封面
市場調查報告書
商品編碼
1916932

胜肽-放射性核種偶聯物市場按放射性核種類型、治療適應症、給藥途徑、最終用戶和分銷管道分類 - 全球預測(2026-2032 年)

Peptide-Radionuclide Conjugates Market by Radionuclide Type, Therapeutic Indication, Route Administration, End User, Distribution Channel - Global Forecast 2026-2032

出版日期: | 出版商: 360iResearch | 英文 198 Pages | 商品交期: 最快1-2個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

2025 年肽-放射性核種偶聯物市值為 9.7298 億美元,預計到 2026 年將成長至 11.3427 億美元,年複合成長率為 17.22%,到 2032 年將達到 29.5992 億美元。

主要市場統計數據
基準年 2025 9.7298億美元
預計年份:2026年 1,134,270,000 美元
預測年份:2032年 2,959,920,000 美元
複合年成長率 (%) 17.22%

權威概述了科學進步、生產要求和臨床實踐的融合如何重塑治療性胜肽-放射性核素偶聯物的發展。

肽-放射性核素偶聯物處於靶向分子治療和放射性藥物科學不斷發展的交匯點,它將肽配體與治療性放射性核素結合,從而將局部細胞毒性輻射遞送至惡性組織。連接子化學的日趨成熟、放射性核素生產技術的進步以及患者篩選標準的完善,使得這種治療方法從一種小眾研究工具轉變為一種臨床可行的治療方法。隨著腫瘤學向精準醫療發展,這些偶聯物越來越能夠針對具有特定分子標記的腫瘤類型發揮作用,為治療選擇有限的患者提供新的治療契機。

螯合化學、生產能力、臨床試驗設計和治療基礎設施的創新如何加速放射性標記化合物的廣泛應用

胜肽-放射性核種偶聯物領域正經歷一系列變革性變化,這些變化涵蓋了科學突破、基礎設施現代化以及不斷發展的醫療服務模式。螯合化學和連接子最佳化的創新提高了放射性核素的穩定性和腫瘤滯留率,從而增強了治療指數。同時,加速器和發生器型放射性核種生產能力的提升,以及放射化學自動化程度的提高,正在消除先前阻礙其廣泛臨床應用的操作瓶頸。

對不斷變化的關稅政策和貿易壓力如何影響放射性標記治療藥物供應鏈的韌性、生產策略和臨床連續性進行全面分析。

關稅的徵收和貿易政策的變化可能對胜肽-放射性核種偶聯物價值鏈產生多方面的影響,到2025年,累積效應凸顯了原料採購、放射性核種生產和臨床供應連續性之間的相互依存關係。對前驅化學品、放射化學合成專用設備以及屏蔽運輸包裝組件徵收的關稅正在推高製造商和放射性藥物配製藥房的投入成本。這些成本壓力促使相關人員尋求區域採購和垂直整合,以獎勵其供應鏈免受關稅波動和跨境物流延誤的影響。

將放射性核種特性、臨床適應症、臨床環境、分發方法和給藥途徑與決策流程連結的深入細分分析

詳細的細分分析揭示了不同放射性核種類型、治療適應症、最終用戶、分銷管道和給藥途徑所帶來的不同策略考量,這些考量共同決定了研發重點和商業化管道。在放射性核種分類中,錒-225、鎦-177 和釔-90 的生產方法、放射生物學特性和供應鏈成熟度各不相同。每種放射性核種在處理、劑量測定和生產方面都面臨著獨特的挑戰,這些挑戰會影響臨床專案設計和合作夥伴的選擇。

美洲、歐洲、中東和非洲以及亞太地區的法規結構、基礎設施投資和醫療服務模式將如何決定差異化的醫療服務取得和推廣策略?

區域趨勢將顯著影響胜肽-放射性核素偶聯物的開發、生產和應用。美洲、歐洲、中東和非洲以及亞太地區的法規環境、基礎設施成熟度和醫療服務模式各不相同。在美洲,強大的放射性藥物專業知識基礎和完善的法規結構支持快速的臨床轉化。此外,一體化的醫療保健系統也便於病患轉診流程的協調和集中式生產的合作。迴旋加速器的資本投資趨勢和發生器的可用性將繼續決定該地區的醫療機構是優先考慮內部生產還是外包生產。

策略性地整合競爭定位、夥伴關係模式和製造優勢,從而確立胜肽-放射性核種偶聯物生態系統的主導

胜肽-放射性核種偶聯物生態系統中的競爭格局由一系列參與者構成,包括專業的放射性藥物研發公司、學術機構、契約製造組織以及作為上市合作夥伴的臨床中心網路。產業參與者透過對放射性核種供應鏈的策略性投資、專有的偶聯化學技術以及伴隨診斷合作來提升患者選擇和治療效果,從而實現差異化競爭。原料採購、放射性標記製程和分銷物流的垂直整合正逐漸成為確保供應連續性和品管的企業的競爭優勢。

切實可行、影響深遠的策略,旨在增強供應韌性、確保合規性、促進臨床整合並實現商業性化,從而加速放射性標記化合物的治療應用。

透過採取有針對性、可操作的策略,重點關注供應彈性、監管參與、營運準備和相關人員協調,行業領導者可以確保科學潛力轉化為持續的臨床和商業性成功。優先考慮放射性核素採購的冗餘性,投資於區域生產能力和可靠的供應契約,可以降低貿易中斷的風險,並有助於確保可靠的臨床時間表。同時,投資於自動化放射化學平台和可擴展的無菌製程可以減少批次間的差異,從而實現從初始測試到廣泛臨床應用的平穩過渡。

嚴謹的多維度研究途徑,結合專家訪談、技術文獻綜述和供應鏈分析,確保得出可靠且可操作的見解。

本分析的調查方法結合了多資訊來源、證據主導的方法,旨在確保研究結果的穩健性、可重複性和實用性。主要研究包括對放射化學家、核醫學醫師、臨床實驗室負責人、醫院管理人員和監管事務專業人員等專家進行結構化訪談,以獲取在已發表文獻中未必顯而易見的真實操作見解、臨床工作流程的限制以及戰略重點。這些定性資訊與技術文獻、監管指南和已發布的臨床實驗室註冊資訊進行交叉比對,以檢驗程序和科學論點。

將胜肽-放射性核素技術創新轉化為持續的臨床和商業性影響,需要科學、營運和政策方面的共同努力。

胜肽-放射性核素偶聯物在靶向腫瘤學和放射性藥物科學的交叉領域佔據著重要的地位,為具有特定分子特徵的腫瘤類型提供了潛在的治療優勢。此治療方法的發展軌跡將取決於相關領域的進步:提高穩定性和腫瘤靶向性的化學技術;確保及時、品管的供應的生產和分銷系統;實現精確劑量測定和安全給藥的臨床基礎設施;以及支持循證核准的監管管道。當這些要素協調一致時,改善患者預後和開發新的治療方案的潛力將成為現實。

目錄

第1章:序言

第2章調查方法

  • 研究設計
  • 研究框架
  • 市場規模預測
  • 數據三角測量
  • 調查結果
  • 調查前提
  • 調查限制

第3章執行摘要

  • 首席體驗長觀點
  • 市場規模和成長趨勢
  • 2025年市佔率分析
  • FPNV定位矩陣,2025
  • 新的商機
  • 下一代經營模式
  • 產業藍圖

第4章 市場概覽

  • 產業生態系與價值鏈分析
  • 波特五力分析
  • PESTEL 分析
  • 市場展望
  • 上市策略

第5章 市場洞察

  • 消費者洞察與終端用戶觀點
  • 消費者體驗基準
  • 機會地圖
  • 分銷通路分析
  • 價格趨勢分析
  • 監理合規和標準框架
  • ESG與永續性分析
  • 中斷和風險情景
  • 投資報酬率和成本效益分析

第6章美國關稅的累積影響,2025年

第7章:人工智慧的累積影響,2025年

8. 依放射性核種類型分類的胜肽-放射性核種偶聯物市場

  • 錒-225
  • 鎦-177
  • 釔-90

9. 依治療適應症分類的胜肽-放射性核種偶聯物市場

  • 骨轉移
  • 神經內分泌腫瘤
  • 攝護腺癌

10. 依給藥途徑分類的胜肽-放射性核種偶聯物市場

  • 瘤內給藥
  • 靜脈注射

11. 依最終用戶分類的胜肽-放射性核種偶聯物市場

  • 醫院
    • 綜合醫院
    • 專科癌症中心
  • 腫瘤中心
    • 學術中心
    • 私人診所
  • 研究所

12. 胜肽-放射性核種偶聯物市場依分銷管道分類

  • 直接購買
    • 院內放射性藥物分發室
    • 現場藥房
  • 直接競標
  • 經銷商

13. 各地區胜肽-放射性核種偶聯物市場

  • 美洲
    • 北美洲
    • 拉丁美洲
  • 歐洲、中東和非洲
    • 歐洲
    • 中東
    • 非洲
  • 亞太地區

14. 胜肽-放射性核種偶聯物市場(按組別分類)

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

15. 各國胜肽-放射性核種偶聯物市場

  • 美國
  • 加拿大
  • 墨西哥
  • 巴西
  • 英國
  • 德國
  • 法國
  • 俄羅斯
  • 義大利
  • 西班牙
  • 中國
  • 印度
  • 日本
  • 澳洲
  • 韓國

第16章美國胜肽-放射性核種偶聯物市場

17. 中國胜肽-放射性核種偶聯物市場

第18章 競爭格局

  • 市場集中度分析,2025年
    • 濃度比(CR)
    • 赫芬達爾-赫希曼指數 (HHI)
  • 近期趨勢及影響分析,2025 年
  • 2025年產品系列分析
  • 基準分析,2025 年
  • Angiochem Inc.
  • Ariceum Therapeutics
  • AstraZeneca PLC
  • Bayer AG
  • Bicycle Therapeutics Ltd.
  • Bristol Myers Squibb Company
  • Curium Pharma
  • Cybrexa Therapeutics Inc.
  • Eli Lilly and Company
  • Genentech, Inc.
  • ITM Isotope Technologies Munich SE
  • NorthStar Medical Radioisotopes LLC
  • Novartis AG
  • PeptiDream Inc.
  • Telix Pharmaceuticals Limited
Product Code: MRR-AE420CB15402

The Peptide-Radionuclide Conjugates Market was valued at USD 972.98 million in 2025 and is projected to grow to USD 1,134.27 million in 2026, with a CAGR of 17.22%, reaching USD 2,959.92 million by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 972.98 million
Estimated Year [2026] USD 1,134.27 million
Forecast Year [2032] USD 2,959.92 million
CAGR (%) 17.22%

An authoritative overview of how scientific advances, manufacturing requirements, and clinical practice convergence are reshaping therapeutic peptide-radionuclide conjugate development

Peptide-radionuclide conjugates represent an evolving intersection of targeted molecular therapeutics and radiopharmaceutical science, combining peptide ligands with therapeutic radionuclides to deliver localized cytotoxic radiation to malignant tissues. The maturation of linker chemistry, advances in radionuclide production technologies, and refinements in patient selection criteria have collectively transformed this modality from niche investigational tools into clinically actionable therapies. As oncology shifts toward precision approaches, these conjugates are increasingly positioned to address tumor types with defined molecular markers, offering new therapeutic windows for patients with limited options.

The development pathway for peptide-radionuclide conjugates demands coordinated progress across chemistry, radiopharmacy, clinical trial design, and regulatory engagement. Manufacturing complexities include ensuring radionuclidic purity, robust conjugation yields, and scalable synthesis workflows that meet stringent sterility and sterility-release criteria. Clinical implementation raises unique operational needs around radiation safety, dosimetry, and multidisciplinary care coordination. Consequently, stakeholders spanning biotech developers, hospital systems, specialty radiopharmacies, and regulatory bodies must align on standards that enable both rapid translation and the safeguarding of patient outcomes.

This introduction frames the subsequent analysis by emphasizing how scientific innovation, logistical infrastructure, and regulatory clarity together shape the feasibility and speed of adoption for peptide-radionuclide conjugates. With this context, readers can better appreciate the strategic levers that influence clinical uptake and commercial trajectories.

How innovations in chelation chemistry, production capacity, clinical trial design, and treatment infrastructure are collectively accelerating radioconjugate adoption

The landscape for peptide-radionuclide conjugates is being reshaped by several transformative shifts that span scientific breakthroughs, infrastructure modernization, and evolving care delivery models. Innovations in chelation chemistry and linker optimization have improved radionuclide stability and tumor retention, thereby increasing therapeutic indices. Concurrently, the expansion of accelerator and generator-based radionuclide production capabilities, together with enhanced radiochemistry automation, is reducing operational bottlenecks that historically impeded widespread clinical use.

Clinical trial design is also evolving: adaptive trial frameworks, enriched patient selection using molecular diagnostics, and integrated dosimetry endpoints are accelerating the generation of meaningful efficacy and safety data. Health systems are adapting to the operational demands of radiopharmaceutical therapies by establishing in-house radiopharmacies, onsite pharmacy workflows, and specialized treatment pathways that coordinate nuclear medicine, oncology, and radiation safety teams. Meanwhile, public and private investment in radiopharmaceutical infrastructure is incentivizing new entrants and partnerships between academic centers and industry sponsors.

These shifts interact synergistically: better chemistry enables more reliable production; improved production capacity supports broader clinical testing; and integration within care pathways increases physician familiarity and patient access. Together, they are not only expanding the therapeutic horizon for peptide-radionuclide conjugates but also creating new commercial and operational models for delivering these therapies at scale.

Comprehensive analysis of how evolving tariff policies and trade pressures have reshaped supply chain resilience, production strategy, and clinical continuity for radioconjugate therapies

The imposition of tariffs and trade policy changes can create multifaceted impacts across the peptide-radionuclide conjugate value chain, and the cumulative effects observed through 2025 underscore the interdependence of raw material sourcing, radionuclide production, and clinical supply continuity. Tariffs on precursor chemicals, specialized equipment for radiochemistry synthesis, and components used in shielded transport and packaging have raised input costs for manufacturers and radiopharmacies. These cost pressures incentivize localized sourcing and vertical integration, as stakeholders seek to insulate supply chains from tariff volatility and cross-border logistics delays.

In parallel, tariffs affecting imported generators and cyclotron parts have accelerated capital investment decisions to develop domestic production capacity or to diversify supplier relationships, particularly for critical radionuclides that cannot be stockpiled due to short half-lives. The operational response has included greater emphasis on regionalized production hubs and inter-institutional collaboration models that coordinate generator sharing and scheduled batch production to optimize utilization. Regulatory authorities and hospital administrations have had to adapt procurement policies to balance cost, compliance, and patient access implications, leading to more stringent supplier qualification and contingency planning.

Clinically, these trade dynamics have prompted healthcare providers and research centers to review scheduling protocols and inventory management strategies for patient treatments that rely on time-sensitive radionuclides. On the commercialization front, manufacturers are reevaluating pricing models, contractual terms with distributors, and invest-to-save calculations for in-house radiopharmacy capabilities. Overall, the cumulative tariff environment through 2025 has reinforced the need for resilient supply chain strategies, increased capital allocation for localized capabilities, and proactive regulatory engagement to mitigate disruptions to patient care and ongoing clinical programs.

Insightful segmentation analysis connecting radionuclide attributes, clinical indications, care settings, distribution approaches, and administration routes to strategic decision pathways

A granular view of segmentation reveals distinct strategic considerations across radionuclide type, therapeutic indication, end user, distribution channel, and route of administration that collectively inform development priorities and commercialization pathways. When categorizing by radionuclide, the landscape varies between Actinium-225, Lutetium-177, and Yttrium-90 in terms of production methods, radiobiological properties, and supply chain maturity. Each radionuclide presents unique handling, dosimetry, and manufacturing implications that influence clinical program design and partnering choices.

Therapeutic indications such as Bone Metastases, Neuroendocrine Tumors, and Prostate Cancer drive divergent clinical development strategies, with differences in patient selection criteria, imaging companion diagnostics, and dosing paradigms. End users-Hospitals, Oncology Centers, and Research Institutes-exhibit varied operational capabilities and procurement behaviors. Hospitals are further distinguished between General Hospitals and Specialized Cancer Centers, with the latter often possessing more integrated nuclear medicine services and multidisciplinary care pathways. Oncology Centers split into Academic Centers and Private Clinics, reflecting contrasts in research orientation, payer mix, and adoption risk tolerance.

Distribution channels also shape access and logistics: Direct Purchase, Direct Tender, and Distributors each entail distinct contracting dynamics and regulatory compliance responsibilities. Direct Purchase can involve InHouse Radiopharmacy or Onsite Pharmacy models, each with different capital, staffing, and regulatory footprints. Finally, the route of administration, whether Intratumoral or Intravenous, affects clinical workflow, dosing strategies, and patient management protocols. Understanding these segments in combination enables stakeholders to align product development, clinical trial design, and commercial deployment to the operational realities and unmet needs of each subgroup.

How regional regulatory frameworks, infrastructure investments, and healthcare delivery models in the Americas, Europe Middle East & Africa, and Asia-Pacific dictate differentiated strategies for deployment and access

Regional dynamics significantly influence the development, production, and adoption of peptide-radionuclide conjugates, with distinct regulatory environments, infrastructure maturity, and healthcare delivery models across the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, concentrated centers of radiopharmacy expertise and established regulatory frameworks support rapid clinical translation, while the presence of integrated health systems can enable coordinated patient pathways and centralized manufacturing collaborations. Investment trends in cyclotron capacity and generator availability continue to shape how institutions in the region prioritize in-house versus outsourced production.

Across Europe, Middle East & Africa, regulatory heterogeneity and varying levels of radiopharmaceutical infrastructure present both challenges and opportunities. Some European markets demonstrate advanced adoption driven by strong nuclear medicine networks and academic-industry partnerships, whereas parts of the Middle East & Africa are focused on building foundational capabilities and regulatory alignment to support wider access. Regional initiatives to harmonize standards and to invest in centralized production hubs are increasingly relevant for cross-border supply and clinical trial collaboration.

The Asia-Pacific region shows rapid capability expansion, with substantial investments in manufacturing infrastructure, growing clinical trial activity, and rising interest from national health systems in incorporating radioconjugates into cancer care pathways. Differences in payer systems, hospital ownership models, and regulatory timelines across Asia-Pacific nations mean that entry strategies must be tailored to local reimbursement dynamics and institutional capacities. Overall, regional strategies must reflect a balance between centralized efficiency and local operational realities to support reliable patient access and program scalability.

A strategic synthesis of competitive positioning, partnership models, and manufacturing advantages that determine leadership in the peptide-radionuclide conjugate ecosystem

Competitive dynamics within the peptide-radionuclide conjugate ecosystem are shaped by a mix of specialized radiopharmaceutical developers, academic spin-outs, contract manufacturing organizations, and clinical center networks that serve as launch partners. Industry participants are differentiating through strategic investments in radionuclide supply chains, proprietary conjugation chemistries, and companion diagnostic collaborations that enhance patient selection and therapeutic outcomes. Vertical integration-spanning raw material sourcing, radiolabeling processes, and distribution logistics-has emerged as a competitive advantage for organizations seeking to ensure supply continuity and quality control.

Partnership models are also evolving: pharma and biotech entities increasingly form alliances with academic hospitals and specialty oncology centers to validate clinical protocols, while collaborations with radiopharmacy network operators help scale distribution and administration capabilities. Contract research and manufacturing providers that specialize in aseptic radiochemistry and small-batch production are gaining prominence as enabling partners for early-stage developers who lack in-house radiopharmaceutical expertise. Meanwhile, clinical centers that develop robust multidisciplinary care pathways for radioconjugates attract industry attention as preferred sites for late-stage trials and initial launches.

Intellectual property strategies focus not only on novel peptide-target combinations but also on delivery platforms, linker technologies, and dosimetry optimization methods. As the field matures, firms that can demonstrate reproducible manufacturing processes, regulatory-compliant quality systems, and effective clinical outcomes will be best positioned to capture partnership opportunities and to support sustainable commercialization.

Practical, high-impact strategies for supply resilience, regulatory alignment, clinical integration, and commercial access to accelerate adoption of radioconjugate therapies

Industry leaders can act decisively to translate scientific promise into durable clinical and commercial success by pursuing a set of targeted, actionable strategies focused on supply resilience, regulatory engagement, operational readiness, and stakeholder alignment. Prioritizing redundancy in radionuclide sourcing and investing in regional production capacity or secured supply agreements reduces vulnerability to trade disruptions and supports reliable clinical scheduling. Simultaneously, investing in automated radiochemistry platforms and scalable aseptic processes can lower per-batch variability and enable smoother transitions from early trials to broader clinical use.

Proactive regulatory engagement is essential: leaders should initiate early dialogue with regulatory bodies to clarify expectations around quality attributes, dosimetry endpoints, and trial designs that balance safety with meaningful efficacy signals. Establishing formal collaborations with leading clinical centers, oncology networks, and radiopharmacy operators accelerates protocol optimization, patient recruitment, and real-world evidence generation. On the commercial side, aligning reimbursement strategies with health economic evidence and patient-centered outcomes will facilitate payer discussions and market access planning.

Operationally, building multidisciplinary treatment pathways that integrate nuclear medicine, medical oncology, radiation safety, and pharmacy services will improve patient throughput and experience. Finally, corporate strategy should include transparent IP frameworks, flexible distribution models that accommodate both centralized and onsite radiopharmacy approaches, and investments in training and education programs to build clinician familiarity and confidence in these therapies. Taken together, these actions create a comprehensive playbook for converting technological advantages into patient impact and sustainable enterprise value.

A rigorous, multi-method research approach combining expert interviews, technical literature synthesis, and supply chain analysis to ensure robust and actionable insights

The research methodology underpinning this analysis combined a multi-source, evidence-driven approach designed to ensure robustness, reproducibility, and practical relevance. Primary research included structured interviews with subject-matter experts such as radiochemists, nuclear medicine physicians, clinical trialists, hospital administrators, and regulatory affairs specialists to capture real-world operational insights, clinical workflow constraints, and strategic priorities that are not always visible in public literature. These qualitative inputs were triangulated against technical literature, regulatory guidances, and publicly available clinical trial registries to validate procedural and scientific assertions.

Secondary research drew on peer-reviewed journals, technical conference proceedings, manufacturer publications, and regulatory documents to establish factual baselines for radionuclide properties, manufacturing requirements, and safety considerations. Supply chain analysis incorporated trade datasets, manufacturing equipment specifications, and capital investment trends to assess production capacity and logistical constraints. Where quantitative data were used for comparative analyses, sources were selected for credibility and recency, and assumptions were documented to maintain transparency.

Analytical frameworks emphasized cross-validation, whereby findings from one method informed probes in another, reducing single-source bias. Limitations include the inherent variability of rapidly evolving clinical evidence and the sensitivity of proprietary commercial contract terms that are not always publicly disclosed. To mitigate these constraints, iterative expert validation and sensitivity analyses were applied to ensure the findings remain actionable and grounded in current practice.

Convergent scientific, operational, and policy actions are required to translate peptide-radionuclide innovations into lasting clinical and commercial impact

Peptide-radionuclide conjugates occupy a critical niche at the intersection of targeted oncology and radiopharmaceutical science, offering potential therapeutic advantages for tumor types with specific molecular characteristics. The trajectory of this modality is determined by progress across complementary domains: chemistry that improves stability and tumor targeting, manufacturing and distribution systems that assure timely and quality-controlled supply, clinical infrastructures that enable precise dosimetry and safe administration, and regulatory pathways that support evidence-driven approvals. When these elements align, the potential for improved patient outcomes and new therapeutic options becomes tangible.

However, realizing this potential requires sustained attention to operational detail and strategic foresight. Supply chain vulnerabilities, trade policy dynamics, and the capital intensity of radiopharmacy infrastructure can slow clinical access if not proactively managed. Equally important are the collaborative networks that link developers, clinical centers, regulators, and payers; these partnerships are critical for designing trials that demonstrate meaningful benefit, for establishing care pathways that enable scalable adoption, and for securing reimbursement frameworks that reflect clinical value.

In conclusion, the future of peptide-radionuclide conjugates is promising but contingent on coordinated action across scientific, operational, and policy domains. Stakeholders who invest in resilient supply strategies, clear regulatory dialogue, and integrated clinical models will be best positioned to translate innovation into sustainable patient impact.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Peptide-Radionuclide Conjugates Market, by Radionuclide Type

  • 8.1. Actinium-225
  • 8.2. Lutetium-177
  • 8.3. Yttrium-90

9. Peptide-Radionuclide Conjugates Market, by Therapeutic Indication

  • 9.1. Bone Metastases
  • 9.2. Neuroendocrine Tumors
  • 9.3. Prostate Cancer

10. Peptide-Radionuclide Conjugates Market, by Route Administration

  • 10.1. Intratumoral
  • 10.2. Intravenous

11. Peptide-Radionuclide Conjugates Market, by End User

  • 11.1. Hospitals
    • 11.1.1. General Hospitals
    • 11.1.2. Specialized Cancer Centers
  • 11.2. Oncology Centers
    • 11.2.1. Academic Centers
    • 11.2.2. Private Clinics
  • 11.3. Research Institutes

12. Peptide-Radionuclide Conjugates Market, by Distribution Channel

  • 12.1. Direct Purchase
    • 12.1.1. InHouse Radiopharmacy
    • 12.1.2. Onsite Pharmacy
  • 12.2. Direct Tender
  • 12.3. Distributors

13. Peptide-Radionuclide Conjugates Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Peptide-Radionuclide Conjugates Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Peptide-Radionuclide Conjugates Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. United States Peptide-Radionuclide Conjugates Market

17. China Peptide-Radionuclide Conjugates Market

18. Competitive Landscape

  • 18.1. Market Concentration Analysis, 2025
    • 18.1.1. Concentration Ratio (CR)
    • 18.1.2. Herfindahl Hirschman Index (HHI)
  • 18.2. Recent Developments & Impact Analysis, 2025
  • 18.3. Product Portfolio Analysis, 2025
  • 18.4. Benchmarking Analysis, 2025
  • 18.5. Angiochem Inc.
  • 18.6. Ariceum Therapeutics
  • 18.7. AstraZeneca PLC
  • 18.8. Bayer AG
  • 18.9. Bicycle Therapeutics Ltd.
  • 18.10. Bristol Myers Squibb Company
  • 18.11. Curium Pharma
  • 18.12. Cybrexa Therapeutics Inc.
  • 18.13. Eli Lilly and Company
  • 18.14. Genentech, Inc.
  • 18.15. ITM Isotope Technologies Munich SE
  • 18.16. NorthStar Medical Radioisotopes LLC
  • 18.17. Novartis AG
  • 18.18. PeptiDream Inc.
  • 18.19. Telix Pharmaceuticals Limited

LIST OF FIGURES

  • FIGURE 1. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SHARE, BY KEY PLAYER, 2025
  • FIGURE 3. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET, FPNV POSITIONING MATRIX, 2025
  • FIGURE 4. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 5. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 7. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 9. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY REGION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY GROUP, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 11. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY COUNTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 12. UNITED STATES PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 13. CHINA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, 2018-2032 (USD MILLION)

LIST OF TABLES

  • TABLE 1. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 2. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2018-2032 (USD MILLION)
  • TABLE 3. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ACTINIUM-225, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 4. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ACTINIUM-225, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 5. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ACTINIUM-225, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 6. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY LUTETIUM-177, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 7. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY LUTETIUM-177, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 8. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY LUTETIUM-177, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 9. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY YTTRIUM-90, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 10. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY YTTRIUM-90, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 11. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY YTTRIUM-90, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 12. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2018-2032 (USD MILLION)
  • TABLE 13. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY BONE METASTASES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 14. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY BONE METASTASES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 15. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY BONE METASTASES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 16. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY NEUROENDOCRINE TUMORS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 17. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY NEUROENDOCRINE TUMORS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 18. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY NEUROENDOCRINE TUMORS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 19. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY PROSTATE CANCER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 20. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY PROSTATE CANCER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 21. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY PROSTATE CANCER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 22. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2018-2032 (USD MILLION)
  • TABLE 23. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY INTRATUMORAL, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 24. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY INTRATUMORAL, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 25. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY INTRATUMORAL, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 26. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY INTRAVENOUS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 27. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY INTRAVENOUS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 28. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY INTRAVENOUS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 29. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 30. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 31. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 32. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 33. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, 2018-2032 (USD MILLION)
  • TABLE 34. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY GENERAL HOSPITALS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 35. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY GENERAL HOSPITALS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 36. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY GENERAL HOSPITALS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 37. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY SPECIALIZED CANCER CENTERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 38. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY SPECIALIZED CANCER CENTERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 39. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY SPECIALIZED CANCER CENTERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 40. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 41. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 42. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 43. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, 2018-2032 (USD MILLION)
  • TABLE 44. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ACADEMIC CENTERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 45. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ACADEMIC CENTERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 46. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ACADEMIC CENTERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 47. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY PRIVATE CLINICS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 48. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY PRIVATE CLINICS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 49. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY PRIVATE CLINICS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 50. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RESEARCH INSTITUTES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 51. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RESEARCH INSTITUTES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 52. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RESEARCH INSTITUTES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 53. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 54. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 55. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 56. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 57. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, 2018-2032 (USD MILLION)
  • TABLE 58. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY INHOUSE RADIOPHARMACY, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 59. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY INHOUSE RADIOPHARMACY, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 60. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY INHOUSE RADIOPHARMACY, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 61. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONSITE PHARMACY, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 62. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONSITE PHARMACY, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 63. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONSITE PHARMACY, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 64. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT TENDER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 65. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT TENDER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 66. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT TENDER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 67. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTORS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 68. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTORS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 69. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTORS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 70. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 71. AMERICAS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 72. AMERICAS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2018-2032 (USD MILLION)
  • TABLE 73. AMERICAS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2018-2032 (USD MILLION)
  • TABLE 74. AMERICAS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2018-2032 (USD MILLION)
  • TABLE 75. AMERICAS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 76. AMERICAS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, 2018-2032 (USD MILLION)
  • TABLE 77. AMERICAS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, 2018-2032 (USD MILLION)
  • TABLE 78. AMERICAS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 79. AMERICAS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, 2018-2032 (USD MILLION)
  • TABLE 80. NORTH AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 81. NORTH AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2018-2032 (USD MILLION)
  • TABLE 82. NORTH AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2018-2032 (USD MILLION)
  • TABLE 83. NORTH AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2018-2032 (USD MILLION)
  • TABLE 84. NORTH AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 85. NORTH AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, 2018-2032 (USD MILLION)
  • TABLE 86. NORTH AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, 2018-2032 (USD MILLION)
  • TABLE 87. NORTH AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 88. NORTH AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, 2018-2032 (USD MILLION)
  • TABLE 89. LATIN AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 90. LATIN AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2018-2032 (USD MILLION)
  • TABLE 91. LATIN AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2018-2032 (USD MILLION)
  • TABLE 92. LATIN AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2018-2032 (USD MILLION)
  • TABLE 93. LATIN AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 94. LATIN AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, 2018-2032 (USD MILLION)
  • TABLE 95. LATIN AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, 2018-2032 (USD MILLION)
  • TABLE 96. LATIN AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 97. LATIN AMERICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, 2018-2032 (USD MILLION)
  • TABLE 98. EUROPE, MIDDLE EAST & AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 99. EUROPE, MIDDLE EAST & AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2018-2032 (USD MILLION)
  • TABLE 100. EUROPE, MIDDLE EAST & AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2018-2032 (USD MILLION)
  • TABLE 101. EUROPE, MIDDLE EAST & AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2018-2032 (USD MILLION)
  • TABLE 102. EUROPE, MIDDLE EAST & AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 103. EUROPE, MIDDLE EAST & AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, 2018-2032 (USD MILLION)
  • TABLE 104. EUROPE, MIDDLE EAST & AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, 2018-2032 (USD MILLION)
  • TABLE 105. EUROPE, MIDDLE EAST & AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 106. EUROPE, MIDDLE EAST & AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, 2018-2032 (USD MILLION)
  • TABLE 107. EUROPE PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 108. EUROPE PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2018-2032 (USD MILLION)
  • TABLE 109. EUROPE PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2018-2032 (USD MILLION)
  • TABLE 110. EUROPE PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2018-2032 (USD MILLION)
  • TABLE 111. EUROPE PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 112. EUROPE PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, 2018-2032 (USD MILLION)
  • TABLE 113. EUROPE PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, 2018-2032 (USD MILLION)
  • TABLE 114. EUROPE PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 115. EUROPE PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, 2018-2032 (USD MILLION)
  • TABLE 116. MIDDLE EAST PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 117. MIDDLE EAST PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2018-2032 (USD MILLION)
  • TABLE 118. MIDDLE EAST PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2018-2032 (USD MILLION)
  • TABLE 119. MIDDLE EAST PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2018-2032 (USD MILLION)
  • TABLE 120. MIDDLE EAST PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 121. MIDDLE EAST PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, 2018-2032 (USD MILLION)
  • TABLE 122. MIDDLE EAST PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, 2018-2032 (USD MILLION)
  • TABLE 123. MIDDLE EAST PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 124. MIDDLE EAST PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, 2018-2032 (USD MILLION)
  • TABLE 125. AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 126. AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2018-2032 (USD MILLION)
  • TABLE 127. AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2018-2032 (USD MILLION)
  • TABLE 128. AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2018-2032 (USD MILLION)
  • TABLE 129. AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 130. AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, 2018-2032 (USD MILLION)
  • TABLE 131. AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, 2018-2032 (USD MILLION)
  • TABLE 132. AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 133. AFRICA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, 2018-2032 (USD MILLION)
  • TABLE 134. ASIA-PACIFIC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 135. ASIA-PACIFIC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2018-2032 (USD MILLION)
  • TABLE 136. ASIA-PACIFIC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2018-2032 (USD MILLION)
  • TABLE 137. ASIA-PACIFIC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2018-2032 (USD MILLION)
  • TABLE 138. ASIA-PACIFIC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 139. ASIA-PACIFIC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, 2018-2032 (USD MILLION)
  • TABLE 140. ASIA-PACIFIC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, 2018-2032 (USD MILLION)
  • TABLE 141. ASIA-PACIFIC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 142. ASIA-PACIFIC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, 2018-2032 (USD MILLION)
  • TABLE 143. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 144. ASEAN PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 145. ASEAN PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2018-2032 (USD MILLION)
  • TABLE 146. ASEAN PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2018-2032 (USD MILLION)
  • TABLE 147. ASEAN PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2018-2032 (USD MILLION)
  • TABLE 148. ASEAN PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 149. ASEAN PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, 2018-2032 (USD MILLION)
  • TABLE 150. ASEAN PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, 2018-2032 (USD MILLION)
  • TABLE 151. ASEAN PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 152. ASEAN PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, 2018-2032 (USD MILLION)
  • TABLE 153. GCC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 154. GCC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2018-2032 (USD MILLION)
  • TABLE 155. GCC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2018-2032 (USD MILLION)
  • TABLE 156. GCC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2018-2032 (USD MILLION)
  • TABLE 157. GCC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 158. GCC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, 2018-2032 (USD MILLION)
  • TABLE 159. GCC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, 2018-2032 (USD MILLION)
  • TABLE 160. GCC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 161. GCC PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, 2018-2032 (USD MILLION)
  • TABLE 162. EUROPEAN UNION PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 163. EUROPEAN UNION PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2018-2032 (USD MILLION)
  • TABLE 164. EUROPEAN UNION PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2018-2032 (USD MILLION)
  • TABLE 165. EUROPEAN UNION PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2018-2032 (USD MILLION)
  • TABLE 166. EUROPEAN UNION PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 167. EUROPEAN UNION PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, 2018-2032 (USD MILLION)
  • TABLE 168. EUROPEAN UNION PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, 2018-2032 (USD MILLION)
  • TABLE 169. EUROPEAN UNION PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 170. EUROPEAN UNION PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, 2018-2032 (USD MILLION)
  • TABLE 171. BRICS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 172. BRICS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2018-2032 (USD MILLION)
  • TABLE 173. BRICS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2018-2032 (USD MILLION)
  • TABLE 174. BRICS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2018-2032 (USD MILLION)
  • TABLE 175. BRICS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 176. BRICS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, 2018-2032 (USD MILLION)
  • TABLE 177. BRICS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, 2018-2032 (USD MILLION)
  • TABLE 178. BRICS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 179. BRICS PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, 2018-2032 (USD MILLION)
  • TABLE 180. G7 PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 181. G7 PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2018-2032 (USD MILLION)
  • TABLE 182. G7 PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2018-2032 (USD MILLION)
  • TABLE 183. G7 PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2018-2032 (USD MILLION)
  • TABLE 184. G7 PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 185. G7 PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, 2018-2032 (USD MILLION)
  • TABLE 186. G7 PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, 2018-2032 (USD MILLION)
  • TABLE 187. G7 PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 188. G7 PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, 2018-2032 (USD MILLION)
  • TABLE 189. NATO PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 190. NATO PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2018-2032 (USD MILLION)
  • TABLE 191. NATO PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2018-2032 (USD MILLION)
  • TABLE 192. NATO PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2018-2032 (USD MILLION)
  • TABLE 193. NATO PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 194. NATO PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, 2018-2032 (USD MILLION)
  • TABLE 195. NATO PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, 2018-2032 (USD MILLION)
  • TABLE 196. NATO PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 197. NATO PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, 2018-2032 (USD MILLION)
  • TABLE 198. GLOBAL PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 199. UNITED STATES PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 200. UNITED STATES PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2018-2032 (USD MILLION)
  • TABLE 201. UNITED STATES PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2018-2032 (USD MILLION)
  • TABLE 202. UNITED STATES PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2018-2032 (USD MILLION)
  • TABLE 203. UNITED STATES PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 204. UNITED STATES PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, 2018-2032 (USD MILLION)
  • TABLE 205. UNITED STATES PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, 2018-2032 (USD MILLION)
  • TABLE 206. UNITED STATES PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 207. UNITED STATES PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, 2018-2032 (USD MILLION)
  • TABLE 208. CHINA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 209. CHINA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY RADIONUCLIDE TYPE, 2018-2032 (USD MILLION)
  • TABLE 210. CHINA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY THERAPEUTIC INDICATION, 2018-2032 (USD MILLION)
  • TABLE 211. CHINA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ROUTE ADMINISTRATION, 2018-2032 (USD MILLION)
  • TABLE 212. CHINA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 213. CHINA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY HOSPITALS, 2018-2032 (USD MILLION)
  • TABLE 214. CHINA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY ONCOLOGY CENTERS, 2018-2032 (USD MILLION)
  • TABLE 215. CHINA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 216. CHINA PEPTIDE-RADIONUCLIDE CONJUGATES MARKET SIZE, BY DIRECT PURCHASE, 2018-2032 (USD MILLION)