![]() |
市場調查報告書
商品編碼
1837230
按技術、能源來源、應用、儲存週期和最終用戶產業分類的熱能儲存市場—2025-2032年全球預測Thermal Energy Storage Market by Technology, Energy Source, Application, Storage Duration, End Use Industry - Global Forecast 2025-2032 |
||||||
※ 本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。
預計到 2032 年,熱能儲存市場規模將達到 195.3 億美元,複合年成長率為 13.08%。
| 關鍵市場統計數據 | |
|---|---|
| 基準年2024年 | 73億美元 |
| 預計年份:2025年 | 82.6億美元 |
| 預測年份 2032 | 195.3億美元 |
| 複合年成長率 (%) | 13.08% |
全球能源系統正經歷快速轉型,其驅動力包括脫碳需求、可再生能源發電的廣泛應用以及建築和工業電氣化的加速發展。在這種不斷變化的環境中,熱能儲存(TES)正逐漸成為一項關鍵的實行技術,能夠平滑負載曲線、整合熱能和電能資源,並提升低碳能源的提案。因此,人們不僅在評估TES解決方案的傳統應用(例如熱感轉移和聚光型太陽光電整合)時對其進行考察,而且還在評估其在公用事業規模電網服務、工業溫度控管以及分散式建築級靈活性方面的應用時對其進行評估。
在此背景下,技術多樣性是熱能儲存(TES)的核心優勢。顯熱系統、潛熱材料和新興的熱化學方法各自具有獨特的運作特性、資本密集度和整合路徑。同時,材料科學、系統控制和模組化製造的進步正在降低技術應用門檻,並拓展其可應用場景。本文重點闡述了技術進步、政策訊號和不斷變化的能源經濟如何將熱能儲存從小眾裝置轉變為可擴展的部署方案,從而支持多個產業的碳減排和能源韌性目標。
過去幾年,技術、政策和市場力量的共同作用,徹底改變了熱能儲存領域的格局。材料和系統設計的改進延長了循環壽命,提高了能量密度和往返效率,使熱能儲存系統能夠在更廣泛的時間段和溫度範圍內運作。同時,可變可再生能源的快速普及提升了可調度熱容量在負載轉移和配套服務的價值,促使系統整合商和電力公司在其規劃過程中重新評估熱能儲存系統。
政策工具和企業淨零排放承諾進一步改變了投資趨勢。一些地區的低碳供熱獎勵、採購強制規定和排放權政策,增強了將儲能技術(TES)整合到供熱網路、工業流程和發電廠的商業價值。同時,建築供暖和製冷電氣化的擴展創造了新的分散式商業機會,而儲能技術可以在這些機會中降低尖峰需求並延緩基礎設施投資。此外,受原料供應、製造能力和貿易政策驅動的供應鏈變革,正在重塑籌資策略,使其更加重視多元化採購和更緊密的供應商合作。計劃,這些變革加速了儲能計劃的部署進程,並擴大了儲能專案相關人員的生態系統,涵蓋了從開發商和公用事業公司到工業營運商和設備製造商等各個方面。
2025年美國實施的關稅和貿易措施引發了整個TES供應鏈的一系列戰略應對措施。在全球採購模式下具有成本競爭力的零件和原料面臨價格上漲壓力,迫使採購方重新評估總到岸成本和前置作業時間風險。先前依賴單一國家供應鏈的採購團隊加快了供應商多元化進程,並開始對替代供應商進行資格審核,以降低集中風險。這些調整需要擴大供應商審核和重新配置物流,在某些情況下,由於需要重新談判長期契約,計劃進度也會因此而延後。
同時,關稅改變了國內製造業的考量。對於某些零件而言,進口成本的上升提升了國內生產和組裝的相對吸引力,從而刺激了對國內產能和合資企業的投資。這產生了雙重效應:一方面刺激了近期資本計劃,另一方面提高了人們對國內經濟韌性增強的預期,即便這意味著專案發起人需要承擔更高的短期資本密集度。計劃和整合商也修改了系統設計,盡可能地替代材料並重新指定供應商,而金融合作夥伴則更加重視供應鏈實質審查和合約保護。摘要,關稅促進了供應鏈重組,推動了儲能系統專案組計劃轉向多元化、本地化和更嚴格的合約管治。
細分市場分析揭示了差異化技術路徑和終端應用如何決定部署策略和價值實現。同時,顯熱解決方案採用混凝土、熔鹽和水基系統,因其成熟性、擴充性和與高溫工業熱源的兼容性而備受青睞。熱化學方案以化學反應和吸附過程為驅動,具有更高的理論能量密度和長期儲能潛力,但仍需在循環可逆性、反應器設計和材料穩定性方面持續開發。
從能源來源的角度來看,併網儲能區分了電網和可再生能源,從而實現了時間套利和電網支援服務。太陽能熱儲能,無論是聚光型太陽光電發電還是光伏併網混合系統,都為應對季節性和晝夜變化提供了一條綜合途徑。應用領域細分為商業性應用(例如暖通空調和冷凍)、工業應用(涵蓋發電、製程加熱和餘熱回收)、住宅系統(用於生活熱水和建築熱舒適度)以及公共產業規模的電網支援和抑低尖峰負載服務。儲能持續時間分類涵蓋了長期、中期和短期三種應用場景,分別對應季節性變化、每日充放電週期和晝夜高峰。最後,行業細分(供暖/製冷、工業流程、發電和製冷應用)突顯了技術選擇、整合複雜性和監管影響如何共同作用於計劃設計和商業模式。
區域動態是決定儲熱系統部署路徑的關鍵因素,其驅動力來自政策架構、可再生資源概況、工業熱需求和電網架構的差異。在美洲,旨在推動建築電氣化和工業脫碳的強大政策正在推動對分散式和公用事業級儲熱解決方案的需求。近期貿易措施導致的供應鏈調整也引發了關於近岸外包的討論,這將影響計劃進度和本地製造機會。
在歐洲、中東和非洲,排放監管目標以及歐洲部分地區廣泛的區域供熱網路,都促使人們將熱能儲存(TES)技術應用於季節性儲能和供熱網路平衡;而中東地區則專注於高溫儲能,以支持工業生產和聚光型太陽光電應用。非洲能源取得的挑戰各不相同,這為模組化熱能儲存技術與計劃和產業叢集相結合創造了獨特的應用場景。亞太地區正在經歷廣泛的活動,從大型熔鹽和聚光太陽能發電(CSP)相關計劃到快速成長的城市市場中的分散式潛熱解決方案。多個國家高昂的工業熱消費量和積極的可再生能源目標,正在推動技術創新和雄心勃勃的試點計畫。不同的地區將決定哪些熱能儲存技術和商業模式最具可行性。
隨著現有設備製造商、特殊材料供應商和系統整合與提供模組化解決方案和軟體主導的運作最佳化的新興參與企業競爭,熱能儲存領域的競爭格局正在不斷演變。儘管先進的封裝製造商憑藉大規模顯熱系統、成熟的輔助設備整合和長期性能保證保持著優勢,但新興企業正專注於開發能量密度更高的潛熱材料、用於分散式應用的緊湊型封裝單元以及能夠實現預測性維護和最佳化調度的先進控制平台。
夥伴關係與垂直整合是值得關注的趨勢。材料供應商正與熱感系統原始設備製造商 (OEM) 合作,加速先進相變材料 (PCM) 和熱化學材料的商業化;工程公司和公用事業公司則將儲能與能源服務合約捆綁銷售,以降低終端用戶的計劃複雜性。融資工具也隨之調整,越來越多的貸款機構和投資者要求更清晰的性能保證和標準化的測試通訊協定。策略併購、有針對性的研發合作以及試點部署,使企業能夠降低新技術風險並擴大檢驗設計的規模。因此,市場領導地位越來越取決於企業能否證明其現場性能、生命週期經濟性以及與電網和製程控制系統的互通性。
產業領導者應優先採取以下幾項切實可行的措施,以把握不斷成長的儲能系統(TES)市場機遇,同時管控營運和政策風險。首先,投資於多元化的供應商關係和合約條款,以規避貿易中斷和材料短缺的風險,同時建立本地組裝和策略夥伴關係關係,從而縮短前置作業時間。其次,將產品藍圖與買家關注的、經過驗證的效能指標(例如循環壽命、往返效率、可維護性以及與現有控制設備的整合便利性)相匹配。透過第三方測試和現場試驗來驗證這些指標,可以加速檢驗決策,並降低人們對技術風險的認知。
第三,我們將探索能夠開拓新收益的整合路徑,例如將儲能技術與需量反應計劃、工業餘熱回收以及商業項目中的表後高峰需求削減相結合。第四,我們將與監管機構和公用事業公司合作,制定獎勵機制和互聯規則,以認可儲能技術獨特的價值流,例如長期運作和季節性應用。最後,我們將透過制定標準化合約、績效保證和透明的生命週期成本評估,增強資金籌措能力,從而吸引機構投資者和計劃貸款方的注意。實施這些建議將使企業能夠從先導計畫過渡到可複製和可擴展的部署。
本研究整合了訪談、技術文獻、監管文件和橫斷面案例研究,旨在建構儲能技術及其市場動態的整體觀點。訪談對象包括系統整合商、材料供應商、公用事業規劃人員、工業能源管理人員和金融相關人員,旨在了解實際應用中的限制和新興的商業模式。技術評估則利用同儕審查的研究成果、相關標準和檢驗的現場性能數據,對材料性能、系統效率和整合因素進行評估。
為了補充定性輸入,此方法運用對比情境分析來探討該技術在不同時間段、溫度範圍和最終用途下的適用性。供應鏈分析繪製了採購強度、製造能力和政策影響圖,以揭示採購風險及其對區域能力的影響。這項綜合分析強調基於營運經驗和已記錄的績效的可複製性結論,同時也指出了需要長期現場數據或加速試點計畫以降低不確定性的領域。
熱能儲存正處於曲折點,技術成熟度、政策環境的變化以及能源系統需求的演變共同推動了其大規模部署。顯熱解決方案持續滿足高溫、高容量的應用需求;潛熱系統在空間和溫度穩定性至關重要的領域實現了分散式靈活性;而熱化學方法則為長壽命解決方案提供了可能改變季節性平衡的前景。與任何技術一樣,跨學科合作——包括材料科學家、控制工程師、計劃開發人員和資金籌措——對於將實驗室成果釋放為現場持續性能至關重要。
未來的成功取決於將儲能技術融入更廣泛的能源計畫和產業脫碳策略,使獎勵機制與可衡量的績效結果相匹配,並建立能夠適應地緣政治變化和貿易措施的彈性供應鏈。優先考慮標準化測試、透明的績效保證和靈活的採購機制的相關人員,將更有能力把日益成長的興趣轉化為可靠的部署,從而實現碳減排和營運價值的雙重目標。
The Thermal Energy Storage Market is projected to grow by USD 19.53 billion at a CAGR of 13.08% by 2032.
| KEY MARKET STATISTICS | |
|---|---|
| Base Year [2024] | USD 7.30 billion |
| Estimated Year [2025] | USD 8.26 billion |
| Forecast Year [2032] | USD 19.53 billion |
| CAGR (%) | 13.08% |
The global energy system is undergoing a rapid transition driven by decarbonization imperatives, the proliferation of variable renewable generation, and accelerating electrification across buildings and industry. In that shifting environment, thermal energy storage (TES) is emerging as a foundational enabling technology that smooths load profiles, couples heat and power resources, and enhances the value proposition of low-carbon energy. As a result, TES solutions are being evaluated not only for traditional roles such as thermal shifting and concentrated solar power integration, but increasingly for utility-scale grid services, industrial heat management, and distributed building-level flexibility.
Against this backdrop, technology diversity is a core strength of TES. Sensible heat systems, latent heat materials, and nascent thermochemical approaches each carry distinct operational characteristics, capital intensity, and integration pathways. Meanwhile, developments in material science, system control, and modular manufacturing are lowering barriers to adoption and expanding the addressable use cases. This introduction frames the report's focus on how technological progress, policy signals, and evolving energy economics collectively reposition TES from niche installations toward scalable deployments that can support carbon reduction and energy resilience objectives across multiple sectors.
Over the past several years the landscape for thermal energy storage has shifted decisively as a result of converging technological, policy, and market forces. Improved materials and system design have extended cycle life, enhanced energy density, and increased round-trip efficiency, allowing TES to address a wider range of durations and temperatures. Concurrently, the rapid deployment of variable renewables has increased the value of dispatchable thermal capacity for both load shifting and ancillary services, prompting system integrators and utilities to reevaluate TES in planning processes.
Policy instruments and corporate net-zero commitments have further altered investment flows. Incentives for low-carbon heat, procurement mandates, and emissions pricing in some jurisdictions have elevated the business case for integrating TES with heat networks, industrial processes, and power plants. In parallel, the scaling of electrified heating and cooling in buildings has created new distributed opportunities where TES can reduce peak demand and defer infrastructure investment. Meanwhile, supply chain evolution-driven by raw material availability, manufacturing capacity, and trade policy-has reshaped procurement strategies, favoring diversified sourcing and closer supplier collaboration. Taken together, these transformative shifts have accelerated deployment pathways and broadened the stakeholder ecosystem involved in TES projects, from developers and utilities to industrial operators and equipment manufacturers.
The introduction of tariffs and trade measures in the United States in 2025 has produced a cascade of strategic responses across the TES supply chain. Components and raw materials that had been cost-competitive under global sourcing models experienced upward price pressure, prompting buyers to reassess total landed cost versus lead-time risk. Procurement teams that previously relied on single-country supply chains began accelerating supplier diversification and qualifying alternative vendors to reduce concentration risk. These adjustments required expanded supplier audits and logistical reconfiguration, which in some cases delayed project timelines while long-term contracts were renegotiated.
At the same time, tariffs changed the calculus for domestic manufacturing. For certain components, higher import costs improved the relative attractiveness of onshore production and assembly, encouraging investments in local capacity and joint ventures. This had the dual effect of stimulating near-term capital projects and raising expectations for improved domestic resilience, even as it increased short-term capital intensity for project sponsors. Developers and integrators also adapted system designs to substitute materials or re-specify suppliers where feasible, while financial partners placed greater emphasis on supply chain due diligence and contractual protections. In summary, the tariffs acted as an accelerant for supply chain choreography, prompting a structural shift toward diversification, regionalization, and stronger contractual governance across TES project portfolios.
Segmentation analysis reveals how differentiated technology pathways and end-use contexts determine deployment strategies and value realization. Based on technology, latent heat solutions encompass eutectic materials, inorganic salts and organics, offering compact energy density and isothermal discharge that suit space-constrained installations and process temperature control, while sensible heat solutions employ concrete, molten salt, and water-based systems favored for their maturity, scalability, and compatibility with high-temperature industrial heat. Thermochemical options, driven by chemical reactions and sorption processes, promise higher theoretical energy densities and long-duration storage potential but require continued development in cycle reversibility, reactor design, and material stability.
When viewed through the prism of energy source, electricity-coupled storage differentiates between grid electricity and renewable-sourced power, enabling temporal arbitrage and grid-support services; solar thermal linkages, whether with concentrated solar power or PV-coupled hybrid systems, provide integrated pathways for seasonal and diurnal shifting; and waste heat integration focuses on industrial heat streams that can be captured and redeployed, improving process efficiency and lowering onsite emissions. Application segmentation distinguishes commercial use cases such as HVAC and refrigeration, industrial deployments that span power generation, process heating and waste heat recovery, residential systems for domestic hot water and building thermal comfort, and utility-scale services for grid support and peak shaving. Storage duration categorization captures long-term, medium-term, and short-term roles that align with seasonal shifting, daily charge-discharge cycles, and intra-day peaking respectively. Finally, end-use industry segmentation across heating and cooling, industrial processes, power generation, and refrigeration clarifies where technology selection, integration complexity, and regulatory exposure intersect to influence project design and commercial models.
Regional dynamics are a primary determinant of TES adoption pathways, driven by differences in policy frameworks, renewable resource profiles, industrial heat demand, and grid architecture. In the Americas, strong policy momentum for electrification in buildings and targeted industrial decarbonization programs are creating pockets of demand for both distributed and utility-grade TES solutions, while the region's diverse climate zones influence optimal system design and operational profiles. Supply chain adjustments following recent trade measures have also encouraged nearshoring conversations, which in turn affect project timelines and localized manufacturing opportunities.
In Europe, Middle East & Africa, regulatory targets for emissions reduction and extensive district heating networks in parts of Europe favor TES integration for seasonal storage and heat network balancing, while regions in the Middle East emphasize high-temperature thermal storage to support industrial processes and concentrated solar power applications. Africa's heterogeneous energy access challenges create unique use cases for modular TES paired with microgrids and industrial clusters. Asia-Pacific displays a broad spectrum of activity, from large-scale molten salt and CSP-linked projects to distributed latent heat solutions in fast-growing urban markets. High industrial heat consumption and aggressive renewable deployment targets in several countries are driving both technology innovation and ambitious pilot programs. Across regions, localized policy incentives, grid design, and industrial structure shape which TES technologies and commercial models are most viable.
Competitive dynamics in the thermal energy storage sector are evolving as incumbent equipment manufacturers, specialized materials suppliers, and systems integrators compete with new entrants offering modularized solutions and software-driven operational optimization. Established suppliers maintain advantages in large-scale sensible heat systems, proven balance-of-plant integration, and long-term performance warranties, while emerging firms are focused on higher energy-density latent materials, compact packaged units for distributed applications, and advanced control platforms that enable predictive maintenance and optimized dispatch.
Partnerships and vertical integration are notable trends; material suppliers are collaborating with thermal system OEMs to accelerate commercialization of advanced PCMs and thermochemical materials, while engineering firms and utilities are bundling storage with energy services contracts to reduce project complexity for end users. Financing vehicles have adapted, with more lenders and investors seeking clearer performance guarantees and standardized testing protocols. Strategic M&A activity, targeted R&D alliances, and pilot deployments are allowing firms to de-risk novel technologies and scale validated designs. As a result, market leadership is increasingly tied to an ability to demonstrate field performance, lifecycle economics, and interoperability with grid and process control systems.
Industry leaders should prioritize several actionable steps to capitalize on the expanding TES opportunity while managing operational and policy risks. First, invest in diversified supplier relationships and contractual terms that hedge against trade disruption and material shortages, while simultaneously building capabilities for local assembly or strategic partnerships to shorten lead times. Second, align product roadmaps with validated performance metrics that matter to buyers: cycle life, round-trip efficiency, maintainability, and integration ease with existing controls. Demonstrating these metrics through third-party testing and field pilots will accelerate procurement decisions and reduce perceived technology risk.
Third, pursue integration pathways that unlock new revenue streams, such as pairing TES with demand response programs, industrial waste heat recovery, or behind-the-meter peak demand reductions for commercial portfolios. Fourth, collaborate with regulators and utilities to shape incentive structures and interconnection rules that recognize thermal storage's unique value streams, including long-duration and seasonal applications. Finally, strengthen financeability by developing standardized contracts, performance guarantees, and transparent lifecycle cost assessments that resonate with institutional investors and project lenders. Implementing these recommendations will help firms move from pilot projects to repeatable, scalable deployments.
This research synthesizes primary interviews, technical literature, regulatory documents, and cross-sector case studies to create a holistic perspective on TES technology and market dynamics. Primary engagements included conversations with system integrators, materials suppliers, utility planners, industrial energy managers, and financial stakeholders to capture real-world constraints and emerging commercial models. Technical assessment drew upon peer-reviewed research, standards, and validated field performance data to evaluate material behavior, system efficiency, and integration considerations.
Complementing qualitative inputs, the methodology applied comparative scenario analysis to explore technology applicability across different durations, temperature ranges, and end-use contexts. Supply chain analysis mapped sourcing concentrations, manufacturing capabilities, and policy exposures to surface procurement risk and regional capacity implications. The synthesis emphasizes reproducible findings grounded in operational experience and documented performance, while acknowledging areas where longer-term field data or accelerated pilot programs remain necessary to reduce uncertainty.
Thermal energy storage stands at an inflection point where technological maturity, shifting policy landscapes, and evolving energy system needs align to support larger-scale adoption. Sensible heat solutions continue to serve high-temperature and large-capacity use cases, latent heat systems are unlocking distributed flexibility where space and temperature stability matter, and thermochemical approaches offer a horizon of long-duration options that could transform seasonal balancing. Across all technologies, cross-disciplinary collaboration-between material scientists, control engineers, project developers, and financiers-will be essential to translate laboratory gains into sustained field performance.
Looking forward, success will hinge on integrating TES into broader energy planning and industrial decarbonization strategies, aligning incentive structures with measurable performance outcomes, and building resilient supply chains that accommodate geopolitical shifts and trade measures. Stakeholders who prioritize standardized testing, transparent performance warranties, and flexible procurement mechanisms will be better positioned to convert growing interest into reliable deployments that deliver both carbon reductions and operational value.