封面
市場調查報告書
商品編碼
1718081

鋰離子電池材料市場(按類型、電池化學性質、外形尺寸和應用)預測(2025-2030 年)

Lithium-ion Battery Materials Market by Type, Battery Chemistry, Form, Application - Global Forecast 2025-2030

出版日期: | 出版商: 360iResearch | 英文 185 Pages | 商品交期: 最快1-2個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

預計2023年鋰離子電池材料市值將達459.5億美元,2024年成長至516.1億美元,複合年成長率為12.71%,到2030年將達到1062.5億美元。

鋰離子電池材料基礎:簡介

主要市場統計數據
基準年2023年 459.5億美元
預計2024年 516.1億美元
預測年份 2030 1062.5億美元
複合年成長率(%) 12.71%

鋰離子電池材料不斷革新能源儲存,開創一個前所未有的創新和高效的時代。技術進步的快速步伐正在刺激從汽車電氣化到消費性電子產品到大規模能源儲存系統等各個領域的需求。本入門書探討了不斷變化的市場格局,並研究了材料成分、先進工程和不斷變化的消費者需求如何融合在一起塑造市場動態。

電池化學和材料科學的最新進展有助於降低成本、改善充電週期並提高整體性能。研究人員和產業先驅者不斷突破極限,以提高電池的穩定性和可靠性。科學創新和市場力量相互作用,創造出量身定做的材料解決方案,不僅可以提高功率輸出,而且符合嚴格的環境和安全標準。

本概述旨在建立一個清晰的框架來了解鋰離子電池材料的現狀,並闡明決定市場方向的關鍵促進因素、新興趨勢和微妙因素。透過全面分析,相關人員可以更好地應對獨特的挑戰和機會,並為這個變革時代做好最佳準備。

改變鋰離子電池材料市場

隨著多種驅動力重塑市場,鋰離子電池材料格局正經歷重大變革時期。技術創新徹底改變了電池性能指標,使能量密度、充電速度和整體耐用性得到了顯著提高。這種轉變主要由材料科學的創新和對下一代電池技術的策略性投資共同推動。

整個產業對永續能源解決方案的關注凸顯了資源高效材料和環保生產流程的重要性。電動車的快速普及和可再生能源基礎設施的擴張正在刺激技術創新,不斷挑戰過去的性能基準。此外,法律規範和政府獎勵正在透過推廣更清潔的替代能源和鼓勵發展環保實踐來加速市場轉變。

固態電池和增強回收通訊協定等新興趨勢預計將進一步顛覆傳統模式。隨著對奈米結構和先進複合材料的研究不斷深入,公司準備重新定義效率標準。這一動態時刻凸顯了從傳統技術轉向更具適應性和麵向未來的設計的重要轉變,這些設計既能滿足產業需求,又能滿足社會對永續性的期望。

關鍵細分市場洞察

為了更深入了解鋰離子電池材料市場,有必要深入研究關鍵的細分框架。我們根據多個參數對市場進行了分析,這些參數提供了行業發展的多方面視角。按類型分析市場可以揭示陽極材料、陰極材料、電解質和隔膜等關鍵元素,從而深入了解每個組件如何影響整體電池性能。依照電池化學成分進一步細分,鋰鈷氧化物、磷酸鋰鐵、鋰錳氧化物、鋰鎳鈷鋁氧化物和鋰鎳錳鈷氧化物發揮不同的作用。這些細分突顯了化學的複雜性以及不同應用中能量容量和安全問題之間的權衡。

根據形態的進一步分類區分了物質狀態的變化:液體、粉末和固體。此分類反映了使電池適應特定應用所需的製造多功能性和性能特徵。同樣重要的是基於應用的部分,涵蓋汽車、家用電器、能源儲存系統和工業領域等動態市場。每個領域都有自己的要求和挑戰,需要採用客製化的方法來實現材料創新。這些不同的分析視角的相互作用提供了市場區隔的全面視角,對於希望在競爭生態系統中完善策略、最佳化生產技術和推進技術的相關人員來說至關重要。

目錄

第1章 引言

第2章調查方法

第3章執行摘要

第4章 市場概述

第5章 市場洞察

  • 市場動態
    • 驅動程式
      • 工業和公共設施對大規模電池應用的需求不斷增加
      • 智慧型手機、筆記型電腦和其他行動裝置等消費性電子產品的普及
      • 電動車的成長將推動對鋰離子電池材料和創新的需求
    • 限制因素
      • 鋰離子電池原料提取與加工相關問題
    • 機會
      • 開發智慧電池管理系統並利用物聯網監控效能
      • 對永續鋰離子電池材料的大量投資
    • 任務
      • 與鋰離子電池材料相關的安全問題
  • 市場區隔分析
    • 類型:陰極材料變得越來越重要,因為它們會影響電池的電壓和容量
    • 電池化學:安全性、熱穩定性和長循環壽命推動對磷酸鋰鐵鋰電池的需求
    • 形態:由於安全性和長壽命,對固態鋰離子電池材料的需求正在激增
    • 應用:汽車產業鋰離子電池材料應用的演變
  • 波特五力分析
  • PESTEL分析
    • 政治的
    • 經濟
    • 社會
    • 技術的
    • 合法的
    • 環境

第6章 鋰離子電池材料市場(按類型)

  • 負極材料
  • 正極材料
  • 電解質
  • 分隔符

7. 鋰離子電池材料市場電池化學

  • 鈷酸鋰
  • 磷酸鋰鐵
  • 錳酸鋰
  • 鋰鎳鈷鋁氧化物
  • 鋰鎳錳鈷氧化物

第8章 鋰離子電池材料市場(按類型)

  • 液體
  • 粉末
  • 固體的

第9章 鋰離子電池材料市場(依應用)

  • 家電
  • 能源儲存系統
  • 產業

第10章美洲鋰離子電池材料市場

  • 阿根廷
  • 巴西
  • 加拿大
  • 墨西哥
  • 美國

第11章亞太鋰離子電池材料市場

  • 澳洲
  • 中國
  • 印度
  • 印尼
  • 日本
  • 馬來西亞
  • 菲律賓
  • 新加坡
  • 韓國
  • 台灣
  • 泰國
  • 越南

12.歐洲、中東和非洲鋰離子電池材料市場

  • 丹麥
  • 埃及
  • 芬蘭
  • 法國
  • 德國
  • 以色列
  • 義大利
  • 荷蘭
  • 奈及利亞
  • 挪威
  • 波蘭
  • 卡達
  • 俄羅斯
  • 沙烏地阿拉伯
  • 南非
  • 西班牙
  • 瑞典
  • 瑞士
  • 土耳其
  • 阿拉伯聯合大公國
  • 英國

第13章競爭格局

  • 2023年市場佔有率分析
  • 2023年FPNV定位矩陣
  • 競爭情境分析
  • 戰略分析與建議

公司名單

  • 3M Company
  • Albemarle Corporation
  • Asahi Kasei Corporation
  • Ascend Elements, Inc.
  • BASF SE
  • BTR New Material Group Co., Ltd.
  • EcoPro BM Co Ltd.
  • Fujitsu Limited
  • Ganfeng Lithium Group Co., Ltd.
  • JFE Chemical Corporation
  • Kureha Corporation
  • L&F CO., Ltd.
  • LG Chem, Ltd.
  • Lohum
  • Mitsubishi Chemical Corporation
  • NEI Corporation
  • Nichia Corporation
  • POSCO FUTURE M Co., Ltd.
  • Resonac Holdings Corporation
  • SGL Carbon SE
  • SQM SA
  • Sumitomo Metal Mining Co., Ltd.
  • Tanaka Chemical Corporation
  • Tianqi Lithium Co., Ltd.
  • TODA KOGYO CORP.
  • UBE Corporation
  • UMICORE NV
  • Xiamen Tmax Battery Equipments Limited
Product Code: MRR-564C6E98E516

The Lithium-ion Battery Materials Market was valued at USD 45.95 billion in 2023 and is projected to grow to USD 51.61 billion in 2024, with a CAGR of 12.71%, reaching USD 106.25 billion by 2030.

Foundations in Lithium-ion Battery Materials: An Introduction

KEY MARKET STATISTICS
Base Year [2023] USD 45.95 billion
Estimated Year [2024] USD 51.61 billion
Forecast Year [2030] USD 106.25 billion
CAGR (%) 12.71%

Lithium-ion battery materials have continued to revolutionize energy storage, ushering in an era of unprecedented innovation and efficiency. The rapid pace of technological progress has driven a surge in demand across sectors, from automotive electrification to consumer electronics and large-scale energy storage systems. This introductory review explores the evolving landscape, delivering insights into how material composition, advanced engineering, and evolving consumer needs converge to shape market dynamics.

Recent advances in battery chemistry and material science have been instrumental in reducing costs, improving charge cycles, and enhancing overall performance. Researchers and industry pioneers are relentlessly pushing the envelope to improve the stability and reliability of batteries. The interplay between scientific innovation and market forces has resulted in tailored material solutions that not only boost power output but also meet stringent environmental and safety standards.

The purpose of this overview is to establish a clear framework for understanding the current state of lithium-ion battery materials, highlighting critical drivers, emerging trends, and the nuanced factors that determine market direction. Through a comprehensive analysis, stakeholders can better navigate the inherent challenges and opportunities, positioning themselves optimally in this transformative era.

Transformative Shifts in the Landscape

The landscape of lithium-ion battery materials is undergoing a significant transformation as various driving forces reshape the market. Technological breakthroughs have revolutionized the performance metrics of batteries, enabling remarkable improvements in energy density, charging speeds, and overall durability. This transformation is largely motivated by a fusion of innovation in material sciences and strategic investments in next-generation battery technologies.

Industry-wide emphasis on sustainable energy solutions has accentuated the importance of resource-efficient materials and greener production processes. The surge in electric vehicle adoption and the expansion of renewable energy infrastructure are fueling innovations that consistently challenge historical performance benchmarks. Additionally, regulatory frameworks and government incentives have accelerated market shifts by promoting cleaner energy alternatives and encouraging the development of environmentally responsible practices.

Emerging trends such as solid-state batteries and enhanced recycling protocols promise to further disrupt traditional models. As research delves deeper into nanostructured materials and advanced composites, companies are poised to redefine efficiency standards. This dynamic phase underscores a critical pivot from legacy technologies to more adaptable, future-proof designs that address both industry needs and societal expectations toward sustainability.

Key Segmentation Insights

A nuanced understanding of the lithium-ion battery materials market necessitates a deep dive into its key segmentation frameworks. The market is dissected based on several parameters that provide a multi-dimensional view of the industry's evolution. Analyzing the market based on type illuminates critical elements such as anode materials, cathode materials, electrolytes, and separators, offering insights into how each component contributes to overall battery performance. The segmentation by battery chemistry provides further granularity, revealing the distinct roles played by lithium cobalt oxide, lithium iron phosphate, lithium manganese oxide, lithium nickel cobalt aluminum oxide, and lithium nickel manganese cobalt oxide. These subdivisions not only highlight the chemical intricacies but also emphasize the trade-offs between energy capacity and safety concerns in different applications.

Further segmentation by form distinguishes between liquid, powder, and solid variations in material states. This classification reflects the manufacturing versatility and performance characteristics essential for tailoring batteries to specific uses. Equally important is the segmentation based on application, which encapsulates the dynamic markets of automotive, consumer electronics, energy storage systems, and industrial sectors. Each segment has its unique requirements and challenges, dictating customized approaches to material innovation. The interplay among these diverse analytical lenses offers a comprehensive view of market segmentation, crucial for stakeholders aiming to refine strategies, optimize production techniques, and drive forward technology in a competitive ecosystem.

Based on Type, market is studied across Anode Material, Cathode Material, Electrolyte, and Separators.

Based on Battery Chemistry, market is studied across Lithium Cobalt Oxide, Lithium Iron Phosphate, Lithium Manganese Oxide, Lithium Nickel Cobalt Aluminum Oxide, and Lithium Nickel Manganese Cobalt Oxide.

Based on Form, market is studied across Liquid, Powder, and Solid.

Based on Application, market is studied across Automotive, Consumer Electronics, Energy Storage Systems, and Industrial.

Key Regional Insights

The global perspective on lithium-ion battery materials is enriched by varied regional dynamics, with significant insights derived from the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, the emphasis is placed on innovative automotive and consumer electronics developments, where technological integration and robust infrastructural support fuel market expansion. Europe, Middle East & Africa feature a blend of regulatory impetus and strategic initiatives that pave the way for increased investments in renewable energy and advanced material research, fostering collaboration and competitive progress. Meanwhile, in the Asia-Pacific region, rapid industrial growth and a vibrant manufacturing landscape provide a fertile ground for scaling production and integrating breakthrough technologies in battery materials.

The distinct yet interconnected roles of these regions contribute to a resilient global ecosystem. Regional variances in policy-making, economic investment, and technological readiness highlight the adaptive strategies employed to meet local market needs. Understanding these geographical nuances is critical for stakeholders seeking to tap into regional advantages and address localized challenges while maintaining a cohesive global strategy.

Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

Key Companies Insights

The competitive arena of lithium-ion battery materials is marked by the involvement of several industry leaders, each contributing uniquely to the momentum of technological progress. Companies such as 3M Company, Albemarle Corporation, Asahi Kasei Corporation, and Ascend Elements, Inc. have been pivotal in research and development, driving forward innovations that set industry standards. BASF SE and BTR New Material Group Co., Ltd. have played a significant role in integrating advanced material solutions that bolster battery performance and operational efficiency.

EcoPro BM Co Ltd. alongside Fujitsu Limited and Ganfeng Lithium Group Co., Ltd. have showcased formidable strength in leveraging state-of-the-art manufacturing techniques to enhance battery longevity and safety. The contributions from JFE Chemical Corporation and Kureha Corporation further underscore the emphasis on sustainable material practices and cost efficiencies in the production process. L&F CO., Ltd., LG Chem, Ltd., and Lohum have exemplified excellence in aligning technological advancements with market demands, while Mitsubishi Chemical Corporation and NEI Corporation have consistently supported the evolution of battery chemistry. Nichia Corporation and POSCO FUTURE M Co., Ltd. drive enhanced operational frameworks, resonating with resilient supply chain management and integrated innovation.

Additional trailblazers such as Resonac Holdings Corporation, SGL Carbon SE, SQM S.A., Sumitomo Metal Mining Co., Ltd., and Tanaka Chemical Corporation continue to expand the frontiers of battery material applications. Tianqi Lithium Co., Ltd., TODA KOGYO CORP., UBE Corporation, UMICORE NV, and Xiamen Tmax Battery Equipments Limited round out a robust market tapestry, collectively crafting a landscape that balances aggressive research endeavors with established industrial practices. Their concerted efforts emphasize precision, efficiency, and a forward-thinking approach essential for the sustained advancement of this critical sector.

The report delves into recent significant developments in the Lithium-ion Battery Materials Market, highlighting leading vendors and their innovative profiles. These include 3M Company, Albemarle Corporation, Asahi Kasei Corporation, Ascend Elements, Inc., BASF SE, BTR New Material Group Co., Ltd., EcoPro BM Co Ltd., Fujitsu Limited, Ganfeng Lithium Group Co., Ltd., JFE Chemical Corporation, Kureha Corporation, L&F CO., Ltd., LG Chem, Ltd., Lohum, Mitsubishi Chemical Corporation, NEI Corporation, Nichia Corporation, POSCO FUTURE M Co., Ltd., Resonac Holdings Corporation, SGL Carbon SE, SQM S.A., Sumitomo Metal Mining Co., Ltd., Tanaka Chemical Corporation, Tianqi Lithium Co., Ltd., TODA KOGYO CORP., UBE Corporation, UMICORE NV, and Xiamen Tmax Battery Equipments Limited. Actionable Recommendations for Industry Leaders

For decision-makers navigating the dynamic landscape of lithium-ion battery materials, strategic, actionable insights are imperative. First, a focus on continuous innovation is paramount. Investing in research and development, especially in areas like solid-state battery configurations and advanced composite materials, can facilitate breakthroughs that set new industry standards. Companies should prioritize collaborations with research institutions and technology partners to stay ahead of the curve.

Emphasis should also be placed on optimizing supply chains. As market segmentation indicates, material efficiency-from anode and cathode components to electrolytes and separators-is essential in driving down costs and enhancing performance. Industry leaders must look to integrate digital manufacturing and real-time monitoring systems that ensure quality and reduce waste throughout the production lifecycle. Additionally, adapting to regional regulatory frameworks plays a critical role in mitigating risks. Being proactive in regulatory compliance and anticipating shifts in environmental policies will secure long-term market sustainability.

Finally, a balanced approach towards market expansion is recommended. Tapping into emerging applications such as energy storage systems while reinforcing core segments like automotive and consumer electronics will diversify revenue streams and solidify market presence. With these actionable strategies, companies can confidently steer their operations in a future marked by innovation, efficiency, and robust market growth.

Conclusion

In summary, the landscape of lithium-ion battery materials is characterized by robust technological advancements, dynamic market segmentation, and significant regional differentiation. The convergence of targeted research, strategic investments, and evolving consumer demands has set the stage for a transformative era. By integrating diverse material types, optimizing battery chemistry, and leveraging advancements in processing forms, the industry is carving a path toward enhanced performance and sustainability.

Moreover, the complementary growth across key regions and the strategic deployment of resources by leading companies provide a solid foundation for future development. Navigating this complex environment requires a delicate balance between innovation and operational efficiency, a task that demands clear vision and active strategy adjustment. Ultimately, stakeholders who remain agile and forward-thinking will be best positioned to capitalize on the myriad opportunities this market has to offer.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rising demand for larger-scale battery applications in industrial and utility settings
      • 5.1.1.2. Proliferation of consumer electronics such as smartphones, laptops, and other portable devices
      • 5.1.1.3. Growth of electric vehicles accelerates the demand for lithium-ion battery materials and innovations
    • 5.1.2. Restraints
      • 5.1.2.1. Issues associated with the extraction and processing of raw materials for lithium-ion batteries
    • 5.1.3. Opportunities
      • 5.1.3.1. Development in smart battery management systems and leveraging IoT for performance monitoring
      • 5.1.3.2. Significant investments in sustainable lithium-ion battery materials
    • 5.1.4. Challenges
      • 5.1.4.1. Safety concerns associated with lithium-ion battery materials
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Type: Increasing significance of cathode material as it influences the voltage and capacity of the battery
    • 5.2.2. Battery Chemistry: Increasing demand for lithium iron phosphate batteries owing to safety,thermal stability and long cycle life
    • 5.2.3. Form: Proliferating demand for solid form of lithium-ion battery materials owing to safety and longevity
    • 5.2.4. Applications: Evolving utilization of lithium-ion battery materials in the automotive industry
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Lithium-ion Battery Materials Market, by Type

  • 6.1. Introduction
  • 6.2. Anode Material
  • 6.3. Cathode Material
  • 6.4. Electrolyte
  • 6.5. Separators

7. Lithium-ion Battery Materials Market, by Battery Chemistry

  • 7.1. Introduction
  • 7.2. Lithium Cobalt Oxide
  • 7.3. Lithium Iron Phosphate
  • 7.4. Lithium Manganese Oxide
  • 7.5. Lithium Nickel Cobalt Aluminum Oxide
  • 7.6. Lithium Nickel Manganese Cobalt Oxide

8. Lithium-ion Battery Materials Market, by Form

  • 8.1. Introduction
  • 8.2. Liquid
  • 8.3. Powder
  • 8.4. Solid

9. Lithium-ion Battery Materials Market, by Application

  • 9.1. Introduction
  • 9.2. Automotive
  • 9.3. Consumer Electronics
  • 9.4. Energy Storage Systems
  • 9.5. Industrial

10. Americas Lithium-ion Battery Materials Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific Lithium-ion Battery Materials Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa Lithium-ion Battery Materials Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
    • 13.3.1. Innovative LiMnO2 electrode technology offers sustainable, high-energy alternative to Ni-Co batteries for EVs
    • 13.3.2. Ascend Elements drives U.S. lithium-ion segment with sustainable, decarbonized cathode materials
    • 13.3.3. Innovative collaboration between NEO Battery Materials and INNOX eco-M to revolutionize sustainable silicon anodes for enhanced lithium-ion battery performance and durability
    • 13.3.4. Asahi Kasei's groundbreaking electrolyte innovation enhances lithium-ion battery performance, size, and cost-efficiency
    • 13.3.5. Metso unveils groundbreaking pCAM plant to enhance lithium-ion battery material production
    • 13.3.6. Arkema and ProLogium advance e-mobility through strategic partnership for next-gen lithium ceramic battery materials in France
    • 13.3.7. American Battery Technology Company pioneers scalable recycling of lithium-ion batteries
    • 13.3.8. Arkema's strategic acquisition of Proionic catalyzes innovation in sustainable lithium-ion battery materials
    • 13.3.9. Zeta Energy and Log9 Materials partner to drive Li-S battery innovation
    • 13.3.10. Orbia Fluor & Energy Materials expands electrolyte production for U.S. lithium-ion supply chain
    • 13.3.11. Innovative collaboration advances sustainable recycling in lithium-ion battery materials with eco-friendly electrode technology
    • 13.3.12. BASF and SK On embark on strategic collaboration to lead innovation in NA and APAC lithium-ion battery markets
    • 13.3.13. Birla Carbon's strategic acquisition of Nanocyl advances its leadership in lithium-ion battery materials and sustainability
    • 13.3.14. Redwood Materials' strategic acquisition of Redux Recycling strengthens EU presence and promotes sustainable battery supply chain expansion
  • 13.4. Strategy Analysis & Recommendation
    • 13.4.1. BASF SE
    • 13.4.2. UBE Corporation
    • 13.4.3. Fujitsu Limited

Companies Mentioned

  • 1. 3M Company
  • 2. Albemarle Corporation
  • 3. Asahi Kasei Corporation
  • 4. Ascend Elements, Inc.
  • 5. BASF SE
  • 6. BTR New Material Group Co., Ltd.
  • 7. EcoPro BM Co Ltd.
  • 8. Fujitsu Limited
  • 9. Ganfeng Lithium Group Co., Ltd.
  • 10. JFE Chemical Corporation
  • 11. Kureha Corporation
  • 12. L&F CO., Ltd.
  • 13. LG Chem, Ltd.
  • 14. Lohum
  • 15. Mitsubishi Chemical Corporation
  • 16. NEI Corporation
  • 17. Nichia Corporation
  • 18. POSCO FUTURE M Co., Ltd.
  • 19. Resonac Holdings Corporation
  • 20. SGL Carbon SE
  • 21. SQM S.A.
  • 22. Sumitomo Metal Mining Co., Ltd.
  • 23. Tanaka Chemical Corporation
  • 24. Tianqi Lithium Co., Ltd.
  • 25. TODA KOGYO CORP.
  • 26. UBE Corporation
  • 27. UMICORE NV
  • 28. Xiamen Tmax Battery Equipments Limited

LIST OF FIGURES

  • FIGURE 1. LITHIUM-ION BATTERY MATERIALS MARKET MULTI-CURRENCY
  • FIGURE 2. LITHIUM-ION BATTERY MATERIALS MARKET MULTI-LANGUAGE
  • FIGURE 3. LITHIUM-ION BATTERY MATERIALS MARKET RESEARCH PROCESS
  • FIGURE 4. LITHIUM-ION BATTERY MATERIALS MARKET SIZE, 2023 VS 2030
  • FIGURE 5. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, 2018-2030 (USD MILLION)
  • FIGURE 6. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY REGION, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 7. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 8. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2023 VS 2030 (%)
  • FIGURE 9. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 10. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2023 VS 2030 (%)
  • FIGURE 11. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 12. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2023 VS 2030 (%)
  • FIGURE 13. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 14. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2023 VS 2030 (%)
  • FIGURE 15. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 16. AMERICAS LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 17. AMERICAS LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 18. UNITED STATES LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY STATE, 2023 VS 2030 (%)
  • FIGURE 19. UNITED STATES LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY STATE, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 20. ASIA-PACIFIC LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 21. ASIA-PACIFIC LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 22. EUROPE, MIDDLE EAST & AFRICA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 23. EUROPE, MIDDLE EAST & AFRICA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 24. LITHIUM-ION BATTERY MATERIALS MARKET SHARE, BY KEY PLAYER, 2023
  • FIGURE 25. LITHIUM-ION BATTERY MATERIALS MARKET, FPNV POSITIONING MATRIX, 2023

LIST OF TABLES

  • TABLE 1. LITHIUM-ION BATTERY MATERIALS MARKET SEGMENTATION & COVERAGE
  • TABLE 2. UNITED STATES DOLLAR EXCHANGE RATE, 2018-2023
  • TABLE 3. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, 2018-2030 (USD MILLION)
  • TABLE 4. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 5. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 6. LITHIUM-ION BATTERY MATERIALS MARKET DYNAMICS
  • TABLE 7. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 8. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY ANODE MATERIAL, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 9. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY CATHODE MATERIAL, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 10. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY ELECTROLYTE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 11. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY SEPARATORS, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 12. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 13. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY LITHIUM COBALT OXIDE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 14. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY LITHIUM IRON PHOSPHATE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 15. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY LITHIUM MANGANESE OXIDE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 16. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY LITHIUM NICKEL COBALT ALUMINUM OXIDE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 17. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY LITHIUM NICKEL MANGANESE COBALT OXIDE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 18. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 19. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY LIQUID, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 20. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY POWDER, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 21. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY SOLID, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 22. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 23. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY AUTOMOTIVE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 24. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY CONSUMER ELECTRONICS, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 25. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY ENERGY STORAGE SYSTEMS, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 26. GLOBAL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY INDUSTRIAL, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 27. AMERICAS LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 28. AMERICAS LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 29. AMERICAS LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 30. AMERICAS LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 31. AMERICAS LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 32. ARGENTINA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 33. ARGENTINA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 34. ARGENTINA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 35. ARGENTINA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 36. BRAZIL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 37. BRAZIL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 38. BRAZIL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 39. BRAZIL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 40. CANADA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 41. CANADA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 42. CANADA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 43. CANADA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 44. MEXICO LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 45. MEXICO LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 46. MEXICO LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 47. MEXICO LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 48. UNITED STATES LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 49. UNITED STATES LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 50. UNITED STATES LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 51. UNITED STATES LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 52. UNITED STATES LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY STATE, 2018-2030 (USD MILLION)
  • TABLE 53. ASIA-PACIFIC LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 54. ASIA-PACIFIC LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 55. ASIA-PACIFIC LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 56. ASIA-PACIFIC LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 57. ASIA-PACIFIC LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 58. AUSTRALIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 59. AUSTRALIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 60. AUSTRALIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 61. AUSTRALIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 62. CHINA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 63. CHINA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 64. CHINA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 65. CHINA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 66. INDIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 67. INDIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 68. INDIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 69. INDIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 70. INDONESIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 71. INDONESIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 72. INDONESIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 73. INDONESIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 74. JAPAN LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 75. JAPAN LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 76. JAPAN LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 77. JAPAN LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 78. MALAYSIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 79. MALAYSIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 80. MALAYSIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 81. MALAYSIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 82. PHILIPPINES LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 83. PHILIPPINES LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 84. PHILIPPINES LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 85. PHILIPPINES LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 86. SINGAPORE LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 87. SINGAPORE LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 88. SINGAPORE LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 89. SINGAPORE LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 90. SOUTH KOREA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 91. SOUTH KOREA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 92. SOUTH KOREA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 93. SOUTH KOREA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 94. TAIWAN LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 95. TAIWAN LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 96. TAIWAN LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 97. TAIWAN LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 98. THAILAND LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 99. THAILAND LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 100. THAILAND LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 101. THAILAND LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 102. VIETNAM LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 103. VIETNAM LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 104. VIETNAM LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 105. VIETNAM LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 106. EUROPE, MIDDLE EAST & AFRICA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 107. EUROPE, MIDDLE EAST & AFRICA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 108. EUROPE, MIDDLE EAST & AFRICA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 109. EUROPE, MIDDLE EAST & AFRICA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 110. EUROPE, MIDDLE EAST & AFRICA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 111. DENMARK LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 112. DENMARK LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 113. DENMARK LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 114. DENMARK LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 115. EGYPT LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 116. EGYPT LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 117. EGYPT LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 118. EGYPT LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 119. FINLAND LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 120. FINLAND LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 121. FINLAND LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 122. FINLAND LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 123. FRANCE LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 124. FRANCE LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 125. FRANCE LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 126. FRANCE LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 127. GERMANY LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 128. GERMANY LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 129. GERMANY LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 130. GERMANY LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 131. ISRAEL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 132. ISRAEL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 133. ISRAEL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 134. ISRAEL LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 135. ITALY LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 136. ITALY LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 137. ITALY LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 138. ITALY LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 139. NETHERLANDS LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 140. NETHERLANDS LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 141. NETHERLANDS LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 142. NETHERLANDS LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 143. NIGERIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 144. NIGERIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 145. NIGERIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 146. NIGERIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 147. NORWAY LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 148. NORWAY LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 149. NORWAY LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 150. NORWAY LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 151. POLAND LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 152. POLAND LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 153. POLAND LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 154. POLAND LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 155. QATAR LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 156. QATAR LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 157. QATAR LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 158. QATAR LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 159. RUSSIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 160. RUSSIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 161. RUSSIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 162. RUSSIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 163. SAUDI ARABIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 164. SAUDI ARABIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 165. SAUDI ARABIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 166. SAUDI ARABIA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 167. SOUTH AFRICA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 168. SOUTH AFRICA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 169. SOUTH AFRICA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 170. SOUTH AFRICA LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 171. SPAIN LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 172. SPAIN LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 173. SPAIN LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 174. SPAIN LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 175. SWEDEN LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 176. SWEDEN LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 177. SWEDEN LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 178. SWEDEN LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 179. SWITZERLAND LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 180. SWITZERLAND LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 181. SWITZERLAND LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 182. SWITZERLAND LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 183. TURKEY LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 184. TURKEY LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 185. TURKEY LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 186. TURKEY LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 187. UNITED ARAB EMIRATES LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 188. UNITED ARAB EMIRATES LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 189. UNITED ARAB EMIRATES LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 190. UNITED ARAB EMIRATES LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 191. UNITED KINGDOM LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 192. UNITED KINGDOM LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY BATTERY CHEMISTRY, 2018-2030 (USD MILLION)
  • TABLE 193. UNITED KINGDOM LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY FORM, 2018-2030 (USD MILLION)
  • TABLE 194. UNITED KINGDOM LITHIUM-ION BATTERY MATERIALS MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 195. LITHIUM-ION BATTERY MATERIALS MARKET SHARE, BY KEY PLAYER, 2023
  • TABLE 196. LITHIUM-ION BATTERY MATERIALS MARKET, FPNV POSITIONING MATRIX, 2023