封面
市場調查報告書
商品編碼
1901407

分子開關作為治療標靶:藥物發現、藥物傳遞機制與適應症(2026)

Molecular Switches As Therapeutic Targets, Drug Development, Drug Delivery Mechanism & Application By Indications Insight 2026

出版日期: | 出版商: KuicK Research | 英文 190 Pages | 商品交期: 最快1-2個工作天內

價格

"分子開關作為治療標靶— "藥物發現、藥物傳遞機制和適應症(2026)" 報告的主要發現和亮點:”

  • 2022-2025年標靶分子開關的20種最暢銷藥物
  • 分子開關在藥物傳遞和製劑中的作用
  • 分子開關在再生醫學和奈米醫學中的重要性
  • 分子開關作為治療標靶的重要性
  • 分子開關在癌症治療的應用:乳癌、攝護腺癌、肺癌、大腸癌、胃癌
  • 分子開關在神經系統疾病的應用:帕金森氏症、阿茲海默症、多種疾病硬化症
  • 自體免疫疾病與發炎性疾病中的分子開關:糖尿病、關節炎、狼瘡、乾癬
  • 競爭格局

分子開關標靶療法的需求及本報告的意義

分子開關是生物分子,例如蛋白質、核酸和酶,它們可以根據特定訊號開啟或關閉。這些訊號包括配體結合、磷酸化、氧化還原反應、機械應力以及環境因素,例如 pH 值和溫度變化。這些生物分子的開啟和關閉控制著基因表現、免疫反應、代謝、細胞分裂和程序性細胞死亡等生物過程。這些生物分子對生物過程的精確控制是疾病和治療的基礎。

本報告旨在為利益相關者提供分子開關靶向療法的現狀概述,幫助他們更好地了解其巨大的治療潛力、正在進行的創新、以及推動這場變革的關鍵人物。

分子開關在疾病中的重要性

許多疾病的發生是因為分子開關 "卡住" 在 "開啟" 或 "關閉" 狀態。例如,在癌症中,生長因子 "開關" 可能永久處於 "開啟" 狀態,從而促進不受控制的細胞分裂。在免疫介導的疾病中,控制發炎調節的 "開關" 可能 "卡住" 在 "開啟" 狀態,阻止發炎和隨後的組織損傷被 "關閉" 。在神經系統疾病中,控制訊號傳導和蛋白質折疊的 "開關" 可能出現功能障礙。這些分子開關至關重要,因為它們代表了生物學中的決策點。調節這些點可以重置整個通路,而不僅僅是緩解症狀。

標靶開關的藥物及其市場影響

過去20年中一些最具影響力的藥物作用於分子開關。在這方面,Keytruda(帕博利珠單抗)是一種領先的藥物,該藥物靶向PD-1免疫檢查點,PD-1是一種抑制免疫反應的分子開關。它的作用機轉是解除免疫系統的 "煞車" 。該藥物的成功體現在其多種適應症和巨大的經濟效益。僅在截至2025年9月的九個月內,其銷售額就達到了233億美元,使其成為最暢銷的標靶分子開關的藥物。

其他重要的治療方案也基於類似的方法。標靶治療藥物Opdivo(納武利尤單抗)針對相同的免疫檢查點通路,而Yervoy(伊匹木單抗)則針對免疫開關CTLA-4。對於發炎性疾病,Skyridge和Dupixent等藥物針對細胞激素相關的免疫開關。對於血液腫瘤,伊馬替尼等激酶抑制劑和BTK抑制劑靶向支持癌細胞存活的酶免疫開關。

藥物傳遞系統中的分子開關

除了作為藥物標靶外,分子開關越來越多地被整合到藥物遞送系統中。遞送系統。智慧遞送系統目前正在被設計成僅在滿足特定分子開關條件時才釋放藥物。例如,藥物可以僅在含有與特定疾病密切相關的酶的組織中釋放。 pH敏感開關僅在暴露於酸性pH值(例如癌細胞內部的pH值)時才釋放藥物。

新興科技與創新

奈米技術、生物材料和合成生物學的快速發展使得分子開關的設計日益複雜。科學家們正在努力設計能夠響應光、超音波和外部磁場而啟動的人工開關。同時,模擬技術也被用來預測分子開關的行為。這些分子開關在mRNA療法中也變得越來越重要,其中開關的活化和降解調節著細胞內治療性蛋白質的產生時間。

分子開關標靶療法的未來展望

隨著我們對分子訊號傳導理解的加深,分子開關有望在下一代療法的開發中發揮更重要的作用。作為一種工具分子開關兼俱生物調節的特異性和革新藥物領域的潛力,正處於科學與醫學進步的交匯點。標靶分子開關療法的成功表明,現代醫學最有效的方法之一是調節生物決策點。

目錄

第一章:研究方法

第二章:分子開關簡介

第三章:分子開關的醫學意義

第四章:分子開關在藥物傳遞與釋放的重要性

  • 概述
  • 正在進行的研究和開發

第五章:分子開關作為治療手段的重要性

第六章:分子開關-廣泛分類

第七章:標靶分子開關的主要藥物銷售趨勢

第八章:分子開關在癌症適應症的應用

  • 乳癌
  • 攝護腺癌
  • 大腸癌
  • 肺癌
  • 胃癌

第九章:分子開關在神經系統疾病的應用

  • 帕金森氏症
  • 阿茲海默症
  • 多發性硬化症
  • 脊髓小腦性共濟失調

第十章:分子開關在傳染病的應用

  • 病毒感染
  • 細菌感染
  • 真菌感染

第11章:自體免疫疾病與發炎性疾病的分子開關

  • 糖尿病
  • 關節炎
  • 狼瘡
  • 乾癬

第12章:心血管疾病的分子開關

  • 心肌梗塞(心臟病發作)
  • 其他

第13章:代謝紊亂的分子開關

  • 肥胖症
  • 肝病
  • 膽固醇相關疾病

章節第十四章:分子開關在再生醫學的重要性

第十五章:分子開關在晝夜節律和睡眠障礙的應用

第十六章:分子開關在血液學和輸血醫學的應用

第十七章:分子開關在藥物製劑的應用

  • 智慧藥物製劑與分子開關
  • 基於生物材料的藥物傳遞系統
  • 自調節藥物系統

第十八章:當前趨勢與新興科技

  • 奈米醫學中的分子開關
  • 響應性藥物系統的創新
  • 人工智慧與機器學習的整合
  • mRNA中的分子開關治療學

第十九章:未來展望與方向

  • 分子開關技術的進展
  • 分子開關在個人化醫療領域的未來
  • 對藥物發現與治療的潛在影響

第二十章:競爭格局

  • 艾伯維
  • Akeso Bio
  • 阿斯特捷利康
  • 拜耳
  • BeOne Medicines
  • 百時美施貴寶
  • 勃林格殷格翰
  • Coherus Oncology
  • Eli禮來公司
  • 吉利德
  • 葛蘭素史克
  • 信達生物
  • 強生
  • 默克公司
  • 諾華公司
  • 輝瑞
  • 再生元
  • 羅氏
  • 賽諾菲
  • Vertex 製藥公司

Molecular Switches As Therapeutic Targets, Drug Development, Drug Delivery Mechanism and Application By Indications Insight 2026 Research Report Findings & Highlights:

  • Top 20 Drugs Sales Targeting Molecular Switches: 2022 Till 2025
  • Molecular Switches In Drug Delivery & Formulation
  • Molecular Switches Significance In Regenerative Medicine & Nanomedicine
  • Molecular Switches Significance As Therapeutic Targets
  • Molecular Switches In Cancer Therapeutics: Breast Cancer, Prostate Cancer, Lung Cancer, Colorectal Cancer, Gastric Cancer
  • Molecular Switches In Neurological Disorder: Parkinson's Disease, Alzheimer's Disease, Multiple Sclerosis
  • Molecular Switches In Autoimmune and Inflammatory Disorder: Diabetes, Arthritis, Lupus, Psoriasis
  • Competitive Landscape

Need For Molecular Switch Targeting Therapies & Why This Report

Molecular switches are biological molecules, such as proteins, nucleic acids, or enzymes, which switch on and off in response to certain signals. These signals may consist of ligand-binding, phosphorylation, redox events, mechanical stress, or environmental signals such as pH or temperature changes. These biological molecules switch on and off in order to control biological processes such as gene expression, immune reactions, metabolism, cell division, or programmed cell death. The precise control these biological molecules exercise on biological processes makes them a basis for disease and therapy alike.

The report is designed to give stakeholders an overview of the current landscape regarding Molecular Switch Targeting Therapies, offering an understanding of their immense therapeutic potential, ongoing innovations, and key players driving revolution in this space.

Why Molecular Switches Matter In Disease

Many diseases occur because molecular switches get 'stuck' in the 'on' or 'off' position. For example, in cancer, the growth-factor 'switches' could be perpetually switched 'on,' thereby fueling unchecked cell division. In immune related ailments, the 'switches' controlling the regulation of inflammation could get 'stuck' in the 'on' position, thereby failing to switch 'off' the inflammation and subsequent tissue damage. In the case of neurological disorders, the 'switches' controlling the transmission of signals or the folding of proteins could malfunction. Such molecular switches are crucial because they are points of decision in a biological context. Modulating such points could reset the entire pathway rather than merely tackling the symptoms.

Switch Targeted Medicines & Market Impact

Some of the most impactful drugs over the last two decades act on molecular switches. In this regard, the key drug that works on the PD-1 immune checkpoint, which is a molecular switch that inhibits the immune response, is Keytruda (pembrolizumab). It works by removing the brakes on the immune system. The success of the drug can be gauged by its multiple indications and its financial success as well; reportedly earning US$ 23.30 Billion in the first 9 months of 2025 alone and becoming the top selling drug focused on a molecular switch.

Other important therapeutic options are based on analogous approaches. The targeted therapies Opdivo (nivolumab) target the same immune checkpoint pathway and Yervoy (ipilimumab) targets CTLA-4, an immune switch. In inflammatory disorders, medications such as Skyrizzi and Dupixent target immune switches involving cytokines. For blood cancers, kinase inhibitors such as imatinib and BTK inhibitors target the enzymatic immune switch that supports the survival of cancerous cells.

Molecular Switches In Drug Delivery Systems

In addition to their role as drug targets, molecular switches are being incorporated increasingly at the level of drug delivery designs. Smart delivery systems can be designed to release drugs only when a particular molecular switch condition has been satisfied. For instance, their release of drugs will occur only in tissue where specific enzymes are present that are closely associated with a particular disease. pH sensitive switches will release drugs only when they are exposed to an acidic pH, which would be found in cancerous cells.

Emerging Technologies & Innovation

Nanotechnology, biomaterials, and synthetic biology are witnessing rapid developments that are increasing the complexity of designing molecular switches. Scientists are working on designing artificial switches that activate in response to light, ultrasound waves, or external magnetic fields. At the same time, simulations are being employed in predicting the behavior of molecular switches. These molecular switches are also gaining importance in mRNA therapies in which the activation and degradation of the switch regulate the production time of the therapeutic protein within a cell.

For Molecular Switch Targeting Therapies Future Outlook

As knowledge about molecular signaling advances, molecular switches are poised to play an even more pivotal role in the development of the next wave of therapies. As a tool that combines specificity as a biological modulator with pharmaceutically disruptive potential, molecular switches find themselves at a crossroads of scientific and pharmaceutical progress. The success of switch-targeted therapies is a testament that one of the most effective approaches in contemporary medicine is modulating biology at its decision making nodes.

Table of Contents

1. Research Methodology

2. Introduction To Molecular Switches

  • 2.1 Overview
  • 2.2 History & Emergence In Medicine

3. Molecular Switches Clinical Significance In Medicine

4. Molecular Switches Significance In Drug Delivery & Release

  • 4.1 Overview
  • 4.2 Ongoing Research & Developments

5. Molecular Switches Significance As Therapeutic Targets

6. Molecular Switches - Broad Classification

7. Sales Insight Of Key Drugs Targeting Molecular Switches

8. Molecular Switches By Cancer Indication

  • 8.1 Breast Cancer
  • 8.2 Prostate Cancer
  • 8.3 Colorectal cancer
  • 8.4 Lung Cancer
  • 8.5 Gastric Cancer

9. Molecular Switches By Neurological Disorder

  • 9.1 Parkinson's Disease
  • 9.2 Alzheimer's Disease
  • 9.3 Multiple Sclerosis
  • 9.4 Spinocerebellar Ataxia

10. Molecular Switches By Infectious Disease

  • 10.1 Viral Infection
  • 10.2 Bacterial Infection
  • 10.3 Fungal Infections

11. Molecular Switches By Autoimmune & Inflammatory Disorder

  • 11.1 Diabetes
  • 11.2 Arthritis
  • 11.3 Lupus
  • 11.4 Psoriasis

12. Molecular Switches By Cardiovascular Disease

  • 12.1 Myocardial Infarction (Heart Attack)
  • 12.2 Others

13. Molecular Switches By Metabolic Disorder

  • 13.1 Obesity
  • 13.2 Liver Diseases
  • 13.3 Cholesterol-Driven Conditions

14. Molecular Switches Significance In Regenerative Medicine

15. Molecular Switches In Circadian & Sleep Disorders

16. Molecular Switches By Hematological & Transfusion Medicine

17. Molecular Switches In Drug Formulation

  • 17.1 Smart Drug Formulations & Molecular Switches
  • 17.2 Biomaterial Based Drug Delivery Systems
  • 17.3 Self Regulating Drug Systems

18. Current Trends & Emerging Technologies

  • 18.1 Molecular Switches In Nanomedicine
  • 18.2 Innovations In Responsive Drug Systems
  • 18.3 Integration With Artificial Intelligence & Machine Learning
  • 18.4 Molecular Switches In mRNA Therapeutics

19. Future Perspectives & Directions

  • 19.1 Advancements In Molecular Switch Technology
  • 19.2 The Future Of Personalized Medicine With Molecular Switches
  • 19.3 Potential Impact On Drug Discovery & Therapeutics

20. Competitive Landscape

  • 20.1 AbbVie
  • 20.2 Akeso Bio
  • 20.3 AstraZeneca
  • 20.4 Bayer
  • 20.5 BeOne Medicines
  • 20.6 Bristol Myers Squibb
  • 20.7 Boehringer Ingelheim
  • 20.8 Coherus Oncology
  • 20.9 Eli Lilly
  • 20.10 Gilead
  • 20.11 GSK
  • 20.12 Innovent
  • 20.13 JNJ
  • 20.14 Merck
  • 20.15 Novartis
  • 20.16 Pfizer
  • 20.17 Regeneron
  • 20.18 Roche
  • 20.19 Sanofi
  • 20.20 Vertex Pharmaceuticals

List of Figures

  • Figure 2-1: Molecular Switches - Introduction
  • Figure 2-2: G-Protein As A Classical Molecular Switch
  • Figure 2-3: Molecular Switches In Gene Therapy & Regenerative Medicine
  • Figure 2-4: Molecular Switches - Emergence & Evolution
  • Figure 3-1: Molecular Switch Dysfunction To Disease Progression
  • Figure 3-2: Therapeutic Modulation Of Molecular Switches
  • Figure 3-3: Molecular Switches In Precision Medicine
  • Figure 4-1: Molecular Switches In Drug Delivery & Release
  • Figure 4-2: Drug Delivery Systems With Molecular Switches
  • Figure 4-3: Peptide-Based Drug Delivery System
  • Figure 4-4: Switchable Molecular Tweezers
  • Figure 4-5: Rotaxane-Based Drug Delivery System
  • Figure 4-6: Enzyme-Activatable Drug Delivery System
  • Figure 4-7: Light-Responsive Drug Delivery Systems
  • Figure 4-8: Photo-Responsive Drug Delivery Using Spiropyran
  • Figure 4-9: Photopharmacological Approach For Neuropathic Pain
  • Figure 4-10: Insulin Prodrug Activation
  • Figure 8-1: AR Activation & Its Dual Role In Tumor Growth
  • Figure 8-2: PRL-3 Activation & AMPI-109's Impact On TNBC
  • Figure 8-3: Molecular Switch in Prostate Cancer
  • Figure 9-1: PINK1-Parkin Molecular Switch In Parkinson's Disease
  • Figure 9-2: Receptor Switching Mechanism Regulating Amyloid Beta Production
  • Figure 9-3: Protective LIMK1 Molecular Switch In Synaptic Plasticity
  • Figure 9-4: Alzheimer's disease - Molecular Switch-Based Diagnostic Strategy
  • Figure 9-5: Multiple Sclerosis - STAT3 Molecular Switch Controlling OPC Fate
  • Figure 9-6: Therapeutic Molecular Switch Modulation Via S1P Receptors
  • Figure 9-7: Spinocerebellar Ataxias - Targeting Molecular Switches As Therapeutic Concept
  • Figure 10-1: Molecular Switches In Viral infections
  • Figure 10-2: Molecular Switches Driving Bacterial Infection & Mortality
  • Figure 10-3: Molecular Switch-Driven Adaptation Of Candida albicans To Host Environment
  • Figure 10-4: Therapeutic Targeting Of Fungal Molecular Switches
  • Figure 11-1: Role Of Molecular Switches In Diabetes Progression
  • Figure 11-2: Molecular Switches Driving Arthritis Pathogenesis
  • Figure 11-3: Arthritis - Therapeutic Targeting Of Molecular Switches
  • Figure 11-4: Molecular Switches Governing Lupus Pathogenesis
  • Figure 11-5: Lupus - Molecular Switch-Driven Therapeutic Paradigm
  • Figure 11-6: Molecular Switch-Driven Pathogenesis Of Psoriasis
  • Figure 11-7: Psoriasis - Molecular Switch Framework for Precision Therapy
  • Figure 14-1: Regeneration - General Mechanism Of Molecular Switches
  • Figure 14-2: Molecular Switches In Regenerative Medicine
  • Figure 15-1: Sleep Disorders - Integrated Molecular Switch Framework
  • Figure 15-2: Cv-c Molecular Switch Controlling Sleep Homeostasis
  • Figure 16 1: Complement C3 Switch in RBC Alloimmunization
  • Figure 17-1: Smart Drug Delivery With Molecular Switches
  • Figure 17-2: Biomaterial Based Drug Delivery Systems With Molecular Switches
  • Figure 17-3: Self-regulating Drug Systems With Molecular Switches
  • Figure 18-1: Molecular Switches In Nanomedicine
  • Figure 18-2: Molecular switches In Responsive Drug Systems
  • Figure 18-3: Integration Of Molecular Switches With Artificial Intelligence & Machine Learning
  • Figure 18-4: General mRNA Molecular Switch Workflow

List of Tables

  • Table 2-1: Traditional v/s Molecular Switch Enabled Drug Delivery
  • Table 5-1: Examples Of Approved Drugs Targeting Molecular Switches
  • Table 6-1: Molecular Switches - Broad Classification
  • Table 7-1: Top 20 Drugs Targeting Molecular Switches (US$ Billion), 2022-2025
  • Table 9-1: Alzheimer's Disease - Protective vs Pathogenic Molecular Switches
  • Table 9-2: Spinocerebellar Ataxia - PolyQ Expansion-Driven Protein Aggregation
  • Table 9-3: Spinocerebellar Ataxias - Molecular Switches Involved
  • Table 11-1: Arthritis - Key Molecular Switches Identified
  • Table 15-1: Cv-c-Mediated Molecular Switch In Sleep Homeostasis (Drosophila Model)
  • Table 15-2: Circadian Rhythm & Sleep Regulation - Key Molecular Switches Involved
  • Table 16-1: CD47 Molecular Switch In RBC Clearance
  • Table 19-1: Applications & Advancements Of Molecular Switches In Medicine
  • Table 19-2: Key Applications Of Molecular Switches In Therapeutics
  • Table 19-3: Advantages Of Molecular Switch-Based Therapeutics vs Conventional Approaches