![]() |
市場調查報告書
商品編碼
1799103
全球人工智慧(AI)伺服器市場Artificial Intelligence (AI) Servers |
※ 本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。
到 2030 年,全球人工智慧 (AI) 伺服器市場規模將達到 846 億美元
全球人工智慧 (AI) 伺服器市場規模預計在 2024 年達到 580 億美元,預計 2024 年至 2030 年期間的複合年成長率為 6.5%,到 2030 年將達到 846 億美元。本報告分析的細分市場之一——AI 訓練伺服器,預計其複合年成長率將達到 7.3%,到分析期結束時規模將達到 613 億美元。 AI 推理伺服器細分市場在分析期間的複合年成長率預計為 4.6%。
美國市場規模估計為 153 億美元,中國市場預計複合年成長率為 6.2%
美國人工智慧 (AI) 伺服器市場規模預計在 2024 年達到 153 億美元。作為世界第二大經濟體,中國預計到 2030 年市場規模將達到 135 億美元,在 2024-2030 年的分析期內,複合年成長率為 6.2%。其他值得關注的區域市場包括日本和加拿大,預計在分析期間內,這兩個市場的複合年成長率分別為 5.9% 和 5.5%。在歐洲,預計德國市場的複合年成長率為 5.1%。
全球人工智慧 (AI) 伺服器市場 - 主要趨勢和促進因素摘要
為什麼人工智慧伺服器是數據驅動世界中智慧運算的支柱
人工智慧伺服器已成為智慧運算時代的基礎設施,提供應對資料爆炸性成長和日益複雜的人工智慧工作負載所需的處理能力。隨著人工智慧在醫療、金融、製造、汽車和網路安全等行業的應用不斷擴展,對能夠支援深度學習、機器學習和神經網路訓練的高效能伺服器的需求也日益迫切。與傳統伺服器不同,人工智慧伺服器採用先進的架構構建,整合了 GPU、TPU、高速記憶體和互連,旨在加速並行處理任務。這些伺服器支援大規模語言模型、電腦視覺系統和預測分析引擎的即時推理和高吞吐量訓練。利用人工智慧進行詐欺檢測、個人化醫療、語音辨識和自主系統等任務的公司依賴這些專用伺服器的強大運算能力。此外,巨量資料和邊緣人工智慧應用的興起正在推動對分散式人工智慧基礎設施的需求,在這些基礎設施中,資料不僅必須在集中式資料中心處理,還必須在邊緣位置處理。人工智慧伺服器在雲端和本地部署中都發揮著核心作用,使企業能夠靈活、安全、高效地管理工作負載。它們對於支援 TensorFlow、PyTorch 和 ONNX 等需要大量運算資源的現代開發框架也至關重要。隨著企業擴大將人工智慧視為競爭優勢,對人工智慧最佳化伺服器的投資也在加速成長。人工智慧日益融入國家數位轉型策略、智慧城市發展和自主技術生態系統,進一步凸顯了其重要性,使其成為全球數位經濟不可或缺的一部分。
架構創新和元件進步如何推動伺服器效能?
人工智慧伺服器的演進源自於伺服器架構和元件技術的不斷創新,從而顯著提升了效能、可擴展性和能效。現代人工智慧伺服器的核心是高密度 GPU 配置,其中許多配置採用 NVIDIA A100、H100、AMD Instinct 或客製化人工智慧加速器,提供數千個核心,能夠以驚人的速度執行平行運算。這些元件通常與多插槽 CPU、高頻寬DDR5 和 HBM 記憶體以及 PCIe Gen 5 介面搭配使用,確保計算單元之間的快速資料傳輸。 NVLink、CXL 和 NVSwitch 技術整合在一起,以促進伺服器內部的無縫互連,消除延遲瓶頸並提高工作負載吞吐量。由於人工智慧工作負載需要快速處理和儲存海量資料集,因此高速 NVMe SSD 和儲存級內存在伺服器配置中越來越受歡迎。液冷和浸沒式技術等冷卻技術也正在部署,以管理高密度運算環境產生的高熱量。如今,許多人工智慧伺服器在設計時都考慮到了模組化,使企業能夠擴展其基礎架構以滿足運算需求,同時最佳化功耗。此外,人工智慧伺服器的設計也日益針對特定工作負載進行最佳化,例如用於訓練大規模自然語言處理模型的微調模型,或用於推理和即時分析的模型。供應商正在將人工智慧主導的遠端檢測和管理軟體融入其伺服器生態系統,以提供即時監控、預測性維護和效能參數的自動調整。這種硬體與智慧軟體的融合,正在將人工智慧伺服器轉變為適應性強、可自我最佳化的平台,以滿足下一代智慧應用的獨特需求。
產業特定需求、雲端趨勢和部署模式將如何影響市場需求?
人工智慧伺服器的需求正受到特定產業需求、雲端運算的快速擴張以及部署模式偏好演進的顯著影響。在醫療保健等領域,人工智慧伺服器支援診斷影像分析、藥物研發和患者預後預測等關鍵應用。在金融領域,高頻交易、詐欺檢測和信用評分依賴強大的後端基礎設施支援的快速主導決策。汽車產業依靠人工智慧伺服器,使用來自模擬環境和真實駕駛影像的大量資料集來訓練自動駕駛演算法。同時,在零售和電子商務領域,客戶行為分析和建議引擎也越來越依賴針對人工智慧最佳化的伺服器基礎架構。這些多樣化的應用程式正在推動對通用和特定產業伺服器配置的需求。雲端服務供應商透過提供人工智慧即服務 (AI-as-a-Service),在擴展人工智慧功能的存取方面發揮關鍵作用,這使得企業無需擁有實體基礎設施即可使用人工智慧伺服器。隨著混合雲和多重雲端策略的出現,這種模式得到了顯著發展,這些策略可在公有、私有和邊緣環境中分配工作負載。因此,AI 伺服器供應商正在設計雲端原生、容器最佳化的硬體,並支援 Kubernetes 和 Docker 等框架以實現靈活部署。邊緣運算也正在影響設計,推動可部署在遠端或移動位置的緊湊型 AI 伺服器的發展。這些邊緣伺服器使即時決策更接近資料來源,從而降低延遲和頻寬成本。隨著 AI 滲透到越來越多的產業和業務環境中,AI 伺服器市場也日益多樣化,為雲端超大規模資料中心業者、企業資料中心和工業邊緣應用提供了豐富的解決方案。
是什麼推動了全球AI伺服器市場加速成長?
人工智慧伺服器市場的成長受到多種協同力量的推動,這些力量反映了全球向智慧主導營運、自動化和以數據為中心的創新的轉變。人工智慧在商業營運、公共服務、科學研究和國防領域的廣泛應用,對運算能力的需求持續成長,而只有針對人工智慧最佳化的伺服器才能滿足這一需求。最大的促進因素之一是數位設備、物聯網感測器、社交媒體平台和企業應用程式產生的數據的指數級成長。人工智慧伺服器提供了即時處理這些數據並獲得可操作洞察所需的基礎設施。大規模語言模型(例如用於生成式人工智慧和對話介面的語言模型)的快速開發和部署,也推動了對能夠處理數兆個參數的超高效能訓練伺服器的需求。世界各國政府正在投資人工智慧超級運算基礎設施,以增強國家在科學、醫療和安全方面的能力,這進一步促進了市場擴張。晶片、記憶體和互連技術的進步正在降低每個運算單元的成本,使中小企業更容易獲得人工智慧伺服器。此外,推動智慧製造、工業4.0和智慧城市基礎設施發展的舉措正在將人工智慧伺服器嵌入物理環境,為機器人、自動化和預測維修系統動力來源。受網路威脅日益複雜化的推動,人工智慧伺服器正被用於運行需要快速自適應回應的威脅偵測演算法。半導體公司、伺服器製造商和雲端服務供應商之間的策略合作正在加速創新和市場滲透。隨著人工智慧成為全球經濟的戰略重點,人工智慧伺服器市場預計將繼續強勁成長,並發展成為未來的智慧運算引擎。
部分
類型(AI訓練伺服器、AI推理伺服器)、處理單元(基於GPU的處理單元、非基於GPU的處理單元)
人工智慧整合
我們正在利用檢驗的專家內容和人工智慧工具來改變市場和競爭情報。
Global 特定產業產業SLM 的典型規範,而是建立了一個從世界各地專家收集的內容庫,包括影片錄影、部落格、搜尋引擎研究以及大量的公司、產品/服務和市場數據。
關稅影響係數
全球產業分析師根據公司總部所在國家、製造地和進出口(成品和原始設備製造商)情況預測其競爭地位的變化。這種複雜而多面的市場動態預計將以多種方式影響競爭對手,包括銷貨成本(COGS) 上升、盈利下降、供應鏈重組以及其他微觀和宏觀市場動態。
Global Artificial Intelligence (AI) Servers Market to Reach US$84.6 Billion by 2030
The global market for Artificial Intelligence (AI) Servers estimated at US$58.0 Billion in the year 2024, is expected to reach US$84.6 Billion by 2030, growing at a CAGR of 6.5% over the analysis period 2024-2030. AI Training Server, one of the segments analyzed in the report, is expected to record a 7.3% CAGR and reach US$61.3 Billion by the end of the analysis period. Growth in the AI Inference Server segment is estimated at 4.6% CAGR over the analysis period.
The U.S. Market is Estimated at US$15.3 Billion While China is Forecast to Grow at 6.2% CAGR
The Artificial Intelligence (AI) Servers market in the U.S. is estimated at US$15.3 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$13.5 Billion by the year 2030 trailing a CAGR of 6.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 5.9% and 5.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 5.1% CAGR.
Global Artificial Intelligence (AI) Servers Market - Key Trends & Drivers Summarized
Why Are AI Servers the Backbone of Intelligent Computing in a Data-Driven World?
Artificial Intelligence servers have emerged as foundational infrastructure in the era of intelligent computing, enabling the processing power required to handle the exponential growth in data and the increasing complexity of AI workloads. As AI adoption expands across industries such as healthcare, finance, manufacturing, automotive, and cybersecurity, the need for high-performance servers capable of supporting deep learning, machine learning, and neural network training has become critical. Unlike conventional servers, AI servers are built with advanced architectures that integrate GPUs, TPUs, high-speed memory, and interconnects designed to accelerate parallel processing tasks. These servers facilitate real-time inferencing and high-throughput training of large language models, computer vision systems, and predictive analytics engines. Organizations leveraging AI for tasks like fraud detection, personalized medicine, speech recognition, and autonomous systems rely on the massive computational capabilities of these specialized servers. Furthermore, the rise of big data and edge AI applications has intensified the demand for distributed AI infrastructure, where data needs to be processed not only in centralized data centers but also across edge locations. AI servers are central to both cloud and on-premise deployments, giving enterprises the flexibility to manage workloads securely and efficiently. They are also crucial in supporting modern development frameworks such as TensorFlow, PyTorch, and ONNX, which require extensive computational resources. As businesses increasingly view AI as a competitive advantage, investments in AI-optimized servers are accelerating. Their importance is further underscored by the rising integration of AI in national digital transformation strategies, smart city development, and autonomous technology ecosystems, making them indispensable to the global digital economy.
How Are Architectural Innovations and Component Advancements Driving Server Performance?
The evolution of AI servers is being propelled by continuous innovation in server architecture and component technologies, allowing for vastly improved performance, scalability, and energy efficiency. At the heart of modern AI servers are high-density GPU configurations, many featuring NVIDIA A100, H100, AMD Instinct, or custom AI accelerators that deliver thousands of cores capable of executing parallel computations at blistering speeds. These components are often paired with multi-socket CPUs, high-bandwidth DDR5 and HBM memory, and PCIe Gen 5 interfaces to ensure rapid data movement between compute units. NVLink, CXL, and NVSwitch technologies are being integrated to facilitate seamless interconnectivity within the server, eliminating latency bottlenecks and enhancing workload throughput. AI workloads require massive datasets to be processed and stored quickly, which is why high-speed NVMe SSDs and storage-class memory are being adopted widely in server configurations. Cooling innovations such as liquid cooling and immersion techniques are also being implemented to manage the intense heat generated by high-density computing environments. Many AI servers are now designed with modularity in mind, allowing enterprises to scale their infrastructure based on computational needs while optimizing power consumption. Furthermore, AI server designs are becoming increasingly optimized for specific workloads, with some models fine-tuned for training large-scale natural language processing models and others geared toward inferencing or real-time analytics. Vendors are embedding AI-driven telemetry and management software within server ecosystems to provide real-time monitoring, predictive maintenance, and automated tuning of performance parameters. This convergence of hardware and intelligent software is transforming AI servers into adaptive, self-optimizing platforms capable of meeting the unique demands of next-generation intelligent applications.
How Do Industry-Specific Needs, Cloud Trends, and Deployment Models Influence Market Demand?
The demand for AI servers is being heavily shaped by sector-specific requirements, the rapid expansion of cloud computing, and evolving preferences in deployment models. In sectors like healthcare, AI servers support critical applications such as diagnostic imaging analysis, drug discovery, and patient outcome prediction, all of which require high computational precision and data privacy. In the financial sector, high-frequency trading, fraud detection, and credit scoring rely on rapid AI-driven decision-making enabled by powerful backend infrastructure. The automotive industry is leveraging AI servers to train autonomous driving algorithms using massive datasets from simulation environments and real-world driving footage. Meanwhile, in retail and e-commerce, customer behavior analytics and recommendation engines are increasingly dependent on AI-optimized server infrastructure. These varying applications drive demand for both general-purpose and industry-specific server configurations. Cloud service providers are playing a pivotal role in expanding access to AI capabilities by offering AI-as-a-service, which allows organizations to utilize AI servers without owning physical infrastructure. This model has grown significantly with the advent of hybrid and multi-cloud strategies, where workloads are distributed across public, private, and edge environments. AI server vendors are therefore designing hardware that is cloud-native and container-optimized, supporting frameworks like Kubernetes and Docker for flexible deployment. Edge computing is also influencing design, prompting the development of compact AI servers that can be deployed in remote or mobile locations. These edge servers enable real-time decision-making close to data sources, reducing latency and bandwidth costs. As AI permeates more industries and operational environments, the market for AI servers is diversifying, with solutions tailored for cloud hyperscalers, enterprise data centers, and industrial edge applications alike.
What Is Fueling the Accelerated Growth of the AI Server Market Globally?
The growth in the AI server market is driven by several synergistic forces that reflect a global transition toward intelligence-led operations, automation, and data-centric innovation. The widespread adoption of AI in business operations, public services, scientific research, and defense is creating a relentless demand for computational power that only AI-optimized servers can meet. One of the most significant drivers is the exponential growth of data generated by digital devices, IoT sensors, social media platforms, and enterprise applications. AI servers provide the necessary infrastructure to process this data in real time and derive actionable insights. The surge in development and deployment of large language models, such as those used in generative AI and conversational interfaces, is also fueling demand for ultra-high-performance training servers that can handle trillions of parameters. Governments around the world are investing in AI supercomputing infrastructure to enhance national capabilities in science, healthcare, and security, contributing to market expansion. Technological advances in chips, memory, and interconnects are reducing the cost per compute unit, making AI servers more accessible to small and mid-sized businesses. Moreover, initiatives promoting smart manufacturing, Industry 4.0, and smart city infrastructure are embedding AI servers into physical environments where they power robotics, automation, and predictive maintenance systems. The growing sophistication of cyber threats is another factor, as AI servers are used to run threat detection algorithms that require rapid and adaptive responses. Strategic collaborations between semiconductor firms, server manufacturers, and cloud providers are accelerating innovation and market penetration. As AI becomes a strategic priority across the global economy, the AI server market is expected to continue expanding at a robust pace, evolving as the computational engine of the intelligent future.
SCOPE OF STUDY:
The report analyzes the Artificial Intelligence (AI) Servers market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Type (AI Training Server, AI Inference Server); Processing Unit (GPU-based Processing Unit, Non-GPU-based Processing Unit)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 34 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.