCIAL SERVICES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 49 TELECOMMUNICATIONS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 50 EDUCATION: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 51 MEDIA & ENTERTAINMENT: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 52 OTHER END USERS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 53 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 54 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY 0FFERING, 2024-2030 (USD MILLION)
  • TABLE 55 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 56 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 57 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 58 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 59 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 60 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 61 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 62 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY COUNTRY, 2024-2030 (USD MILLION)
  • TABLE 63 US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 64 US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 65 US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 66 US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 67 US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 68 US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 69 US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 70 US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 71 CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 72 CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 73 CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 74 CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 75 CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 76 CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 77 CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 78 CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 79 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 80 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 81 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 82 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 83 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 84 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 85 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 86 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 87 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY COUNTRY, 2024-2030 (USD MILLION)
  • TABLE 88 UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 89 UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 90 UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 91 UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 92 UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 93 UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 94 UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 95 UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 96 GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 97 GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 98 GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 99 GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 100 GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 101 GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 102 GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 103 GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 104 FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 105 FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 106 FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 107 FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 108 FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 109 FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 110 FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 111 FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 112 ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 113 ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 114 ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 115 ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 116 ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 117 ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 118 ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 119 ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 120 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY 0FFERING, 2024-2030 (USD MILLION)
  • TABLE 121 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 122 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 123 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 124 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 125 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 126 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 127 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 128 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY COUNTRY, 2024-2030 (USD MILLION)
  • TABLE 129 CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 130 CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 131 CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 132 CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 133 CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 134 CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 135 CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 136 CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 137 INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 138 INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 139 INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 140 INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 141 INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 142 INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 143 INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 144 INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 145 JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 146 JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 147 JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 148 JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 149 JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 150 JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 151 JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 152 JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 153 AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 154 AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 155 AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 156 AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 157 AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 158 AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 159 AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 160 AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 161 SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 162 SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 163 SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 164 SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 165 SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 166 SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 167 SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 168 SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 169 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 170 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 171 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 172 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 173 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 174 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 175 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 176 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 177 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY COUNTRY, 2024-2030 (USD MILLION)
  • TABLE 178 UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 179 UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 180 UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 181 UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 182 UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 183 UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 184 UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 185 UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 186 KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 187 KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 188 KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 189 KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 190 KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 191 KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 192 KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 193 KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 194 SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 195 SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 196 SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 197 SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 198 SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 199 SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 200 SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 201 SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 202 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 203 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 204 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 205 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 206 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 207 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 208 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 209 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 210 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY COUNTRY, 2024-2030 (USD MILLION)
  • TABLE 211 BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 212 BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 213 BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 214 BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 215 BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 216 BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 217 BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 218 BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 219 MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 220 MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 221 MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 222 MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 223 MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 224 MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 225 MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 226 MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 227 OVERVIEW OF STRATEGIES ADOPTED BY KEY RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET PLAYERS, 2022-2025
  • TABLE 228 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DEGREE OF COMPETITION
  • TABLE 229 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: REGION FOOTPRINT
  • TABLE 230 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DEPLOYMENT TYPE FOOTPRINT
  • TABLE 231 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: END USER FOOTPRINT
  • TABLE 232 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: LIST OF KEY STARTUPS/SMES
  • TABLE 233 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: COMPETITIVE BENCHMARKING OF KEY STARTUPS/SMES
  • TABLE 234 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: PRODUCT LAUNCHES, JANUARY 2022-APRIL 2025
  • TABLE 235 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DEALS, JANUARY 2022-APRIL 2025
  • TABLE 236 MICROSOFT: COMPANY OVERVIEW
  • TABLE 237 MICROSOFT: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 238 MICROSOFT: PRODUCT LAUNCHES
  • TABLE 239 MICROSOFT: DEALS
  • TABLE 240 AWS: COMPANY OVERVIEW
  • TABLE 241 AWS: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 242 AWS: DEALS
  • TABLE 243 GOOGLE: COMPANY OVERVIEW
  • TABLE 244 GOOGLE: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 245 GOOGLE: DEALS
  • TABLE 246 ANTHROPIC: COMPANY OVERVIEW
  • TABLE 247 ANTHROPIC: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 248 ANTHROPIC: DEALS
  • TABLE 249 IBM: COMPANY OVERVIEW
  • TABLE 250 IBM: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 251 IBM: DEALS
  • TABLE 252 NVIDIA: COMPANY OVERVIEW
  • TABLE 253 NVIDIA: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 254 NVIDIA: DEALS
  • TABLE 255 COHERE: COMPANY OVERVIEW
  • TABLE 256 COHERE: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 257 COHERE: DEALS
  • TABLE 258 PINECONE: COMPANY OVERVIEW
  • TABLE 259 PINECONE: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 260 PINECONE: DEALS
  • TABLE 261 ELASTIC: COMPANY OVERVIEW
  • TABLE 262 ELASTIC: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 263 ELASTIC: DEALS
  • TABLE 264 MONGODB: COMPANY OVERVIEW
  • TABLE 265 MONGODB: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 266 MONGODB: PRODUCT LAUNCHES
  • TABLE 267 MONGODB: DEALS
  • TABLE 268 GENERATIVE AI MARKET, BY OFFERING, 2020-2024 (USD MILLION)
  • TABLE 269 GENERATIVE AI MARKET, BY OFFERING, 2025-2032 (USD MILLION)
  • TABLE 270 GENERATIVE AI MARKET, BY DATA MODALITY, 2020-2024 (USD MILLION)
  • TABLE 271 GENERATIVE AI MARKET, BY DATA MODALITY, 2025-2032 (USD MILLION)
  • TABLE 272 GENERATIVE AI MARKET, BY APPLICATION, 2020-2024 (USD MILLION)
  • TABLE 273 GENERATIVE AI MARKET, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 274 GENERATIVE AI MARKET, BY END USER, 2020-2024 (USD MILLION)
  • TABLE 275 GENERATIVE AI MARKET, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 276 GENERATIVE AI MARKET, BY REGION, 2020-2024 (USD MILLION)
  • TABLE 277 GENERATIVE AI MARKET, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 278 LARGE LANGUAGE MODEL MARKET, BY OFFERING, 2020-2023 (USD MILLION)
  • TABLE 279 LARGE LANGUAGE MODEL MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 280 LARGE LANGUAGE MODEL MARKET, BY ARCHITECTURE, 2020-2023 (USD MILLION)
  • TABLE 281 LARGE LANGUAGE MODEL MARKET, BY ARCHITECTURE, 2024-2030 (USD MILLION)
  • TABLE 282 LARGE LANGUAGE MODEL MARKET, BY MODALITY, 2020-2023 (USD MILLION)
  • TABLE 283 LARGE LANGUAGE MODEL MARKET, BY MODALITY, 2024-2030 (USD MILLION)
  • TABLE 284 LARGE LANGUAGE MODEL MARKET, BY MODEL SIZE, 2020-2023 (USD MILLION)
  • TABLE 285 LARGE LANGUAGE MODEL MARKET, BY MODEL SIZE, 2024-2030 (USD MILLION)
  • TABLE 286 LARGE LANGUAGE MODEL MARKET, BY APPLICATION, 2020-2023 (USD MILLION)
  • TABLE 287 LARGE LANGUAGE MODEL MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 288 LARGE LANGUAGE MODEL MARKET, BY END USER, 2020-2023 (USD MILLION)
  • TABLE 289 LARGE LANGUAGE MODEL MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 290 LARGE LANGUAGE MODEL MARKET, BY REGION, 2020-2023 (USD MILLION)
  • TABLE 291 LARGE LANGUAGE MODEL MARKET, BY REGION, 2024-2030 (USD MILLION)

List of Figures

  • FIGURE 1 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: RESEARCH DESIGN
  • FIGURE 2 BREAKDOWN OF PRIMARY INTERVIEWS, BY COMPANY TYPE, DESIGNATION, AND REGION
  • FIGURE 3 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: TOP-DOWN AND BOTTOM-UP APPROACHES
  • FIGURE 4 MARKET SIZE ESTIMATION METHODOLOGY-APPROACH 1 (SUPPLY SIDE): REVENUE OF VENDORS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • FIGURE 5 MARKET SIZE ESTIMATION METHODOLOGY-APPROACH 2 (DEMAND SIDE): RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • FIGURE 6 MARKET SIZE ESTIMATION METHODOLOGY: DEMAND-SIDE ANALYSIS
  • FIGURE 7 MARKET SIZE ESTIMATION USING BOTTOM-UP APPROACH
  • FIGURE 8 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DATA TRIANGULATION
  • FIGURE 9 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, 2024-2030 (USD MILLION)
  • FIGURE 10 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: REGIONAL AND COUNTRY-WISE SHARE, 2025
  • FIGURE 11 RAPID DIGITAL TRANSFORMATION AND GROWING ENTERPRISE AI ADOPTION TO DRIVE MARKET
  • FIGURE 12 SOLUTIONS SEGMENT TO HOLD LARGER MARKET SHARE IN 2025
  • FIGURE 13 RAG-ENABLED PLATFORMS SEGMENT TO HOLD LARGEST MARKET SHARE IN 2025
  • FIGURE 14 FOUNDATIONAL & ENHANCED RAG SEGMENT TO HOLD LARGEST MARKET SHARE IN 2025
  • FIGURE 15 ENTERPRISE SEARCH SEGMENT TO HOLD LARGEST MARKET SHARE IN 2025
  • FIGURE 16 CLOUD SEGMENT TO HOLD LARGER MARKET SHARE IN 2025
  • FIGURE 17 HEALTHCARE & LIFE SCIENCES SEGMENT TO LEAD MARKET IN 2025
  • FIGURE 18 HEALTHCARE & LIFE SCIENCES SEGMENT AND US TO ACCOUNT FOR SIGNIFICANT MARKET SHARES IN 2025
  • FIGURE 19 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DRIVERS, RESTRAINTS, OPPORTUNITIES, AND CHALLENGES
  • FIGURE 20 BRIEF HISTORY OF RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • FIGURE 21 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: SUPPLY CHAIN ANALYSIS
  • FIGURE 22 KEY PLAYERS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET ECOSYSTEM
  • FIGURE 23 PORTER'S FIVE FORCES ANALYSIS
  • FIGURE 24 MAJOR PATENTS FOR RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • FIGURE 25 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DISRUPTIONS IMPACTING BUYERS/CLIENTS
  • FIGURE 26 AVERAGE SELLING PRICE OF KEY PLAYERS, USD PER MONTH, 2024
  • FIGURE 27 INFLUENCE OF STAKEHOLDERS ON BUYING PROCESS FOR KEY END USERS
  • FIGURE 28 KEY BUYING CRITERIA FOR TOP THREE END USERS
  • FIGURE 29 TOOLS, FRAMEWORKS, AND TECHNIQUES USED IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • FIGURE 30 INVESTMENT AND FUNDING SCENARIO
  • FIGURE 31 USE CASES OF GENERATIVE AI IN RETRIEVAL-AUGMENTED GENERATION (RAG)
  • FIGURE 32 SERVICES SEGMENT TO GROW AT HIGHER CAGR DURING FORECAST PERIOD
  • FIGURE 33 DATA MANAGEMENT & INDEXING LAYER SEGMENT TO GROW AT HIGHEST CAGR DURING FORECAST PERIOD
  • FIGURE 34 MANAGED SERVICES SEGMENT TO GROW AT HIGHER CAGR DURING FORECAST PERIOD
  • FIGURE 35 TRAINING AND DEVELOPMENT TO GROW AT HIGHEST CAGR DURING FORECAST PERIOD
  • FIGURE 36 FOUNDATIONAL & ENHANCED RAG SEGMENT TO HOLD THE LARGEST MARKET SHARE DURING FORECAST PERIOD
  • FIGURE 37 ENTERPRISE SEARCH SEGMENT TO HOLD THE LARGEST MARKET SHARE DURING FORECAST PERIOD
  • FIGURE 38 CLOUD SEGMENT TO GROW AT HIGHER CAGR DURING FORECAST PERIOD
  • FIGURE 39 HEALTHCARE & LIFE SCIENCES SEGMENT TO HOLD LARGEST MARKET SHARE DURING FORECAST PERIOD
  • FIGURE 40 NORTH AMERICA: MARKET SNAPSHOT
  • FIGURE 41 ASIA PACIFIC: MARKET SNAPSHOT
  • FIGURE 42 REVENUE ANALYSIS OF KEY PLAYERS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, 2022 TO 2024 (USD BILLION)
  • FIGURE 43 SHARES OF LEADING COMPANIES IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, 2024
  • FIGURE 44 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: BRAND/PRODUCT COMPARISON
  • FIGURE 45 COMPANY VALUATION OF KEY VENDORS, 2025
  • FIGURE 46 FINANCIAL METRICS OF KEY VENDORS, 2025
  • FIGURE 47 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: COMPANY EVALUATION MATRIX (KEY PLAYERS), 2024
  • FIGURE 48 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: COMPANY FOOTPRINT
  • FIGURE 49 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: COMPANY EVALUATION MATRIX (STARTUPS/SMES), 2024
  • FIGURE 50 MICROSOFT: COMPANY SNAPSHOT
  • FIGURE 51 AWS: COMPANY SNAPSHOT
  • FIGURE 52 GOOGLE: COMPANY SNAPSHOT
  • FIGURE 53 IBM: COMPANY SNAPSHOT
  • FIGURE 54 NVIDIA: COMPANY SNAPSHOT
  • FIGURE 55 ELASTIC: COMPANY SNAPSHOT
  • FIGURE 56 MONGODB: COMPANY SNAPSHOT