![]() |
市場調查報告書
商品編碼
1771467
5G航空市場規模、佔有率、趨勢分析報告:按通訊基礎設施、技術、連接類型、最終用途、地區、細分市場預測,2025-2030年5G In Aviation Market Size, Share & Trends Analysis Report By Communication Infrastructure, By Technology, By Connectivity Type, By End Use, By Region, And Segment Forecasts, 2025 - 2030 |
航空業5G市場摘要
預計2024年全球5G航空市場規模將達26.8億美元,預計在2025年至2030年間達到136.4億美元,複合年成長率達31.4%。受災地區快速恢復連接需求的不斷成長、非地面網路(NTN)生態系統的擴展以及輕量化、高吞吐量相位陣列天線的進步,推動該市場發展勢頭強勁。
各國政府和國防機構擴大使用機載5G系統進行緊急通訊。同時,對高空偽衛星(HAPS)和機繼電器5G中繼的投資正在加速偏遠和服務欠缺地區的數位化。小型天線系統的技術進步進一步提高了在商用和軍用飛機上整合5G功能的可行性。
快速部署連線的能力使機載 5G 成為災害管理和復原力規劃中的一項策略資產。然而,監管和空域認證的複雜性帶來了重大挑戰。國防和緊急服務通訊基礎設施需求的不斷成長為市場帶來了巨大的機會。地震、颶風、野火和海嘯等天災經常破壞地面通訊基礎設施並隔離受災地區。在這種情況下,無人機、飛機和 HAPS(高空偽衛星)上的機載 5G 平台可以快速重建高速網路。例如,在 2023 年土耳其和敘利亞地震期間,連接缺口阻礙了緊急協調,直到部署了臨時衛星和無人機通訊系統。在加州發生野火期間,攜帶通訊有效載荷的飛機使消防隊能夠了解情況並進行即時協調。
這些行動 5G 系統可以在地面網路故障時實現即時影片傳輸、GPS 協調和資料共用,並且越來越被視為國防機構、急救人員和人道主義組織的重要工具。
政府機構和私人企業正在加大對高空平台(HAPS)、衛星和其他機載平台的投資,以將行動連線擴展到地面網路的限制之外。這些網路節點(NTN)將使偏遠地區、海上地區或服務欠缺地區實現5G覆蓋,在災害應變、國防和農村寬頻存取方面發揮關鍵作用。例如,2025年5月,Space42的子公司Mira Aerospace在阿布達比開設了中東和北非地區首個高空平台站(HAPS)製造工廠。該中心佔地4500平方米,每年將生產20多架無人機,增強阿拉伯聯合大公國的航太主權能力,並透過先進的研發和商業化努力支持「2030國家太空戰略」。
同樣,愛立信於2024年9月加入了行動衛星服務協會(MSSA),舉措致力於透過天基系統推進直接到設備(D2D)、物聯網服務和NTN(新近地通訊)。 MSSA致力於透過3GPP標準,利用與行動裝置整合的L波段和S波段頻譜,建構一個全球NTN生態系統。這些發展反映了更廣泛的趨勢,即機載和軌道資產與地面基礎設施的整合。不斷擴展的NTN生態系統將重新定義航空連接,將5G通訊擴展到先前無法覆蓋的空域,支援動態機上通訊,並為國防、災害響應和遠端作戰提供關鍵任務服務。
國防部隊需要高頻寬、低延遲的鏈路來進行 ISR(情報、監視和偵察)、無人機作戰和戰術協調。應急機構還依賴即時情境察覺和在諸如地震和野火等危機期間的快速恢復連接。機載 5G繼電器和 HAPS 可以在地面網路受到威脅時在受影響區域建立行動通訊樞紐。例如,無人機和飛機上的輕型相位陣列天線可以在惡劣或受損環境中快速建立臨時 5G回程傳輸連結。 Space42 在阿布達比的 HAPS 設施的啟用標誌著國防重點技術創新的不斷發展,而愛立信參與 MSSA 則表明跨部門致力於建立全球可擴展的衛星行動網路。航太、電訊和國防技術的整合將在關鍵任務環境中釋放新的作戰韌性。
機載 5G 系統的部署面臨重大的監管障礙,尤其是在頻率許可、適航認證和跨境空域使用方面。高空衛星 (HAPS) 在平流層(約距地面 20 公里)運行,處於傳統航空和衛星法規之間的灰色地帶。例如,軟銀的 HAPS計劃因平流層飛行操作的管轄政策不明確以及國際電信聯盟框架內缺乏統一的頻率分配而遭遇延誤。在美國,所有基於無人機的系統都必須符合美國聯邦航空管理局第 91 部分(一般操作規則)或第 107 部分(針對小型無人機),而這些規定並非針對高吞吐量機載網路而製定。在國際上,由於許可要求和通訊有效載荷的標準化認證路徑不一致,部署變得更加複雜。這種監管碎片化阻礙了 NTN 平台的全球擴充性,導致延誤和成本超支。
5G In Aviation Market Summary
The global 5G in aviation market size was estimated at USD 2.68 billion in 2024 and is projected to reach USD 13.64 billion, growing at a CAGR of 31.4% from 2025 to 2030. The market is gaining momentum, driven by the rising need for rapid connectivity restoration in disaster zones, the expansion of non-terrestrial network (NTN) ecosystems, and advances in lightweight, high-throughput phased array antennas.
Governments and defense agencies increasingly use airborne 5G systems for emergency communications. At the same time, investments in HAPS (High-Altitude Pseudo-Satellites) and aircraft-based 5G relays are accelerating digital inclusion across remote and underserved regions. Technological progress in compact antenna systems further enhances the feasibility of integrating 5G capabilities into commercial and military aircraft.
The ability to rapidly deploy connectivity has made airborne 5G a strategic asset in disaster management and resilience planning. However, regulatory and airspace certification complexities pose significant challenges. Growing demand from defense and emergency service communication infrastructure represents a major opportunity for the market. Natural disasters such as earthquakes, hurricanes, wildfires, and tsunamis often damage terrestrial communication infrastructure, leaving affected regions isolated. In such scenarios, airborne 5G platforms mounted on drones, aircraft, or HAPS (High-Altitude Pseudo-Satellites) can quickly re-establish high-speed networks. For example, connectivity gaps hindered emergency coordination after the 2023 earthquake in Turkey and Syria until temporary satellite and UAV-based communication systems were deployed. Similarly, during wildfires in California, aircraft equipped with communication payloads enabled situational awareness and real-time coordination among firefighting teams
These mobile 5G systems are increasingly considered critical tools for defense agencies, first responders, and humanitarian organizations, enabling real-time video transmission, GPS coordination, and data sharing when terrestrial networks are down.
Governments and private players are increasingly investing in HAPS, satellites, and other aerial platforms to extend mobile connectivity beyond the limitations of terrestrial networks. These NTNs enable 5G coverage in remote, maritime, or underserved areas and play a critical role in disaster response, defense, and rural broadband access. For instance, in May 2025, Space42's subsidiary Mira Aerospace opened MENA's first High Altitude Platform Stations (HAPS) manufacturing facility in Abu Dhabi. The 4,500 m2 center will produce over 20 UAVs annually, boosting the UAE's sovereign aerospace capabilities and supporting the National Space Strategy 2030 with advanced R&D and commercialization efforts.
Similarly, in September 2024, Ericsson joined the Mobile Satellite Services Association (MSSA), an initiative focused on advancing Direct-to-Device (D2D), IoT services, and NTNs through space-based systems. MSSA is working to build a global NTN ecosystem using L- and S-band spectrum integrated with mobile devices via 3GPP standards. These developments reflect a broader shift toward integrating aerial and orbital assets into terrestrial infrastructure. The expanding NTN ecosystem redefines aviation connectivity, extending 5G coverage to previously unreachable airspaces, supporting dynamic in-flight communication, and enabling mission-critical services in defense, disaster response, and remote operations.
Defense forces require high-bandwidth, low-latency links for ISR (intelligence, surveillance, and reconnaissance), UAV operations, and tactical coordination. Also, emergency agencies depend on real-time situational awareness and rapid connectivity restoration during crises such as earthquakes or wildfires. Airborne 5G relays and HAPS can establish mobile communication hubs over affected zones when terrestrial networks are compromised. For instance, deploying lightweight phased-array antennas on UAVs and aircraft enables quick setup of temporary 5G backhaul links in hostile or damaged environments. The opening of Space42's HAPS facility in Abu Dhabi underlines growing defense-focused innovation, while Ericsson's involvement in MSSA shows cross-sector commitment to building globally scalable, satellite-enabled mobile networks. This convergence of aerospace, telecom, and defense technologies unlocks new operational resilience across mission-critical environments.
The deployment of airborne 5G systems faces significant regulatory hurdles, especially concerning spectrum licensing, airworthiness certification, and cross-border airspace usage. High-Altitude Pseudo-Satellites (HAPS), which operate in the stratosphere (approximately 20 km above ground), fall into a grey zone between traditional aviation and satellite regulations. For example, SoftBank's HAPS project encountered delays due to unclear jurisdictional policies on stratospheric flight operations and a lack of harmonized frequency allocations under ITU frameworks. In the U.S., all UAV-based systems require compliance with FAA Part 91 (general operating rules) or Part 107 (for small unmanned aircraft), which were not developed with high-throughput airborne networks in mind. Internationally, inconsistent licensing requirements and a standardized certification path for communication payloads further complicate deployment. This regulatory fragmentation hampers the global scalability of NTN platforms, causing extended
delays and cost overruns for operators and technology developers alike.
Global 5G In Aviation Market Report Segmentation
This report forecasts revenue growth at the global, regional, and country levels and provides an analysis of the latest industry trends in each of the sub-segments from 2018 to 2030. For this study, Grand View Research has segmented the global 5G in aviation market report based on communication infrastructure, technology, connectivity type, end use, and region: