封面
市場調查報告書
商品編碼
1917906

鈉離子電池市場-2026-2031年預測

Sodium Ion Battery Market - Forecast from 2026 to 2031

出版日期: | 出版商: Knowledge Sourcing Intelligence | 英文 148 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

預計到 2025 年,鈉離子電池市場規模將達到 550,787,000 美元,到 2031 年將達到 2,092,960,000 美元,複合年成長率為 24.92%。

鈉離子電池(SIB)市場是更廣泛的儲能領域中一個快速崛起的新興細分市場,被視為主流鋰離子電池的一種極具前景的補充技術。鈉離子電池的工作原理與鋰離子電池類似,但使用鈉離子作為電荷載體,充分利用了鈉的豐富儲量和低成本優勢。儘管與鋰離子電池相比,鈉離子電池的商業化仍處於早期階段,但其價值鏈優勢、安全性以及全球電氣化和可再生能源併網的趨勢,使其在特定應用領域展現出極具吸引力的價值提案,並正吸引著市場的廣泛關注。

推動鈉離子電池(SIB)發展的關鍵且強大的動力在於實現電池供應鏈多元化,並降低鋰和其他關鍵礦物相關的風險。鋰、鈷和鎳面臨地域集中、地緣政治動盪以及長期供需失衡等諸多限制。鈉是地球上儲量最豐富的元素之一,能夠提供地理分散、安全且潛在成本低廉的原料來源。這項特性使得鈉離子電池成為大規模、成本敏感型應用領域(例如固定式電網儲能和入門級電動車)的理想選擇,在這些領域,系統總成本至關重要。

全球向可再生能源轉型正在加速,由此產生了對經濟高效、長時儲能解決方案的巨大需求,這為鈉離子電池(SIBs)帶來了巨大的市場機會。太陽能和風能發電的間歇性使得儲能技術成為平衡供需、確保電網穩定並最大限度利用清潔能源的必要手段。鈉離子電池因其材料成本更低、安全性高等優勢,正被開發為一種可行的替代技術,尤其適用於電網級儲能計劃,在這些項目中,極高的能量密度遠不如生命週期成本、安全性和永續性重要。

儘管高能量密度鋰離子電池目前主導著快速成長的電動車 (EV) 市場,但鈉離子電池 (SIB) 技術也擁有獨特的策略定位。 SIB 的目標市場是特定的電動車細分領域,在這些領域,成本、安全性和循環壽命比最大續航里程更為重要。這些領域包括城市微型交通工具、兩輪和三輪車以及入門級緊湊型汽車,在價格敏感型市場中,這些領域的需求尤其強勁。低溫性能和不易燃性也被視為汽車應用的額外優勢。

持續大規模的研發投入是推動這項技術商業化的關鍵因素。目前,能量密度和循環壽命是亟待解決的主要挑戰,研究重點在於開發高性能正極材料(例如層狀氧化物和聚陰離子化合物)、穩定的陽極(硬碳材料是主要候選材料)以及相容的電解。材料科學和電池設計的突破正在逐步縮小該技術在某些指標上與現有磷酸鋰鐵(LFP)電池的性能差距。

政府和機構的支持在降低早期研發風險和建立具有競爭力的生態系統方面發揮著至關重要的作用。旨在確保儲能領域領先地位、減少對外國鋰資源的依賴以及推廣循環經濟原則的國家戰略,正在推動對鋰離子電池(SIB)研究、試點生產設施和示範計劃的專項資金投入。這種政策主導的支持主導該技術能夠迅速從實驗室走向早期吉瓦級生產。

從地理上看,中國目前是市場最活躍、發展最成熟的地區,擁有強大的政府支持,領先的電池製造商(如寧德時代)已宣布商業化計劃,試點生產線正在快速擴大規模。北美和歐洲也是創新Start-Ups和學術研究的重要中心,致力於本土材料創新,並力求建立下一代儲能技術的國內製造能力。

儘管這些因素前景可觀,但市場仍面臨巨大的技術和商業阻力。雖然鈉離子電池的能量密度正在不斷提高,但其性能通常仍不及先進的鋰離子電池,這限制了它們在重量和體積至關重要的應用領域的適用性。建立成熟且具有成本競爭力的專用鈉離子電池材料(例如某些正極材料前驅體)供應鏈,並擴大生產規模以實現真正的規模經濟,是實現理論上成本優勢必須克服的重大障礙。

競爭格局由多方組成:既有向鈉離子電池領域多元化發展的鋰離子電池巨頭,也有專門研發新型鈉離子電池化學技術的Start-Ups,以及學術衍生企業。成功的關鍵在於:確保關鍵材料的智慧財產權,在實際環境中驗證產品的可靠性,與系統整合商和承購商建立策略合作夥伴關係,以及找到實現經濟高效的吉瓦時規模生產的方法。

總之,鈉離子電池市場蓄勢待發,即將迎來顯著成長。它並非旨在全面取代鋰離子電池,而是作為補充技術,填補儲能產品組合中的關鍵空白。其發展軌跡將取決於能否兌現降低成本和增強電網儲能及特定交通應用領域供應鏈安全性的承諾。未來的市場發展將取決於大規模技術示範的成功、穩健供應鏈的建立以及成本目標的實現,這些目標應使其與不斷改進的鋰離子電池明顯區分開來。隨著全球儲能需求的加速成長,鈉離子技術為建構更多元化、更具韌性和永續的電池生態系統提供了一條充滿希望​​的途徑。

本報告的主要優勢:

  • 深入分析:我們提供對主要和新興地區的深入市場洞察,重點關注客戶群、政府政策和社會經濟因素、消費者偏好、行業垂直領域和其他細分市場。
  • 競爭格局:了解全球主要參與者的策略舉措,並了解透過正確的策略實現市場滲透的潛力。
  • 市場促進因素與未來趨勢:探索市場促進因素和關鍵趨勢及其對未來市場發展的影響。
  • 可操作的建議:利用洞察力,做出策略決策,在動態環境中發展新的業務流和收入來源。
  • 受眾廣泛:對Start-Ups、研究機構、顧問公司、中小企業和大型企業都很有用且經濟實惠。

本報告的使用範例

產業與市場分析、機會評估、產品需求預測、打入市場策略、地理擴張、資本投資決策、法規結構及影響、新產品開發、競爭情報

報告範圍:

  • 2021年至2025年的歷史數據和2026年至2031年的預測數據
  • 成長機會、挑戰、供應鏈前景、法規結構與趨勢分析
  • 競爭定位、策略和市場佔有率分析
  • 按業務板塊和地區(包括國家)分類的收入和預測評估
  • 公司概況(策略、產品、財務資訊、關鍵發展等)

目錄

第1章執行摘要

第2章 市場概覽

  • 市場概覽
  • 市場定義
  • 調查範圍
  • 市場區隔

第3章 商業情境

  • 市場促進因素
  • 市場限制
  • 市場機遇
  • 波特五力分析
  • 產業價值鏈分析
  • 政策與法規
  • 策略建議

第4章 技術展望

第5章 依外形規格的鈉離子電池市場

  • 介紹
  • 圓柱形
  • 方塊
  • 小袋

第6章 以最終用戶分類的鈉離子電池市場

  • 介紹
  • 住宅
  • 商業
  • 產業

第7章 依應用分類的鈉離子電池市場

  • 介紹
  • 固定式儲能
  • 運輸
  • 消費性電子產品
  • 工業備用電源
  • 船舶
  • 其他

第8章 鈉離子電池市場(按地區分類)

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 南美洲
    • 巴西
    • 阿根廷
    • 其他
  • 歐洲
    • 德國
    • 法國
    • 英國
    • 西班牙
    • 其他
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 其他
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 韓國
    • 印尼
    • 泰國
    • 其他

第9章:競爭格局與分析

  • 主要企業和策略分析
  • 市佔率分析
  • 合併、收購、協議和合作
  • 競爭對手儀錶板

第10章:公司簡介

  • CATL
  • Faradion Limited
  • Natron Energy
  • HiNa BATTERY
  • Ronbay Technology
  • Zoolnasm
  • Natrium Energy
  • Kishida Chemical
  • Panasonic Corporation
  • Mitsubishi Corporation

第11章附錄

  • 貨幣
  • 先決條件
  • 基準年和預測年時間表
  • 相關人員的主要收益
  • 調查方法
  • 簡稱
簡介目錄
Product Code: KSI061615905

Sodium Ion Battery Market is expected to grow at a 24.92% CAGR, achieving USD 2092.96 million in 2031 from USD 550.787 million in 2025.

The sodium-ion battery (SIB) market represents a rapidly emerging segment within the broader energy storage landscape, positioned as a promising complementary technology to the dominant lithium-ion chemistry. SIBs operate on similar electrochemical principles but utilize sodium ions as charge carriers, leveraging the fundamental abundance and low cost of sodium. While still in the early stages of commercialization relative to lithium-ion, the market is gaining significant traction due to its compelling value proposition for specific applications, driven by supply chain considerations, safety advantages, and the global push toward electrification and renewable energy integration.

A primary and powerful driver for SIB development is the strategic imperative to diversify the battery supply chain and mitigate risks associated with lithium and other critical minerals. Lithium, cobalt, and nickel face constraints related to geographical concentration, geopolitical volatility, and long-term demand-supply imbalances. Sodium, being one of the most abundant elements on Earth, offers a pathway to a more geographically distributed, secure, and potentially lower-cost raw material base. This attribute makes SIBs particularly attractive for large-scale, cost-sensitive applications where total system cost is paramount, such as stationary grid storage and entry-level electric mobility.

The accelerating global transition to renewable energy is creating immense demand for cost-effective, long-duration energy storage solutions, a key market opportunity for SIBs. The intermittency of solar and wind power necessitates storage to balance supply and demand, ensure grid stability, and maximize the utilization of clean energy. Sodium-ion batteries, with their potential for lower material costs and inherent safety characteristics, are being developed as a viable alternative for grid-scale storage projects, especially where extreme energy density is less critical than lifetime cost, safety, and sustainability.

The burgeoning electric vehicle (EV) market, while currently dominated by high-energy-density lithium-ion batteries, also presents a strategic niche for SIB technology. SIBs are being targeted for specific EV segments where cost, safety, and cycle life may take precedence over maximum range. This includes urban micro-mobility, two- and three-wheelers, and entry-level compact cars, particularly in price-sensitive markets. The technology's performance in cold temperatures and its non-flammable characteristics are additional advantages being explored for automotive applications.

Continuous and significant investment in research and development is a critical catalyst advancing the technology toward commercialization. Efforts are focused on overcoming key challenges, primarily related to energy density and cycle life. Research is concentrated on developing high-performance cathode materials (e.g., layered oxides, polyanionic compounds), stable anodes (hard carbon remains the frontrunner), and compatible electrolytes. Breakthroughs in material science and cell engineering are progressively closing the performance gap with incumbent lithium iron phosphate (LFP) batteries in targeted metrics.

Government and institutional support are playing a vital role in de-risking early-stage development and fostering a competitive ecosystem. National strategies aimed at securing energy storage technology leadership, reducing dependency on foreign lithium supplies, and promoting circular economy principles are leading to targeted funding for SIB research, pilot production facilities, and demonstration projects. This policy-driven support is accelerating the technology's progression from the lab to initial gigawatt-scale manufacturing.

Geographically, China is currently the most active and advanced market, with strong government backing, major battery manufacturers (like CATL) announcing commercialization plans, and a rapid scale-up of pilot production lines. North America and Europe are also significant hubs for innovative startups and academic research, focusing on distinct material innovations and aiming to establish domestic manufacturing capabilities for this next-generation storage technology.

Despite the promising drivers, the market faces substantial technical and commercial headwinds. The current energy density of SIBs, while improving, generally lags behind that of advanced lithium-ion chemistries, limiting their suitability for applications where weight and volume are critical constraints. Establishing a mature, cost-competitive supply chain for specialized SIB materials (e.g., certain cathode precursors) and scaling manufacturing to achieve true economies of scale remain significant hurdles that must be overcome to realize the theoretical cost advantage.

The competitive landscape features a mix of established lithium-ion giants diversifying into SIBs, specialized startups founded specifically around novel sodium-ion chemistries, and academic spin-outs. Success will depend on securing intellectual property for key materials, demonstrating reliable performance in real-world applications, forming strategic partnerships with integrators and off-takers, and navigating the path to cost-effective gigawatt-hour-scale production.

In conclusion, the sodium-ion battery market is poised for substantial growth, not as a wholesale replacement for lithium-ion, but as a complementary technology filling critical gaps in the energy storage portfolio. Its trajectory will be defined by its ability to deliver on the promise of lower cost and enhanced supply chain security for grid storage and specific mobility segments. Future market development hinges on successful technology validation at scale, the creation of a robust supply chain, and the achievement of cost targets that clearly differentiate SIBs from continually improving lithium-ion alternatives. As the global demand for storage accelerates, sodium-ion technology offers a promising pathway to a more diversified, resilient, and sustainable battery ecosystem.

Key Benefits of this Report:

  • Insightful Analysis: Gain detailed market insights covering major as well as emerging geographical regions, focusing on customer segments, government policies and socio-economic factors, consumer preferences, industry verticals, and other sub-segments.
  • Competitive Landscape: Understand the strategic maneuvers employed by key players globally to understand possible market penetration with the correct strategy.
  • Market Drivers & Future Trends: Explore the dynamic factors and pivotal market trends and how they will shape future market developments.
  • Actionable Recommendations: Utilize the insights to exercise strategic decisions to uncover new business streams and revenues in a dynamic environment.
  • Caters to a Wide Audience: Beneficial and cost-effective for startups, research institutions, consultants, SMEs, and large enterprises.

What do businesses use our reports for?

Industry and Market Insights, Opportunity Assessment, Product Demand Forecasting, Market Entry Strategy, Geographical Expansion, Capital Investment Decisions, Regulatory Framework & Implications, New Product Development, Competitive Intelligence

Report Coverage:

  • Historical data from 2021 to 2025 & forecast data from 2026 to 2031
  • Growth Opportunities, Challenges, Supply Chain Outlook, Regulatory Framework, and Trend Analysis
  • Competitive Positioning, Strategies, and Market Share Analysis
  • Revenue Growth and Forecast Assessment of segments and regions including countries
  • Company Profiling (Strategies, Products, Financial Information), and Key Developments among others.

Sodium Ion Battery Market Segmentation

  • By Form Factor
  • Cylindrical
  • Prismatic
  • Pouch
  • By End-User
  • Residential
  • Commercial
  • Industrial
  • By Application
  • Stationary Energy Storage
  • Transportation
  • Consumer Electronics
  • Industrial Backup Power
  • Marine
  • Others
  • By Geography
  • North America
  • USA
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Spain
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Others
  • Asia Pacific
  • China
  • India
  • Japan
  • South Korea
  • Indonesia
  • Thailand
  • Others

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

2. MARKET SNAPSHOT

  • 2.1. Market Overview
  • 2.2. Market Definition
  • 2.3. Scope of the Study
  • 2.4. Market Segmentation

3. BUSINESS LANDSCAPE

  • 3.1. Market Drivers
  • 3.2. Market Restraints
  • 3.3. Market Opportunities
  • 3.4. Porter's Five Forces Analysis
  • 3.5. Industry Value Chain Analysis
  • 3.6. Policies and Regulations
  • 3.7. Strategic Recommendations

4. TECHNOLOGICAL OUTLOOK

5. SODIUM ION BATTERY MARKET BY FORM FACTOR

  • 5.1. Introduction
  • 5.2. Cylindrical
  • 5.3. Prismatic
  • 5.4. Pouch

6. SODIUM ION BATTERY MARKET BY END-USER

  • 6.1. Introduction
  • 6.2. Residential
  • 6.3. Commercial
  • 6.4. Industrial

7. SODIUM ION BATTERY MARKET BY APPLICATION

  • 7.1. Introduction
  • 7.2. Stationary Energy Storage
  • 7.3. Transportation
  • 7.4. Consumer Electronics
  • 7.5. Industrial Backup Power
  • 7.6. Marine
  • 7.7. Others

8. SODIUM ION BATTERY MARKET BY GEOGRAPHY

  • 8.1. Introduction
  • 8.2. North America
    • 8.2.1. USA
    • 8.2.2. Canada
    • 8.2.3. Mexico
  • 8.3. South America
    • 8.3.1. Brazil
    • 8.3.2. Argentina
    • 8.3.3. Others
  • 8.4. Europe
    • 8.4.1. Germany
    • 8.4.2. France
    • 8.4.3. United Kingdom
    • 8.4.4. Spain
    • 8.4.5. Others
  • 8.5. Middle East and Africa
    • 8.5.1. Saudi Arabia
    • 8.5.2. UAE
    • 8.5.3. Others
  • 8.6. Asia Pacific
    • 8.6.1. China
    • 8.6.2. India
    • 8.6.3. Japan
    • 8.6.4. South Korea
    • 8.6.5. Indonesia
    • 8.6.6. Thailand
    • 8.6.7. Others

9. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 9.1. Major Players and Strategy Analysis
  • 9.2. Market Share Analysis
  • 9.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 9.4. Competitive Dashboard

10. COMPANY PROFILES

  • 10.1. CATL
  • 10.2. Faradion Limited
  • 10.3. Natron Energy
  • 10.4. HiNa BATTERY
  • 10.5. Ronbay Technology
  • 10.6. Zoolnasm
  • 10.7. Natrium Energy
  • 10.8. Kishida Chemical
  • 10.9. Panasonic Corporation
  • 10.10. Mitsubishi Corporation

11. APPENDIX

  • 11.1. Currency
  • 11.2. Assumptions
  • 11.3. Base and Forecast Years Timeline
  • 11.4. Key Benefits for the Stakeholders
  • 11.5. Research Methodology
  • 11.6. Abbreviations