封面
市場調查報告書
商品編碼
1769431

癌症光動力療法的全球市場:光敏化劑的臨床試驗預測(2030年)

Global Cancer Photodynamic Therapy Market & Photosensitizer Clinical Trial Outlook 2030

出版日期: | 出版商: KuicK Research | 英文 220 Pages | 商品交期: 最快1-2個工作天內

價格

全球癌症光動力療法市場:光敏劑臨床試驗展望 (2030) 報告重點:

  • 研究方法
  • 癌症光動力療法程序框架概述
  • 全球癌症光動力療法市場機會:超過 60 億美元
  • 全球市場趨勢與區域市場趨勢洞察
  • 光動力療法整合:依適應症分類
  • 癌症光敏劑在臨床試驗中的臨床洞察:超過 10 種
  • 按公司、適應症和階段劃分的全球光敏劑臨床管線
  • 透過協同光動力療法根除腫瘤的領先方法洞察
  • 競爭格局

光動力療法的需求及本報告的意義

光動力療法 (PDT) 正在成為由於其新穎的作用機制和強大的局部效應,光動力療法已成為傳統癌症治療的寶貴替代和輔助手段。光動力療法使用三種藥物:光敏劑、特定波長的光和組織結合氧,產生具有細胞毒性的活性氧,進而選擇性地破壞癌細胞。這種機制可以精準殺傷腫瘤,同時最大限度地減少對鄰近健康組織的損害。這相比於化療和放療,是一個顯著優勢,因為化療和放療往往會引起全身毒性和附帶組織破壞。

光動力療法在治療皮膚、食道、肺部和子宮頸等對美容和功能至關重要的部位的癌症方面尤其重要。光動力療法可以重複多次且不會產生累積毒性,這進一步增強了其在復發性和無法切除的腫瘤治療中的重要性。此外,光動力療法能夠誘導局部免疫反應並保護器官功能,這使得它越來越受到專科醫生的青睞。

本報告旨在對光動力療法作為一種動態治療策略進行全面的概述。報告總結了光動力療法的機制優勢、已獲監管部門批准的適應症、課題以及當前的創新,使光動力療法成為一種在腫瘤學和非腫瘤學領域都極具潛力的治療方法。

報告中包含的臨床試驗見解

光動力療法正在針對多種腫瘤和不同疾病分期積極進行臨床試驗。許多光敏劑已成功完成 III 期臨床試驗,並已獲得個別適應症的監管部門批准。卟吩姆鈉(光敏素)是第一個上市的光動力療法藥物,已被證明對食道癌、非小細胞肺癌和巴雷特食道等癌前病變有效。氨基乙醯丙酸 (ALA) 及其類似物 MAL 已在皮膚病學試驗後獲批用於治療光化性角化病和表淺基底細胞癌,在幾乎不損害美觀的情況下,實現了卓越的病變清除效果。

諸如替莫泊芬等較新的藥物也正在頭頸癌治療中進行進一步測試。光動力療法也已在多項II期和III期臨床試驗中被探索用於治療神經膠質瘤、膽管癌和眼內腫瘤,這些患者通常缺乏其他治療選擇。本報告包含這些試驗的設計和結果訊息,包括光敏劑類型、光傳輸技術、氧合狀態和患者報告結果等變數。

此外,早期臨床試驗正在評估光動力療法與免疫療法和化療的聯合應用,以改善治療效果並克服腫瘤抗藥性。此類旨在將光動力療法的局部效應與全身免疫活化或細胞毒性協同作用相結合的組合策略正在獲得越來越多的支持。

參與光動力療法研發的主要公司

各種生物技術、製藥和學術機構正在致力於開發和優化光動力療法平台。 Pinnacle Biologics、Biofrontera、Soligenix 和 Steba Biotech 等業界領導者正致力於開發新一代光敏劑,旨在改善藥物動力學、縮短光敏化時間並提高腫瘤特異性。例如,Biofrontera 在美國和歐盟銷售多種基於 5-ALA 的光動力療法產品,用於皮膚病治療。

羅斯威爾帕克綜合癌症中心、倫敦大學學院和哈佛醫學院等學術機構在開發新型光傳輸系統和研究光動力療法的免疫機制方面發揮關鍵作用。這些研究是目前合作和臨床夥伴關係的基礎,旨在將光動力療法擴展到新的腫瘤和非腫瘤領域。

同時,科技企業正在利用奈米技術和人工智慧支援的藥物設計開發智慧傳輸系統,以增強光敏劑的靶向性並最大限度地減少脫靶效應。這些進展正在擴大光動力療法的應用範圍和安全性。

光動力療法未來發展方向的報告

儘管光動力療法的治療重要性已得到證實,但它仍在透過科技創新不斷發展。未來的發展階段需要解決目前在光穿透深度、氧依賴性和長期光敏感性方面的不足。為了克服這些缺陷,研究人員正在設計近紅外線活化的光敏劑、腫瘤靶向奈米粒子和氧非依賴性反應機制。

光動力療法與免疫療法(包括檢查點抑制劑)的結合是一個前景光明的發展領域。光動力療法可以遞送腫瘤相關抗原並誘導免疫原性細胞死亡,使其成為增強免疫系統抗癌能力的療法的完美搭配。目前,一些臨床前模型和早期臨床試驗正在探索這種結合。

此外,奈米載體遞送系統的加入可以增強光敏劑的藥理特性,促進腫瘤特異性靶向和可控激活。光動力療法在非腫瘤領域的應用也備受關注,例如抗菌治療、老年性黃斑部病變和自體免疫性皮膚病,預計在這些領域將具有廣泛的治療效果。

本報告詳細介紹了這些未來發展方向,並對新型光敏劑的設計、新的臨床方法以及光動力療法在現有適應症之外可能應用的領域提供了見解。對於腫瘤學、皮膚病學、生物技術和醫療保健政策領域的利益相關者而言,光動力療法領域是一個不斷發展的前沿領域,與精準醫療和器官保留治療目標相互交叉。

目錄

第1章 調查手法

第2章 光線動態的癌症療法是什麼嗎

  • 概要
  • 癌症光動力療法的優點
  • 癌症光動力療法的演進

第3章 腫瘤學的光動力療法的臨床性必要性

第4章 癌症光動力療法的手術架構

  • 光動力治療程序
  • 細胞內光敏劑給藥
  • 氧氣:光動力治療的關鍵底物
  • 光源:安全有效活化光敏劑的關鍵

第5章 光動力療法的光敏銳度物質的通知的最佳化

  • 有機奈米粒子:提高藥物負載能力與溶解度
  • 無機奈米載體作為光動力療法中光敏劑的載體

治療

第6章 光動力療法的抗腫瘤活性

  • 光動力療法對腫瘤的直接損傷
  • 血管損傷
  • 發炎和免疫反應

第7章 光動力療法治療多種癌症

  • 皮膚癌
  • 攝護腺癌
  • 口腔病變及食道癌
  • 肺癌
  • 乳癌
  • 腦腫瘤
  • 頭頸癌
  • 婦科癌症
  • 大腸癌
  • 膽道和胰臟癌

第8章 全球癌症光動力療法市場展望

  • 當前市場情勢
  • 未來市場機遇

第9章 各地區光動力療法市場分析

  • 北美
  • 歐洲
  • 亞太地區
  • 南美,中東·非洲

第10章 全球癌症治療用光敏銳度劑的臨床實驗平台概要

  • 各相
  • 各國
  • 各企業
  • 各適應症

第11章 各企業,各適應症,各相的光敏銳度劑的世界臨床實驗平台

  • 前臨床
  • 第一階段
  • 第一/二階段
  • 第二階段
  • 第三階段

第12章 各企業·各適應症光敏銳度劑的銷售情形

第13章 腫瘤根絕的相乘的光動力療法方法

第14章 光動力療法領域的進步

第15章 全球癌症光動力療法市場動態

  • 與有利的參數機會
  • 未來市場成長的課題

第16章 競爭情形

  • Asieris Pharmaceuticals
  • Aura Biosciences
  • Biofrontera AG
  • Biolitec
  • Coherent
  • Galderma
  • Hemerion Therapeutics
  • ImPact Biotech
  • Invion
  • Luzitin
  • Modulight Corporation
  • Molteni Farmaceutici
  • PCI Biotech
  • PhotoBiotics
  • Photolitec
  • photonamic
  • Pinnacle Biologics
  • Rakuten Medical
  • Theralase Technologies
  • SBI Pharmaceuticals
  • Shanghai Fudan-Zhangjiang Bio-Pharmaceutical
  • Soligenix
  • Sun Pharma

Global Cancer Photodynamic Therapy Market & Photosensitizer Clinical Trial Outlook 2030 Report Highlights:

  • Research Methodology
  • Overview On Procedural Framework For Photodynamic Cancer Therapy
  • Global Cancer Photodynamic Therapy Market Opportunity: > USD 6 Billion
  • Global & Regional Market Trends Insight,
  • Integration Of Photodynamic Therapy By Indication
  • Insight On Cancer Photosensitizers In Clinical Trials: > 10
  • Global Photosensitizers Clinical Pipeline By Company, Indication & Phase
  • Insight On Key Approaches For Tumor Eradication Through Synergistic Photodynamic Therapy
  • Competitive Landscape

Need for Photodynamic Therapy & Why This Report?

Photodynamic therapy (PDT) is becoming a valuable alternative and adjunct to traditional cancer therapies because of its novel mechanism of action and strongly localized effects. Photodynamic therapy uses a triad of agents, namely photosensitizing drugs, light of a specific wavelength, and tissue-bound oxygen, to produce cytotoxic reactive oxygen species that selectively destroy cancer cells. Such a mechanism provides site-specific tumor killing with minimal damage to neighboring healthy tissues, a major advantage over chemotherapy and radiotherapy, which tend to cause systemic toxicity or collateral tissue destruction.

The requirement for photodynamic therapy has been particularly apparent in the treatment of cancers in cosmetically and functionally critical areas, including the skin, esophagus, lung, and cervix. The potential to re-administer photodynamic therapy several times without cumulative toxicity further increases its importance in the management of recurrent or unresectable tumors. Additionally, photodynamic therapy ability to induce localized immune responses and maintain organ function adds to its increasing popularity among medical specialties.

This report has been created to deliver an extensive overview of photodynamic therapy as a dynamic therapeutic strategy. It encapsulates the technology's mechanistic advantages, indications approved by regulatory agencies, problems, and current innovations, making it a high-potential solution for both oncology and non-oncology practices.

Clinical Trials Insight Included In Report

Photodynamic therapy has been subjected to strenuous clinical investigations in multiple tumors and stages of disease. A number of photosensitizers have already gained regulatory approval for individual indications following the successful completion of Phase III trials. Porfimer sodium (Photofrin), the first commercially available photodynamic therapy agent, was shown to be effective in esophageal carcinoma, non-small cell lung carcinoma, and pre-cancerous lesions such as Barrett's esophagus. Aminolevulinic acid (ALA) and its analogue MAL are approved for actinic keratosis and superficial basal cell carcinoma following dermatological trials, which achieved excellent lesion removal with little cosmetic damage.

More recent agents such as temoporfin are also being further tested for head and neck cancers. Photodynamic therapy is also being examined through multiple Phase II and III studies for gliomas, cholangiocarcinoma, and intraocular tumors, frequently in populations with few other treatment options. The report includes information on the design and results of these trials, including variables of photosensitizer type, techniques of light delivery, oxygenation status, and patient-reported outcomes.

Moreover, early-stage clinical trials are assessing photodynamic therapy in combination with immunotherapy or chemotherapy to improve therapeutic outcomes and overcome tumor resistance. These combinatorial strategies are gaining traction as they seek to integrate photodynamic therapy localized effect with systemic immune activation or cytotoxic synergy.

Key Companies Involved In R&D Of Photodynamic Therapies

Various biotech and pharmaceutical firms, as well as academic institutions, are engaged in developing and optimizing photodynamic therapy platforms. Industry leaders like Pinnacle Biologics, Biofrontera, Soligenix, and Steba Biotech are working on next-generation photosensitizers with enhanced pharmacokinetics, reduced photosensitivity times, and greater tumor specificity. Biofrontera, for instance, has marketed several ALA-based photodynamic therapy products for dermatological applications in the US and EU.

Academic institutions such as Roswell Park Comprehensive Cancer Center, University College London, and Harvard Medical School play a critical role in creating new light delivery systems and investigating photodynamic therapy -induced immune mechanisms. Their investigations are the foundation of current collaborations and clinical partnerships that seek to extend photodynamic therapy into new oncologic and non-oncologic frontiers.

Concurrently, technology ventures are using nanotechnology and drug design supported by artificial intelligence to develop intelligent delivery systems that enhance photosensitizer targeting and minimize off-target effects. These developments are enhancing the extent of applications and safety profile of photodynamic therapy treatments.

Report Highlighting Future Direction Of Photodynamic Therapy Segment

Even though it has proven therapeutic importance, photodynamic therapy is still being developed through scientific and technological innovation. The future stage of development addresses current shortcomings: essentially light penetration depth, oxygen dependency, and long-term photosensitivity. To suppress them, researchers are engineering near-infrared activatable photosensitizers, tumor-targeted nanoparticles, and oxygen independent reaction mechanisms.

One promising area of future development involves the combination of photodynamic therapy with immunotherapies, including checkpoint inhibitors. Photodynamic therapy capacity for the delivery of tumor associated antigens as well as the induction of immunogenic cell death makes it a perfect companion to therapies enhancing the immune system's potential for cancer fighting. This combination is being explored in several preclinical models as well as early-phase clinical trials.

In addition, the incorporation of nanocarrier based delivery systems will be able to enhance the pharmacological profile of photosensitizers, facilitating specific tumor targeting and controlled activation. Interest also exists in the application of photodynamic therapy for non-oncology indications like antimicrobial therapy, age related macular degeneration, and even autoimmune skin diseases, illustrating its wider therapeutic promise.

This report details these future directions, providing insights into new photosensitizer design, emerging clinical approaches, and spaces where photodynamic therapy can take hold beyond its established indications. For oncology, dermatology, biotechnology, and healthcare policy stakeholders, the photodynamic therapy segment is an expanding frontier that intersects with precision medicine and organ-sparing treatment objectives.

Table of Contents

1. Research Methodology

2. What is Photodynamic Cancer Therapy?

  • 2.1 Overview
  • 2.2 Advantage of Photodynamic Cancer Therapy
  • 2.3 Evolution of the Photodynamic Cancer Therapy

3. Clinical Need For Photodynamic Therapy In Oncology

4. Procedural Framework For Photodynamic Cancer Therapy

  • 4.1 Procedure for Photodynamic Therapy
  • 4.2 Administering Photosensitizers To Body
  • 4.3 Oxygen: A Vital Substrate in Photodynamic Therapy
  • 4.4 Light Source: Key to Safe & Effective Photosensitizer Activation

5. Optimizing Photosensitizer Delivery For Photodynamic Therapy

  • 5.1 Organic Nanoparticles: Enhancing Drug Loading Capacity & Solubility
  • 5.2 Inorganic Nanocarriers As Vehicles For Photosensitizers In Photodynamic

Therapy

6. Anti-Tumor Activity Of Photodynamic Therapy

  • 6.1 Direct Tumor Damage By Photodynamic Therapy
  • 6.2 Vascular Damage
  • 6.3 Inflammatory & Immune Response

7. Multiple Cancer Treatments Using Photodynamic Therapy

  • 7.1 Skin Cancer
  • 7.2 Prostate Cancer
  • 7.3 Oral Lesions & Esophageal Cancer
  • 7.4 Lung Cancer
  • 7.5 Breast Cancer
  • 7.6 Brain Tumors
  • 7.7 Head & Neck Cancer
  • 7.8 Gynecological Cancers
  • 7.9 Colorectal Cancer
  • 7.10 Biliary & Pancreatic Cancers

8. Global Cancer Photodynamic Therapy Market Outlook

  • 8.1 Current Market Scenario
  • 8.2 Future Market Opportunity

9. Photodynamic Therapy Market Analysis By Region

  • 9.1 North America
  • 9.2 Europe
  • 9.3 Asia Pacific
  • 9.4 Latin America, Middle East & Africa

10. Global Cancer Photosensitizers Clinical Pipeline Overview

  • 10.1 By Phase
  • 10.2 By Country
  • 10.3 By Company
  • 10.4 By Indication

11. Global Photosensitizers Clinical Pipeline By Company, Indication & Phase

  • 11.1 Preclinical
  • 11.2 Phase I
  • 11.3 Phase-I/II
  • 11.4 Phase-II
  • 11.5 Phase-III

12. Marketed Photosensitizers By Company & Indication

13. Synergistic Photodynamic Therapy Approaches For Tumor Eradication

14. Advancements In Photodynamic Therapy Segment

15. Global Photodynamic Cancer Therapy Market Dynamics

  • 15.1 Favorable Parameters & Opportunities
  • 15.2 Challenges to Future Market Growth

16. Competitive Landscape

  • 16.1 Asieris Pharmaceuticals
  • 16.2 Aura Biosciences
  • 16.3 Biofrontera AG
  • 16.4 Biolitec
  • 16.5 Coherent
  • 16.6 Galderma
  • 16.7 Hemerion Therapeutics
  • 16.8 ImPact Biotech
  • 16.9 Invion
  • 16.10 Luzitin
  • 16.11 Modulight Corporation
  • 16.12 Molteni Farmaceutici
  • 16.13 PCI Biotech
  • 16.14 PhotoBiotics
  • 16.15 Photolitec
  • 16.16 photonamic
  • 16.17 Pinnacle Biologics
  • 16.18 Rakuten Medical
  • 16.19 Theralase Technologies
  • 16.20 SBI Pharmaceuticals
  • 16.21 Shanghai Fudan-Zhangjiang Bio-Pharmaceutical
  • 16.22 Soligenix
  • 16.23 Sun Pharma

List of Figures

  • Figure 2-1: Cancer Photodynamic Therapy - Superior Targeted Noninvasive Alternative
  • Figure 2-2: Cancer Photodynamic Therapy - Evolution
  • Figure 3-1: Cancer Photodynamic Therapy - Need
  • Figure 4-1: Cancer Photodynamic Therapy - Working Principle
  • Figure 4-2: Desired Features of Ideal Photosensitizer
  • Figure 4-3: Photodynamic Therapy - Cellular Mechanism
  • Figure 4-4: Photodynamic Therapy - Common Light Sources
  • Figure 5-1: Photodynamic Therapy - Drug Delivery Systems
  • Figure 5-2: Photosensitizer Drugs - Liposome-Based Delivery
  • Figure 5-3: Quantum Dot - Structure
  • Figure 5-4: Gold Nanoparticles - Targeted Photosensitizer Delivery System
  • Figure 6-1: Photodynamic Therapy - Tumor Cell Apoptosis Induction
  • Figure 6-2: Photodynamic Therapy - Vascular Damage Induction
  • Figure 7-1: CASE2621 Phase 1/2 (NCT05020912) Trial - Study Initiation & Completion Year
  • Figure 7-2: ALA-BCC-CT013 Phase 3 (NCT03573401) Trial - Study Initiation & Completion Year
  • Figure 7-3: PDT-MDS-BCC-24 Phase 1 (NCT06623201) Trial - Study Initiation & Completion Year
  • Figure 7-4: JointAPHSHC/2014-002746-50 Phase 1/2 (NCT02367547) Trial - Study Initiation & Completion Year
  • Figure 7-5: STU00211723 Phase 2 (NCT04429308) Trial - Study Initiation & Completion Year
  • Figure 7-6: ALA-AK-CT019 Phase 3 (NCT05662202) Trial - Study Initiation & Completion Year
  • Figure 7-7: PCM304 Phase 3 (NCT01875393) Trial - Study Initiation & Completion Year
  • Figure 7-8: PCM204 Phase 2 (NCT03315754) Trial - Study Initiation & Completion Year
  • Figure 7-9: SPC11-01-110 Phase 1/2 (NCT03067051) Trial - Study Initiation & Completion Year
  • Figure 7-10: 2024-FXY-183 Phase 4 (NCT06437288) Trial - Study Initiation & Completion Year
  • Figure 7-11: Padeliporfin Phase 1 (NCT03133650) Trial - Study Initiation & Completion Year
  • Figure 7-12: CA279862 Phase 2 (NCT06876038) Trial - Study Initiation & Completion Year
  • Figure 7-13: Lung Cancer - Photodynamic Therapy Procedure
  • Figure 7-14: I-3845023 Phase 2 (NCT06943664) Trial - Study Initiation & Completion Year
  • Figure 7-15: Porfimer Sodium Phase 1 (NCT04836429) Trial - Study Initiation & Completion Year
  • Figure 7-16: I 62118 Phase 1 (NCT03678350) Trial - Study Initiation & Completion Year
  • Figure 7-17: LCM101 Phase 1 (NCT05918783) Trial - Study Initiation & Completion Year
  • Figure 7-18: KTI-21-01 Phase 1 (NCT052374915) Trial - Study Initiation & Completion Year
  • Figure 7-19: F0009-01 Phase 3 (NCT06417281) Trial - Study Initiation & Completion Year
  • Figure 7-20: STUDY22120058 Phase 2 (NCT06907485) Trial - Study Initiation & Completion Year
  • Figure 7-21: UKM2013_0034 Phase 2 (NCT04738162) Trial - Study Initiation & Completion Year
  • Figure 7-22: WWU20_0041 Phase 1/2 (NCT05590689) Trial - Study Initiation & Completion Year
  • Figure 7-23: HTX-GBM-01 Phase 1/2 (NCT05736406) Trial - Study Initiation & Completion Year
  • Figure 7-24: GL 01 Phase 2 (NCT03897491) Trial - Study Initiation & Completion Year
  • Figure 7-25: PhotodiVIN Phase 2 (NCT05104099) Trial - Study Initiation & Completion Year
  • Figure 7-26: Gleolan Phase 1/2 (NCT06307548) Trial - Study Initiation & Completion Year
  • Figure 7-27: CARP Phase 4 (NCT05551299) Trial - Study Initiation & Completion Year
  • Figure 7-28: PNCM101 Phase 1 (NCT05919238) Trial - Study Initiation & Completion Year
  • Figure 7-29: MC230404 Phase 2 (NCT06381154) Trial - Study Initiation & Completion Year
  • Figure 8-1: Global - Cancer Photodynamic Therapy Market Opportunity (US$ Billion), 2024-2030
  • Figure 8-2: Global - Share of Cancer In Photodynamic Therapy (%), 2024 & 2030
  • Figure 8-3: Global - Cancer Photodynamic Therapy by Region (%), 2024 & 2030
  • Figure 8-4: US - Cancer Photodynamic Therapy Market Opportunity (US$ Billion), 2024 & 2030
  • Figure 8-5: Europe - Cancer Photodynamic Therapy Market Opportunity (US$ Billion), 2024 & 2030
  • Figure 8-6: Asia - Cancer Photodynamic Therapy Market Opportunity (US$ Billion), 2018 & 2026
  • Figure 8-7: Global Cancer Photodynamic Therapy - Future Opportunities
  • Figure 10-1: Global - Cancer Photosensitizers Clinical Pipeline By Phase (Numbers), 2025 Till 2030
  • Figure 10-2: Global - Cancer Photosensitizers Clinical Pipeline By Company (Numbers), 2020 till 2026
  • Figure 10-3: Global - Cancer Photosensitizers Clinical Pipeline By Company (Numbers), 2025 Till 2030
  • Figure 10-4: Global - Cancer Photosensitizers Clinical Pipeline By Indication (Numbers), 2025 Till 2030
  • Figure 13-1: Cancer Photodynamic Therapy - Limitations
  • Figure 15-1: Global Cancer Photodynamic Therapy Market - Drivers & Opportunities
  • Figure 15-2: Global Cancer Photodynamic Therapy Market - Challenges & Restraints
  • Figure 15-3: Cancer Photodynamic Therapy - Scientific Limitations
  • Figure 15-4: Cancer Photodynamic Therapy Market - Commercial Challenges

List of Tables

  • Table 13-1: Photodynamic Therapy - Combination Approaches In Clinical Trials