封面
市場調查報告書
商品編碼
1878382

綠色氨市場-2025-2030年預測

Green Ammonia Market - Forecasts from 2025 to 2030

出版日期: | 出版商: Knowledge Sourcing Intelligence | 英文 142 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

綠色氨市場預計將以 60.28% 的複合年成長率成長,從 2025 年的 308,119,000 美元成長到 2030 年的 3,259,554,000 美元。

全球能源轉型已將綠色氨確立為難以減排產業排放的關鍵組成部分。綠色氨是透過電解可再生氫製取的。由於傳統氨生產碳排放強度高,化學肥料和化學工業亟需清潔化,加上船舶燃料和發電領域的需求不斷成長,綠色氨已成為淨零排放經濟的核心分子。該市場的特點是對電解和可再生能源基礎設施進行大量資本投資,並制定了積極的法規環境,旨在降低投資風險,縮小與石化燃料替代品的成本差距。隨著在可再生能源資源豐富且成本低廉的地區宣佈建設大規模生產設施,這項轉型正在進行中,預示著全球氨貿易路線即將發生轉變。

市場成長要素

法規結構是市場擴張的關鍵催化劑。例如,美國的45V清潔氫氣生產稅額扣抵政策直接改善了綠色氨生產的商業經濟效益,使其更具競爭力,從而帶動了化肥生產商和工業用戶的需求。同時,在國際海事組織(IMO)的壓力下,全球航運業脫碳的迫切需求也催生了強勁的新需求促進因素。氨的高能量密度和現有的全球運輸基礎設施使其成為船舶應用的理想且擴充性的船用燃料。此外,透過產能競標創造長期合約需求的國家項目,為開發商提供了做出大型計劃最終投資決策(FID)所需的財務確定性。

挑戰與機遇

市場面臨的主要挑戰仍然是巨大的成本差距。整合電解槽和可再生能源電廠的高資本密集度使得氨的平準化成本(LCOA)與現有石化燃料方案相比競爭力不足,限制了其在農業等成本敏感產業的應用。然而,這項挑戰正在推動創新。動態氨技術的商業化能夠有效應對風能和太陽能發電的間歇性,直接解決了需要持續基本負載可再生能源的成本限制。這項進步將使氨生產在更廣泛的可再生能源場所實現經濟可行性,擴大潛在供應基礎,並最終降低銷售價格。

原物料及價格分析

綠色氨的價格與再生能源的成本和供應密切相關,而再生電力在總生產成本中佔很大比例。其主要原料為純淨水和用於電解的再生能源。價格波動是主要問題。可再生資源的間歇性迫使製造商在高成本的儲能解決方案和購買電網電力之間做出選擇,這會顯著增加最終產品的成本。某些監管方案要求必須從新建的可再生能源設施獲取電力,這可能會進一步限制初始供應並增加資本成本,從而影響具有價格競爭力的綠色氨的供應。

供應鏈分析

全球綠色氨供應鏈正朝著「電力-運輸-配送」模式演進。生產策略性地集中在擁有豐富且低成本可再生資源的地區。該供應鏈始於部署大規模電解和可再生能源發電發電廠以生產綠色氫氣。然後,這些氫氣被送往氨合成廠。氨的關鍵優勢在於其完善的全球貿易基礎設施,包括大規模冷藏槽車和港口倉儲設施。現有的物流網路降低了供應鏈末端的風險,並促進了從低成本生產地到歐洲和亞太地區高需求市場的高效貿易。

政府法規

政府政策在塑造市場方面發揮主導作用。在美國,清潔氫的生產稅額扣抵直接提供經濟支持,並鼓勵國內計劃發展。歐盟的《可再生能源指令》為可再生燃料設定了強制性目標,而排放交易體系(ETS)的改革則逐步取消了工業排放的免費碳排放配額,從而提高了傳統氨的成本,並促進了轉型。印度的績效獎勵機制旨在降低先鋒計劃的風險,並建立具有競爭力的國內供應基礎。日本推出了補貼計劃,以彌補終端用戶的成本差額,從而明確保障電力和工業領域對清潔氨的需求。

詳細細分市場分析

用途:肥料

化肥領域仍是全球氨需求的支柱。該領域的轉型並非由銷售成長所驅動,而是由監管機構和企業永續發展需求推動,這些需求旨在實現氮原料的脫碳。歐盟排放交易體系(EU ETS)等碳定價機制正推高傳統「灰色」氨的成本,迫使主要生產商轉型。此外,食品價值鏈中企業的永續性目標也在推動對經認證的低碳化肥的需求,將合規要求轉化為可銷售的產品屬性,並為綠色氨生產商確保長期銷售合約。

按最終用戶分類:運輸(海運)

海運業是目前最重要的成長引擎。該產業對可擴展的零碳遠距船舶燃料的需求是關鍵促進因素。與純氫相比,氨的能量密度高,且能夠利用現有的運輸基礎設施,從而降低了新建加註物流所需的資本投入。諸如成功的綠色氨船舶加註作業等營運里程碑證明了其商業性可行性,使其從理論選項轉變為實際燃料,並向整個海運價值鏈發出了明確的需求訊號。

區域分析

區域趨勢凸顯了各國不同的戰略重點。在美國,受聯邦獎勵的推動,各國正致力於促進農業領域的在地化生產。巴西正利用可再生資源,力圖成為未來歐洲等主要進口地區的出口樞紐。德國的需求受歐盟嚴格的脫碳政策約束,迫使其工業基礎探索綠色替代燃料並建立進口夥伴關係關係。沙烏地阿拉伯正在實施一項策略,利用其太陽能資源供應國際市場,並爭取成為全球主要出口國。中國則在推動一項雙重任務:一方面實現國內化肥產業的脫碳,另一方面建立綠色船用燃料供應鏈,以支持其龐大的港口和航運業務。

競爭環境

競爭格局以老牌化工巨頭和科技公司為主導。競爭屬於資本密集型,重點在於取得低成本可再生能源、提高工廠效率、達成長期銷售協議。每家主要企業都採取不同的策略:CF Industries 透過碳捕獲和電解計劃對其龐大的現有資產進行脫碳;Yara International 將可再生能源直接整合到其生產過程中,為食品和航運行業的客戶提供零碳解決方案;而技術供應商 Nel ASA 則專注於擴大高效電解的生產規模,這些電解價值是綠色設備和氫電解值的基礎設備。

本報告的主要優勢:

  • 深入分析:獲取主要和新興地區的深入市場洞察,重點關注客戶群、政府政策和社會經濟因素、消費者偏好、垂直行業和其他細分市場。
  • 競爭格局:了解全球主要參與者的策略舉措,並了解透過正確的策略進入市場的機會。
  • 市場促進因素與未來趨勢:探索推動市場的動態因素和關鍵趨勢,以及它們將如何塑造未來的市場發展。
  • 可操作的建議:利用這些見解,在動態環境中做出策略決策,並開拓新的商機和收入來源。
  • 受眾範圍廣:對Start-Ups、研究機構、顧問公司、中小企業和大型企業都實用且經濟高效。

你打算用它來做什麼?

產業與市場分析、機會評估、產品需求預測、打入市場策略、地理擴張、資本投資決策、法規結構及影響、新產品開發、競爭情報

研究範圍:

  • 2022年至2024年的歷史數據和2025年至2030年的預測數據
  • 成長機會、挑戰、供應鏈前景、法規結構與趨勢分析
  • 競爭定位、策略和市場佔有率分析
  • 按業務板塊和地區分類的收入成長和預測評估,包括國家/地區
  • 公司概況(策略、產品、財務資訊、關鍵發展等)

目錄

第1章執行摘要

第2章市場概述

  • 市場概覽
  • 市場定義
  • 調查範圍

第3章 商業情境

  • 市場促進因素
  • 市場限制
  • 市場機遇
  • 波特五力分析
  • 產業價值鏈分析
  • 政策和法規
  • 策略建議

第4章 技術展望

5. 依技術類型分類的綠色氨市場

  • 介紹
  • 固體氧化物電解池
  • 質子交換膜
  • 鹼性水電電解

6. 按應用分類的綠色氨市場

  • 介紹
  • 肥料
  • 燃料
  • 發電
  • 工業原料
  • 其他

7. 依最終用戶分類的綠色氨市場

  • 介紹
  • 運輸
  • 能源與電力
  • 農業
  • 製藥
  • 其他

8. 各地區的綠色氨市場

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 南美洲
    • 巴西
    • 阿根廷
    • 其他
  • 歐洲
    • 德國
    • 法國
    • 英國
    • 西班牙
    • 其他
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 以色列
    • 其他
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 韓國
    • 印尼
    • 泰國
    • 其他

第9章:競爭格局與分析

  • 主要企業和策略分析
  • 市佔率分析
  • 合併、收購、協議和合作
  • 競爭對手儀錶板

第10章:公司簡介

  • FuelPositive Corp
  • AmmPower
  • CF Industries Holdings Inc.
  • Haldor Topsoe
  • ACME Group
  • Yara International
  • Nel ASA
  • Fertiglobe
  • BASF SE
  • ThyssenKrupp AG

第11章附錄

  • 貨幣
  • 先決條件
  • 基準年和預測年時間表
  • 相關人員的主要收益
  • 調查方法
  • 簡稱
簡介目錄
Product Code: KSI061615035

Green Ammonia Market, with a 60.28% CAGR, is expected to grow to USD 3,259.554 million in 2030 from USD 308.119 million in 2025.

The global energy transition has established green ammonia-produced from renewable hydrogen via electrolysis-as a critical component for decarbonizing hard-to-abate sectors. With conventional ammonia production being highly carbon-intensive, the imperative to clean up the fertilizer and chemicals industries, combined with emerging demand from maritime fuel and power generation, positions green ammonia as a pivotal molecule in the net-zero economy. This market is defined by high capital expenditure for electrolysis and renewable infrastructure, alongside a regulatory environment that is actively de-risking investment and bridging the cost gap with fossil-fuel-derived alternatives. The transition is materializing through large-scale capacity announcements in regions with abundant, low-cost renewable power, indicating a forthcoming shift in global ammonia trade routes.

Market Growth Drivers

Regulatory frameworks are primary catalysts for market expansion. Instruments such as the US 45V Clean Hydrogen Production Tax Credit directly improve the operational economics of green ammonia production, enhancing its competitiveness against conventional feedstocks and driving demand from fertilizer producers and industrial users. Concurrently, the global mandate to decarbonize maritime transport, driven by International Maritime Organization (IMO) pressure, is creating a powerful new demand vector. Ammonia's high energy density and pre-existing global transport infrastructure position it as an ideal, scalable bunker fuel for shipping. Furthermore, national programs that create contracted, long-term demand through capacity auctions provide the financial certainty required for developers to reach Final Investment Decisions (FIDs) on large-scale projects.

Challenges and Opportunities

The principal market challenge remains the significant cost disparity. The high capital intensity of integrated electrolyzer and renewable energy plants results in a Levelized Cost of Ammonia (LCOA) that is not yet competitive with established fossil-fuel pathways, constraining adoption in cost-sensitive sectors like agriculture. This challenge, however, is fostering technological innovation. The commercialization of dynamic ammonia technology, which allows production to efficiently adapt to the intermittent nature of wind and solar power, directly addresses the cost constraint of requiring continuous baseload renewable energy. This advancement makes a wider range of renewable sites economically viable for production, thereby expanding the potential supply base and working to lower the eventual selling price.

Raw Material and Pricing Analysis

Green ammonia pricing is intrinsically linked to the cost and availability of renewable electricity, which constitutes the majority of the total production cost. The key raw materials are purified water and renewable power for electrolysis. Price volatility is a major concern; the intermittency of renewable resources forces manufacturers to choose between costly energy storage solutions or purchasing grid power, which can significantly increase the final product cost. The requirement in certain regulatory schemes to source power from newly built renewable assets can further constrain initial supply and elevate capital costs, impacting the availability of price-competitive green ammonia.

Supply Chain Analysis

The global green ammonia supply chain is evolving into a "Power-to-X-to-Ship" model. Production is strategically concentrated in regions with abundant, low-cost renewable resources. The chain begins with the deployment of large-scale electrolyzers and renewable energy farms to produce green hydrogen, which is then fed into ammonia synthesis plants. A key advantage for ammonia is its well-established global trade infrastructure, including large-scale refrigerated tankers and port storage facilities. This existing logistics network de-risks the final leg of the supply chain and facilitates efficient trade from low-cost production hubs to high-demand markets in Europe and Asia-Pacific.

Government Regulations

Government policy is a dominant market shaper. In the United States, the production tax credit for clean hydrogen creates a direct economic floor, stimulating domestic project development. The European Union's Renewable Energy Directive sets binding targets for renewable fuels, while the reform of its Emissions Trading System (ETS) phases out free carbon allowances for industrial emitters, increasing the cost of conventional ammonia and compelling a switch. India's performance-linked incentive program aims to de-risk first-mover projects and build a competitive domestic supply base. Japan has introduced a subsidy mechanism to cover the cost differential for end-users, explicitly creating guaranteed demand for clean ammonia in power generation and industry.

In-Depth Segment Analysis

By Application: Fertilizers

The fertilizer segment remains the anchor of global ammonia demand. The transition here is driven not by volume growth but by a regulatory and corporate sustainability imperative to decarbonize the nitrogen feedstock. As carbon pricing mechanisms like the EU ETS increase the cost of conventional "grey" ammonia, major producers are compelled to transition. Furthermore, corporate sustainability targets within the food value chain are generating pull-through demand for certified low-carbon fertilizers, turning a compliance requirement into a marketable product attribute and securing long-term offtake agreements for green ammonia producers.

By End-User: Transportation (Maritime Shipping)

The maritime shipping sector represents the most significant new growth catalyst. The industry's need for a scalable, zero-carbon fuel for long-haul vessels is the primary driver. Ammonia's favorable energy density and existing transport infrastructure reduce the capital investment needed for new bunkering logistics compared to pure hydrogen. Operational milestones, such as the successful completion of a green ammonia ship bunkering operation, validate its commercial readiness, transforming it from a theoretical option to a deployed fuel and sending a clear demand signal to the entire maritime value chain.

Geographical Analysis

Regional dynamics highlight diverse strategic focuses. The US market is propelled by federal incentives, fostering localized production for the agricultural sector. Brazil is leveraging its renewable resources to position itself as a future export hub for key importer regions like Europe. Germany's demand is defined by stringent EU decarbonization mandates, forcing its industrial base to seek green alternatives and secure import partnerships. Saudi Arabia is executing a strategy to become a leading global exporter, monetizing its solar resources to supply international markets. China is pursuing a dual mandate, decarbonizing its domestic fertilizer industry while simultaneously establishing a supply chain for green maritime fuel to service its extensive port and shipping operations.

Competitive Environment

The competitive landscape is characterized by established chemical giants and technology firms. Competition is capital-intensive and centers on securing low-cost renewable power, advancing plant efficiency, and locking in long-term offtake contracts. Major players are executing distinct strategies: CF Industries is decarbonizing its vast existing asset base through carbon capture and electrolysis projects. Yara International is integrating renewable energy directly into its production to offer zero-carbon solutions for food and maritime customers. Nel ASA, as a technology enabler, is focused on scaling up the production of efficient electrolyzers, which are the foundational equipment for the entire green hydrogen and ammonia value chain.

Key Benefits of this Report:

  • Insightful Analysis: Gain detailed market insights covering major as well as emerging geographical regions, focusing on customer segments, government policies and socio-economic factors, consumer preferences, industry verticals, and other sub-segments.
  • Competitive Landscape: Understand the strategic maneuvers employed by key players globally to understand possible market penetration with the correct strategy.
  • Market Drivers & Future Trends: Explore the dynamic factors and pivotal market trends and how they will shape future market developments.
  • Actionable Recommendations: Utilize the insights to exercise strategic decisions to uncover new business streams and revenues in a dynamic environment.
  • Caters to a Wide Audience: Beneficial and cost-effective for startups, research institutions, consultants, SMEs, and large enterprises.

What do businesses use our reports for?

Industry and Market Insights, Opportunity Assessment, Product Demand Forecasting, Market Entry Strategy, Geographical Expansion, Capital Investment Decisions, Regulatory Framework & Implications, New Product Development, Competitive Intelligence

Report Coverage:

  • Historical data from 2022 to 2024 & forecast data from 2025 to 2030
  • Growth Opportunities, Challenges, Supply Chain Outlook, Regulatory Framework, and Trend Analysis
  • Competitive Positioning, Strategies, and Market Share Analysis
  • Revenue Growth and Forecast Assessment of segments and regions including countries
  • Company Profiling (Strategies, Products, Financial Information, and Key Developments among others.

Green Ammonia Market Segmentation

  • BY TECHNOLOGY TYPE
  • Solid Oxide Electrolysis Cell
  • Proton Exchange Membrane
  • Alkaline Water Electrolysis
  • BY APPLICATION
  • Fertilizers
  • Fuel
  • Power Generation
  • Industrial Feedstock
  • Others
  • BY END-USER
  • Transportation
  • Energy Power
  • Agriculture
  • Pharmaceuticals
  • Others
  • BY GEOGRAPHY
  • North America
  • USA
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Spain
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Israel
  • Others
  • Asia Pacific
  • China
  • India
  • Japan
  • South Korea
  • Indonesia
  • Thailand
  • Others

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

2. MARKET SNAPSHOT

  • 2.1. Market Overview
  • 2.2. Market Definition
  • 2.3. Scope of the Study

2.4. Market Segmentation

3. BUSINESS LANDSCAPE

  • 3.1. Market Drivers
  • 3.2. Market Restraints
  • 3.3. Market Opportunities
  • 3.4. Porter's Five Forces Analysis
  • 3.5. Industry Value Chain Analysis
  • 3.6. Policies and Regulations
  • 3.7. Strategic Recommendations

4. TECHNOLOGICAL OUTLOOK

5. GREEN AMMONIA MARKET BY TECHNOLOGY TYPE

  • 5.1. Introduction
  • 5.2. Solid Oxide Electrolysis Cell
  • 5.3. Proton Exchange Membrane
  • 5.4. Alkaline Water Electrolysis

6. GREEN AMMONIA MARKET BY APPLICATION

  • 6.1. Introduction
  • 6.2. Fertilizers
  • 6.3. Fuel
  • 6.4. Power Generation
  • 6.5. Industrial Feedstock
  • 6.6. Others

7. GREEN AMMONIA MARKET BY END-USER

  • 7.1. Introduction
  • 7.2. Transportation
  • 7.3. Energy Power
  • 7.4. Agriculture
  • 7.5. Pharmaceuticals
  • 7.6. Others

8. GREEN AMMONIA MARKET BY GEOGRAPHY

  • 8.1. Introduction
  • 8.2. North America
    • 8.2.1. USA
    • 8.2.2. Canada
    • 8.2.3. Mexico
  • 8.3. South America
    • 8.3.1. Brazil
    • 8.3.2. Argentina
    • 8.3.3. Others
  • 8.4. Europe
    • 8.4.1. Germany
    • 8.4.2. France
    • 8.4.3. United Kingdom
    • 8.4.4. Spain
    • 8.4.5. Others
  • 8.5. Middle East and Africa
    • 8.5.1. Saudi Arabia
    • 8.5.2. UAE
    • 8.5.3. Israel
    • 8.5.4. Others
  • 8.6. Asia Pacific
    • 8.6.1. China
    • 8.6.2. India
    • 8.6.3. Japan
    • 8.6.4. South Korea
    • 8.6.5. Indonesia
    • 8.6.6. Thailand
    • 8.6.7. Others

9. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 9.1. Major Players and Strategy Analysis
  • 9.2. Market Share Analysis
  • 9.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 9.4. Competitive Dashboard

10. COMPANY PROFILES

  • 10.1. FuelPositive Corp
  • 10.2. AmmPower
  • 10.3. CF Industries Holdings Inc.
  • 10.4. Haldor Topsoe
  • 10.5. ACME Group
  • 10.6. Yara International
  • 10.7. Nel ASA
  • 10.8. Fertiglobe
  • 10.9. BASF SE
  • 10.10. ThyssenKrupp AG

11. APPENDIX

  • 11.1. Currency
  • 11.2. Assumptions
  • 11.3. Base and Forecast Years Timeline
  • 11.4. Key Benefits for the Stakeholders
  • 11.5. Research Methodology
  • 11.6. Abbreviations