![]() |
市場調查報告書
商品編碼
1747681
全球醫療設備人工智慧/機器學習市場Artificial Intelligence / Machine Learning in Medical Devices |
※ 本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。
預計到 2030 年,全球醫療設備人工智慧/機器學習市場規模將達到 140 億美元
全球人工智慧/機器學習醫療設備市場規模預計在2024年為47億美元,預計到2030年將達到140億美元,2024年至2030年的複合年成長率為19.8%。人工智慧/機器學習系統/硬體是本報告分析的細分市場之一,預計其複合年成長率為18.2%,到分析期結束時規模將達到88億美元。軟體即醫療設備細分市場在分析期間的複合年成長率預計為22.8%。
美國市場規模估計為 12 億美元,中國市場預計複合年成長率為 18.8%
美國醫療設備領域的人工智慧/機器學習市場規模預計在2024年達到12億美元。預計到2030年,作為世界第二大經濟體的中國市場規模將達到22億美元,在2024-2030年的分析期間內,複合年成長率為18.8%。其他值得關注的區域市場包括日本和加拿大,預計在分析期間內,這兩個市場的複合年成長率分別為18.0%和17.3%。在歐洲,預計德國市場的複合年成長率約為14.7%。
全球醫療設備市場中的人工智慧/機器學習—主要趨勢和促進因素摘要
為什麼人工智慧和機器學習將改變醫療設備的性能、實用性和設計?
人工智慧 (AI) 和機器學習 (ML) 正在重新定義醫療設備的功能,使其能夠跨多個臨床學科進行即時數據分析、預測性診斷和自適應治療性介入。透過將智慧演算法嵌入硬體平台,醫療設備正從被動工具演變為主動決策支援和自動化系統。 AI/ML 整合如今已成為數位健康轉型的核心,能夠提高臨床準確性、提升工作流程效率並提供個人化醫療服務。
機器學習驅動的診斷設備可以快速分析影像、波形和感測器數據,從而檢測異常情況、優先處理危重病例並減少診斷的變異性。例如,在放射學領域,人工智慧驅動的影像處理系統可以檢測早期腫瘤、對骨折進行分類並分割解剖結構,其精度堪比人類增強;而機器學習驅動的穿戴式設備和植入式設備則可以持續監測心電圖、血糖濃度和血氧飽和度等生理參數,以預測病情惡化、標記異常值並實現預防性護理干預。
在治療應用中,AI 演算法支援設備導航手術、劑量最佳化和封閉回路型刺激系統。機器人輔助手術平台利用機器學習 (ML) 來最佳化運動控制並即時繪製解剖細微差別。 AI 驅動的輸液幫浦和神經調節設備可根據患者特定的回饋迴路動態調整治療方法。隨著監管機構批准越來越多核准AI/ML 的軟體即醫療設備(SaMD) 解決方案,智慧型裝置功能正成為臨床的必要事項,而非競爭的噱頭。
演算法檢驗、資料生態系統和邊緣 AI 如何推動醫療設備中 AI/ML 的應用?
演算法檢驗和模型透明度是醫療保健領域人工智慧獲得信任和採用的基礎。開發者正在投資大型多中心訓練資料集和真實世界證據 (RWE),以確保演算法在不同患者屬性和臨床環境中的通用性。聯邦學習和可解釋人工智慧 (XAI) 等技術正日益普及,因為它們能夠在不損害資料隱私或可解釋性的情況下持續改進模型。包括 FDA 在內的監管機構正在建立自適應框架,以批准部署後可核准的機器學習演算法,從而支援更安全、生命週期可管理的創新。
數據整合正在進一步加速人工智慧/機器學習在醫療設備上的部署。如今,醫療設備已與雲端平台、醫院資訊系統 (HIS)、電子健康記錄(EHR) 和穿戴式生態系統連接,將感測器資料情境化,並提升臨床相關性。 HL7 FHIR 等互通性標準正在促進跨平台資料交換,使人工智慧演算法能夠從多模態資料來源中獲取洞察。這些洞察不僅提高了診斷和治療的準確性,也有助於患者的長期管理。
邊緣人工智慧(Edge AI,將機器學習模型直接部署到設備上)是延遲敏感型應用(例如照護現場診斷、可攜式超音波和用於遠端監控的穿戴式設備)的關鍵推動因素。透過最大限度地減少對持續雲端連線的依賴,邊緣人工智慧可確保低頻寬和分散式環境中的回應能力、資料隱私和可用性。更小的處理器尺寸、低功耗運算的進步以及嵌入式機器學習晶片組正在支援能夠即時自主決策的智慧、自足式醫療設備的發展。
哪些臨床領域和地理市場正在推動醫療設備中 AI/ML 的應用?
由於影像強度高、資料複雜且診斷精準度高,放射科、心臟科、神經科和腫瘤科是人工智慧/機器主導醫療設備應用最先進的領域。醫院和影像中心正在部署人工智慧超音波、核磁共振、CT 和 PET 系統,以實現工作流程自動化,縮短從掃描到診斷的時間,並減輕放射科負擔。在循環系統,人工智慧心電圖監測儀、穿戴式心律不整檢測器和心臟衰竭預測系統正在改善慢性疾病監測和風險分層。
手術機器人、麻醉監護和重症患者監護系統正在整合機器學習演算法,以最佳化術中決策、人工呼吸器管理和術後恢復路徑。在消費者健康和居家照護領域,智慧血糖儀、數位聽診器和跌倒偵測穿戴裝置等人工智慧設備正在彌合持續照護的差距,並實現可擴展的慢性病管理。牙科和眼科設備也正在整合人工智慧,用於影像分析、治療計畫和風險檢測,不斷拓展應用的邊界。
北美在人工智慧/機器學習醫療設備領域佔據主導地位,這得益於早期監管核准、強大的數位醫療基礎設施以及人工智慧新興企業和醫療科技巨頭的堅實基礎。緊隨其後的是歐洲,其重點關注符合倫理道德的人工智慧、符合資料隱私保護規範 (GDPR) 以及公私合作創新框架。亞太地區正在快速應用人工智慧/機器學習,尤其是在中國、日本、韓國和印度。這些地區的政府投資、數位轉型挑戰以及大量尚未開發的患者資料集正在加速人工智慧/機器學習的整合。拉丁美洲、中東和非洲的成長預計將受到行動診斷、遠端醫療連接設備以及公共衛生基礎設施現代化的推動。
監管標準、經營模式和臨床整合策略如何改變競爭格局?
全球法規結構正在不斷發展,以適應支援人工智慧/機器學習 (AI/ML) 的設備的獨特生命週期。監管機構正在發布有關演算法透明度、真實世界檢驗和變更管理的指南,以適應持續學習模型。美國食品藥物管理局 (FDA) 的人工智慧/機器學習醫療軟體行動計畫和歐盟醫療器材法規 (MDR) 分類標準正在幫助定義安全且可重複部署的路徑。這些框架鼓勵早期人工智慧開發者將監管策略納入其產品設計的核心。
經營模式正轉向人工智慧即服務、基於訂閱的分析和基於結果的合約。設備製造商正在將人工智慧模組作為差異化附加元件,為醫院提供預測洞察、工作流程效率和診斷平台。與雲端服務供應商、電子病歷 (EHR) 供應商和臨床人工智慧新興企業建立策略合作夥伴關係,使醫療科技公司能夠擴展其人工智慧/機器學習整合,而無需在內部重建全端功能。主導的診斷和分診工具的報銷策略正在興起,進一步支持其商業可行性。
成功的應用取決於無縫的臨床整合。開發人員專注於直覺的使用者介面、臨床醫生的環路控制以及與現有工作流程的整合,以避免警報疲勞和工作流程中斷。培訓計劃、真實案例研究和上市後監測系統對於建立臨床醫生的信任和確保安全應用至關重要。隨著競爭加劇,人工智慧設備的差異化將越來越不僅取決於演算法的複雜程度,還取決於臨床相關性、互通性和監管敏捷性。
哪些因素將推動醫療設備市場 AI/ML 的成長?
受醫療保健數位化程度不斷提高、患者數據不斷成長以及臨床對準確性、自動化和決策支援需求的推動,醫療設備的人工智慧/機器學習市場正在快速成長。運算能力、數據可用性和演算法成熟度的整合,使醫療設備成為智慧化的情境感知工具,在診斷、監測和治療方面主動協助臨床醫生。
邊緣人工智慧、可解釋演算法和監管框架的進步,正在使人工智慧設備更加安全、擴充性且具有商業性可行性。隨著臨床工作流程要求在照護端獲得切實可行的洞察,以及支付方推動基於價值的治療結果,智慧醫療設備正與醫療保健系統轉型的更廣泛目標相契合。
未來將取決於人工智慧設備如何有效融入臨床決策,如何平衡創新與安全,以及如何在患者治療效果方面取得顯著改善。隨著醫療設備從被動儀器發展成為認知協作者,人工智慧/機器學習能否定義自適應、個人化、數據主導醫療服務的下一個前沿?
部分
產品類型(系統/硬體、醫療設備軟體);臨床領域(放射學、心臟病學、血液學、其他臨床領域)
關稅影響係數
全球產業分析師根據公司總部所在國家、製造地、進出口(成品和原始OEM)來預測其競爭地位的變化。這種複雜且多面向的市場動態預計將以多種方式影響競爭對手,包括人為提高銷貨成本、盈利下降、供應鏈重組以及其他微觀和宏觀市場動態。
全球產業分析師密切關注來自全球頂尖首席經濟學家(14,949位)、智庫(62家)以及貿易和產業協會(171家)的專家的意見,以評估其對生態系統的影響並應對新的市場現實。我們追蹤了來自每個主要國家的專家和經濟學家對關稅及其對本國影響的看法。
全球產業分析師預計,這場動盪將在未來2-3個月內逐漸平息,新的世界秩序將更加清晰地建立。全球產業分析師正在即時追蹤這些事態發展。
2025年4月:談判階段
在4月的報告中,我們將探討關稅對全球整體市場的影響,並提供區域市場調整。我們的預測是基於歷史數據和不斷變化的市場影響因素。
2025年7月:最終關稅調整
在各國宣布最終重置後,客戶將在 7 月收到免費更新,最終更新將包含明確的關稅影響分析。
相互和雙邊貿易及關稅影響分析:
美國<>中國<>墨西哥<>加拿大<>歐盟<>日本<>印度<>其他176個國家
領先的產業經濟學家:全球產業分析師知識庫追蹤了 14,949 位經濟學家,其中包括來自民族國家、智庫、貿易和產業協會、大型企業以及各領域專家的最具影響力的首席經濟學家,他們共用了這場前所未有的全球經濟狀況模式轉移的影響。我們超過 16,491 份報告大多遵循基於里程碑的兩階段發布計劃。
Global Artificial Intelligence / Machine Learning in Medical Devices Market to Reach US$14.0 Billion by 2030
The global market for Artificial Intelligence / Machine Learning in Medical Devices estimated at US$4.7 Billion in the year 2024, is expected to reach US$14.0 Billion by 2030, growing at a CAGR of 19.8% over the analysis period 2024-2030. AI / ML System / Hardware, one of the segments analyzed in the report, is expected to record a 18.2% CAGR and reach US$8.8 Billion by the end of the analysis period. Growth in the Software-As-A Medical Device segment is estimated at 22.8% CAGR over the analysis period.
The U.S. Market is Estimated at US$1.2 Billion While China is Forecast to Grow at 18.8% CAGR
The Artificial Intelligence / Machine Learning in Medical Devices market in the U.S. is estimated at US$1.2 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.2 Billion by the year 2030 trailing a CAGR of 18.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 18.0% and 17.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 14.7% CAGR.
Global Artificial Intelligence / Machine Learning in Medical Devices Market - Key Trends & Drivers Summarized
Why Are AI and Machine Learning Transforming the Performance, Utility, and Design of Medical Devices?
Artificial Intelligence (AI) and Machine Learning (ML) are redefining the capabilities of medical devices, enabling real-time data analysis, predictive diagnostics, and adaptive therapeutic interventions across multiple clinical disciplines. By embedding intelligent algorithms into hardware platforms, medical devices are evolving from passive tools into active decision-support and automation systems. AI/ML integration is now central to digital health transformation, offering enhanced clinical accuracy, workflow efficiency, and personalized care delivery.
Diagnostic devices leveraging ML can rapidly analyze imaging, waveform, or sensor data to detect anomalies, prioritize critical cases, and reduce diagnostic variability. In radiology, for instance, AI-augmented imaging systems detect early-stage tumors, classify fractures, and segment anatomical structures with precision that rivals or augments human interpretation. Meanwhile, ML-driven wearable and implantable devices continuously monitor physiological parameters-such as ECG, glucose levels, or oxygen saturation-to predict deterioration, flag outliers, and enable preemptive care interventions.
In therapeutic applications, AI algorithms support device-guided surgery, dosage optimization, and closed-loop stimulation systems. Robotic-assisted surgical platforms use ML to refine motion control and map anatomical nuances in real-time. AI-powered infusion pumps and neuromodulation devices adjust treatment regimens dynamically based on patient-specific feedback loops. As regulatory bodies approve a growing number of AI/ML-enabled software as a medical device (SaMD) solutions, intelligent device functionality is becoming a clinical imperative rather than a competitive novelty.
How Are Algorithm Validation, Data Ecosystems, and Edge AI Enhancing Adoption of AI/ML in Medical Devices?
Algorithm validation and model transparency are foundational to trust and adoption in medical AI. Developers are investing in large-scale, multi-institutional training datasets and real-world evidence (RWE) to ensure algorithm generalizability across patient demographics and clinical settings. Techniques such as federated learning and explainable AI (XAI) are gaining traction, enabling continuous model improvement without compromising data privacy or interpretability. Regulatory agencies, including the FDA, are establishing adaptive frameworks to approve ML algorithms that evolve post-deployment-supporting safer, lifecycle-managed innovation.
Data integration is further accelerating AI/ML deployment across the device landscape. Medical devices now interface with cloud platforms, hospital information systems (HIS), electronic health records (EHR), and wearable ecosystems to contextualize sensor data and enhance clinical relevance. Interoperability standards such as HL7 FHIR are facilitating cross-platform data exchange, allowing AI algorithms to draw insights from multimodal sources. These insights not only improve diagnostic and therapeutic precision but also contribute to longitudinal patient management.
Edge AI-the deployment of machine learning models directly on-device-is a critical enabler for latency-sensitive applications such as point-of-care diagnostics, portable ultrasound, or remote monitoring wearables. By minimizing reliance on continuous cloud connectivity, edge AI ensures responsiveness, data privacy, and operability in low-bandwidth or decentralized environments. Miniaturization of processors, advances in low-power computing, and embedded ML chipsets are supporting the growth of intelligent, self-contained medical devices capable of real-time autonomous decision-making.
Which Clinical Domains and Regional Markets Are Driving AI/ML Adoption in Medical Devices?
Radiology, cardiology, neurology, and oncology represent the most advanced domains in AI/ML-driven medical device adoption, owing to their high imaging intensity, data complexity, and need for diagnostic accuracy. AI-enhanced ultrasound, MRI, CT, and PET systems are being deployed in hospitals and imaging centers to automate workflows, reduce scan-to-diagnosis time, and support overburdened radiology departments. In cardiology, AI-enabled ECG monitors, wearable arrhythmia detectors, and heart failure prediction systems are improving chronic disease surveillance and risk stratification.
Surgical robotics, anesthesia monitoring, and critical care systems are incorporating ML algorithms to optimize intraoperative decisions, ventilator management, and post-operative recovery pathways. In consumer health and home care, AI-enabled devices such as smart glucometers, digital stethoscopes, and fall detection wearables are bridging gaps in continuity of care and enabling scalable chronic disease management. Dental and ophthalmic devices are also integrating AI for image analysis, procedural planning, and risk detection, expanding application boundaries.
North America dominates the AI/ML-enabled medical device landscape, driven by early regulatory approvals, strong digital health infrastructure, and a robust base of AI startups and MedTech incumbents. Europe follows closely, with emphasis on ethical AI, data privacy compliance (GDPR), and public-private innovation frameworks. The Asia-Pacific region is witnessing rapid uptake, particularly in China, Japan, South Korea, and India-where government investments, digital transformation agendas, and large untapped patient datasets are accelerating AI/ML integration. Growth in Latin America, the Middle East, and Africa is expected to be driven by mobile diagnostics, telehealth-linked devices, and public health infrastructure modernization.
How Are Regulatory Standards, Business Models, and Clinical Integration Strategies Reshaping the Competitive Landscape?
Global regulatory frameworks are evolving to accommodate the unique lifecycle of AI/ML-enabled devices. Regulatory bodies are issuing guidelines for algorithm transparency, real-world validation, and change management to address continuous learning models. The FDA’s action plan for AI/ML medical software and the EU MDR’s classification criteria are helping define pathways for safe, repeatable deployment. These frameworks are encouraging early-stage AI developers to incorporate regulatory strategy at the core of product design.
Business models are shifting toward AI-as-a-service, subscription-based analytics, and outcomes-based contracting. Device manufacturers are embedding AI modules as differentiated add-ons-offering hospitals predictive insights, workflow efficiency, and diagnostics-as-a-platform capabilities. Strategic alliances with cloud providers, EHR vendors, and clinical AI startups are enabling MedTech firms to scale AI/ML integration without rebuilding full-stack capabilities in-house. Reimbursement strategies are emerging for AI-driven diagnostics and triage tools, further supporting commercialization viability.
Successful adoption hinges on seamless clinical integration. Developers are focusing on intuitive user interfaces, clinician-in-the-loop controls, and integration with existing workflows to avoid alert fatigue or workflow disruption. Training programs, real-world case studies, and post-market surveillance systems are critical in building clinician trust and ensuring safe adoption. As competitive intensity rises, AI-enabled device differentiation is increasingly dependent on clinical relevance, interoperability, and regulatory agility rather than algorithm sophistication alone.
What Are the Factors Driving Growth in the AI/ML in Medical Devices Market?
The AI/ML in medical devices market is growing rapidly, driven by rising healthcare digitization, growing volumes of patient data, and clinical demand for precision, automation, and decision support. The convergence of computing power, data availability, and algorithm maturity is enabling medical devices to become intelligent, context-aware tools that proactively assist clinicians across diagnosis, monitoring, and treatment.
Advances in edge AI, explainable algorithms, and regulatory frameworks are making AI-enabled devices safer, more scalable, and more commercially viable. As clinical workflows demand actionable insights at the point of care, and as payers push for value-based outcomes, intelligent medical devices are aligning with broader healthcare system transformation goals.
Looking ahead, the market’s trajectory will depend on how effectively AI-enabled devices integrate into clinical decision-making, balance innovation with safety, and demonstrate measurable improvements in patient outcomes. As medical devices evolve from passive instruments to cognitive collaborators, could AI/ML define the next frontier of adaptive, personalized, and data-driven healthcare delivery?
SCOPE OF STUDY:
The report analyzes the Artificial Intelligence / Machine Learning in Medical Devices market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Product Type (System / Hardware, Software-As-A Medical Device); Clinical Area (Radiology, Cardiology, Hematology, Other Clinical Areas)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 34 Featured) -
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by artificially increasing the COGS, reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.
We are diligently following expert opinions of leading Chief Economists (14,949), Think Tanks (62), Trade & Industry bodies (171) worldwide, as they assess impact and address new market realities for their ecosystems. Experts and economists from every major country are tracked for their opinions on tariffs and how they will impact their countries.
We expect this chaos to play out over the next 2-3 months and a new world order is established with more clarity. We are tracking these developments on a real time basis.
As we release this report, U.S. Trade Representatives are pushing their counterparts in 183 countries for an early closure to bilateral tariff negotiations. Most of the major trading partners also have initiated trade agreements with other key trading nations, outside of those in the works with the United States. We are tracking such secondary fallouts as supply chains shift.
To our valued clients, we say, we have your back. We will present a simplified market reassessment by incorporating these changes!
APRIL 2025: NEGOTIATION PHASE
Our April release addresses the impact of tariffs on the overall global market and presents market adjustments by geography. Our trajectories are based on historic data and evolving market impacting factors.
JULY 2025 FINAL TARIFF RESET
Complimentary Update: Our clients will also receive a complimentary update in July after a final reset is announced between nations. The final updated version incorporates clearly defined Tariff Impact Analyses.
Reciprocal and Bilateral Trade & Tariff Impact Analyses:
USA <> CHINA <> MEXICO <> CANADA <> EU <> JAPAN <> INDIA <> 176 OTHER COUNTRIES.
Leading Economists - Our knowledge base tracks 14,949 economists including a select group of most influential Chief Economists of nations, think tanks, trade and industry bodies, big enterprises, and domain experts who are sharing views on the fallout of this unprecedented paradigm shift in the global econometric landscape. Most of our 16,491+ reports have incorporated this two-stage release schedule based on milestones.
COMPLIMENTARY PREVIEW
Contact your sales agent to request an online 300+ page complimentary preview of this research project. Our preview will present full stack sources, and validated domain expert data transcripts. Deep dive into our interactive data-driven online platform.