![]() |
市場調查報告書
商品編碼
1878118
矽基氮化鎵 (GaN) 市場 - 2025 年至 2030 年預測Gallium Nitride (GaN)-on-Silicon Market - Forecasts from 2025 to 2030 |
||||||
預計矽基氮化鎵 (GaN) 市場將從 2025 年的 11.52 億美元成長到 2030 年的 31.91 億美元,複合年成長率為 22.59%。
矽基氮化鎵(GaN-on-silicon)技術代表了功率和射頻(RF)電子裝置架構的根本性變革。此技術充分利用了氮化鎵卓越的寬能能隙特性(例如,高擊穿電壓、優異的電子遷移率和快速開關速度),同時受益於成熟、高產能且經濟高效的矽半導體基礎設施。這種異質整合技術直接解決了傳統矽元件的效能瓶頸,顯著提升了系統小型化、能源效率和整體成本。因此,矽基氮化鎵(GaN-on-silicon)技術有望成為下一代功率轉換系統和射頻通訊架構的關鍵基礎技術。
核心市場動態:促進因素與限制因素
市場擴張的主要驅動力是全球對電子系統能源效率提升和功率密度提高的系統性需求。高電子移動性電晶體(HEMT) 的固有優勢,例如低導通電阻和高頻開關能力,直接推動了多個高成長領域的需求。例如,人工智慧 (AI) 資料中心日益成長的電力需求,使得電源容量遠遠超過傳統伺服器的承載能力。氮化鎵矽基 (GaN-OSi) 功率積體電路 (IC) 為在緊湊型伺服器機箱內實現所需的功率密度和效率提供了關鍵解決方案。同時,汽車產業向電動車 (EV) 的轉型,也推動了車載充電器和 DC-DC 轉換器等設備對更小、更輕、更有效率的電力電子裝置的需求,而氮化鎵的優勢能夠直接幫助延長車輛續航里程並最佳化溫度控管。
然而,廣泛應用的主要挑戰在於基礎材料科學和可靠性檢驗。 GaN外延層與矽基基板之間的晶格和熱失配仍然是一個主要的技術障礙。這種失配需要開發複雜的緩衝層級構造,這會影響製造產量比率,並最終限制裝置的耐壓性。這些技術限制導致初始組件成本較高,並為可靠性至關重要的高壓工業應用設定了進入門檻。
供應鏈、製造和監管狀況
氮化鎵(GaN)矽基元件供應鏈採用雙管齊下的模式,涵蓋傳統整合元件製造商(IDM)和無晶圓廠/代工廠生態系統。生產分佈於全球,充分利用了成熟的矽製造群。此供應鏈高度依賴特定供應商提供的金屬有機化學氣相沉積(MOCVD)反應器和專有前驅體材料,這可能會造成瓶頸,尤其是在向更大晶圓直徑過渡的過程中。雖然矽基基板供應成熟,但GaN元件的封裝和測試需要先進的技術來確保其高頻性能。
政府法規透過強制推行更高的能源效率標準,直接推動市場需求。例如,歐盟的生態設計指令為能源相關產品設定了最低能源效率要求,有效鼓勵製造商採用高效的氮化鎵(GaN)矽基功率裝置以符合標準。在美國,《晶片與科學法案》促進了國內半導體製造和研發,包括寬能能隙材料,刺激了對用於戰略和國防應用的GaN技術的投資。中國的「中國製造2025」產業政策明確瞄準寬能能隙半導體主導,刺激了國內需求,並加速了從消費電子產品到5G基礎設施等廣泛應用領域的本土製造能力建設。
細分市場和區域分析
功率開關元件領域是主要需求來源,這主要得益於氮化鎵(GaN)的高頻開關特性,該特性使得功率轉換級可以使用更小更輕的被動元件,從而顯著降低資料中心和通訊設備電源的尺寸和重量。此外,消費性電子市場對緊湊型快速充電解決方案的需求也完全依賴矽基氮化鎵(GaN-on-silicone)開關所實現的高功率密度。
向200毫米晶圓製造的過渡標誌著市場的關鍵轉折點。從150毫米平台到200毫米平台的轉變顯著增加了可用晶粒面積,從而大幅降低了單一晶粒的加工成本。這種規模經濟對於氮化鎵(GaN)在對成本高度敏感的大批量市場(例如大眾消費電源適配器和工業電源)保持競爭力至關重要,因為在這些市場中,與矽的價格差異歷來都是限制GaN發展的障礙。
從區域來看,需求模式差異顯著。美國市場以高性能資料中心、通訊和國防領域的強勁需求為特徵,相關政策舉措推動了對安全可靠的國內供應鏈的需求。作為歐洲工業中心,德國的汽車和工業自動化產業需求旺盛,這得益於其法規環境以及對系統級效率和總體擁有成本 (TCO) 的工程設計重點。中國是全球最大的單一市場,無論從供需量來看都是如此。其國家主導的產業政策積極推動市場發展,為其龐大的國內製造業基地帶來了對高產量、低成本氮化鎵 (GaN) 矽基晶圓的強勁需求。
競爭環境
競爭格局錯綜複雜,既有規模龐大、業務多元化的垂直整合半導體製造商 (IDM),也有靈活敏捷的純氮化鎵 (GaN) 技術公司。競爭的關鍵領域包括性價比、大直徑基板的製造產量比率以及整合解決方案的開發。
氮化鎵矽基(GaN-on-Silicon)市場正處於明顯的成長軌道上,其成長動力主要來自能源效率和功率密度需求的不可逆轉的趨勢。這項技術的廣泛應用取決於外延製程的持續創新,以提高大尺寸晶圓的產量比率,以及成功實現與現有矽基解決方案成本相當的策略。
企業使用我們的報告的目的是什麼?
產業與市場分析、機會評估、產品需求預測、打入市場策略、地理擴張、資本投資決策、法規結構及影響、新產品開發、競爭情報
Gallium Nitride (GaN)-On-Silicon Market is expected to grow at a 22.59% CAGR, reaching USD 3.191 billion in 2030 from USD 1.152 billion in 2025.
Gallium Nitride on Silicon (GaN-on-Silicon) technology represents a fundamental architectural shift within the power and radio frequency (RF) electronics sectors. This approach leverages the superior wide bandgap properties of GaN-including high breakdown voltage, exceptional electron mobility, and fast switching speeds-while being manufactured on the mature, high-volume, and cost-effective silicon semiconductor infrastructure. This heterogeneous integration directly addresses the performance limitations of conventional silicon, enabling significant advancements in system miniaturization, energy efficiency, and overall cost reduction. Consequently, GaN-on-Silicon is positioned as a critical enabling technology for next-generation power conversion systems and high-frequency communication architectures.
Core Market Dynamics: Drivers and Constraints
Market expansion is primarily driven by the global, systemic imperative for enhanced energy efficiency and increased power density across electronic systems. The intrinsic advantages of GaN High Electron Mobility Transistors (HEMTs), such as low on-resistance and high-frequency switching capability, are creating direct demand across several high-growth sectors. The escalating power requirements of artificial intelligence (AI) data centers, for instance, necessitate power supplies that far exceed the capabilities of traditional servers. GaN-on-Silicon power integrated circuits (ICs) provide a critical pathway to achieving the requisite power density and efficiency within compact server form factors. Simultaneously, the automotive industry's transition to electric vehicles (EVs) fuels demand for smaller, lighter, and more efficient power electronics in on-board chargers and DC-DC converters, where GaN's advantages directly contribute to extended vehicle range and optimized thermal management.
A significant challenge to widespread adoption revolves around fundamental material science and reliability verification. The lattice and thermal mismatch between the GaN epitaxial layer and the silicon substrate remains a primary technical obstacle. This mismatch necessitates the development of complex buffer layer structures, which can impact manufacturing yields and ultimately limit the voltage-handling capability of the devices. These technical constraints contribute to higher initial component costs, creating a barrier for entry into highly reliability-sensitive, high-voltage industrial applications.
Supply Chain, Manufacturing, and Regulatory Landscape
The GaN-on-Silicon supply chain operates on a dual-track model, encompassing traditional Integrated Device Manufacturers (IDMs) and a fabless/foundry ecosystem. Production is globally distributed, leveraging established silicon manufacturing clusters. A critical dependency exists on a specialized group of suppliers for Metal-Organic Chemical Vapor Deposition (MOCVD) reactors and proprietary precursor materials, creating potential chokepoints, especially during the transition to larger wafer diameters. While the silicon substrate supply is mature, the packaging and testing of GaN devices require advanced, specialized capabilities to manage high-frequency performance.
Government regulations are acting as direct demand levers by mandating higher energy efficiency standards. The European Union's Ecodesign Directive, for example, sets minimum efficiency requirements for energy-related products, effectively compelling manufacturers to adopt high-efficiency GaN-on-Silicon power devices to comply. In the United States, the CHIPS and Science Act promotes domestic semiconductor manufacturing and research, including wide bandgap materials, thereby stimulating investment in GaN technology for strategic and defense applications. China's "Made in China 2025" industrial policy explicitly targets wide bandgap semiconductor dominance, driving massive internal demand and accelerating local production capacity for applications ranging from consumer electronics to 5G infrastructure.
Segmental and Geographical Analysis
The power switching device segment is a primary demand center, driven by GaN's ability to operate at high switching frequencies. This characteristic allows for the use of smaller, lighter passive components in power conversion stages, leading to a radical reduction in the size and weight of power supply units for data centers and telecommunications equipment. Furthermore, the consumer electronics market's push for compact, fast-charging solutions relies entirely on the high-power density enabled by GaN-on-Silicon switches.
The transition to 200 mm wafer manufacturing is a critical inflection point for the market. Moving from 150 mm to 200 mm platforms yields a substantial increase in usable die area, which dramatically reduces the processing cost per individual die. This economy of scale is paramount for enabling GaN to compete in high-volume, cost-sensitive markets like mass-market consumer power adapters and industrial power supplies, where the price differential with silicon has been a historical barrier.
Geographically, demand patterns are distinct. The United States market is characterized by strong demand from high-performance data centers, telecommunications, and defense sectors, with policy initiatives reinforcing the need for a secure, domestic supply chain. Germany, as a European industrial hub, exhibits robust demand from the automotive and industrial automation sectors, driven by a regulatory environment and an engineering focus on system-level efficiency and total cost of ownership. China represents the largest single source of both supply and demand, with its market aggressively driven by state-backed industrial policy, creating intense demand for high-volume, cost-competitive GaN-on-Silicon wafers for its vast domestic manufacturing base.
Competitive Environment
The competitive landscape is stratified, featuring large, diversified IDMs competing with agile, pure-play GaN technology companies. The central battlegrounds are cost-per-performance, manufacturing yield on large-diameter substrates, and the development of integrated solutions.
The GaN-on-Silicon market is on a clear trajectory of growth, fueled by irreversible trends in energy efficiency and power density requirements. The technology's path to ubiquity is contingent upon continued innovation in epitaxial processes to improve yields on larger wafers and the successful execution of strategies to achieve cost parity with incumbent silicon solutions.
What do businesses use our reports for?
Industry and Market Insights, Opportunity Assessment, Product Demand Forecasting, Market Entry Strategy, Geographical Expansion, Capital Investment Decisions, Regulatory Framework & Implications, New Product Development, Competitive Intelligence