封面
市場調查報告書
商品編碼
1892656

量子糾錯材料市場機會、成長促進因素、產業趨勢分析及預測(2025-2034年)

Quantum Error Correction Materials Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 210 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024 年全球量子糾錯材料市場價值為 2.13 億美元,預計到 2034 年將以 11.3% 的複合年成長率成長至 6.664 億美元。

量子糾錯材料市場 - IMG1

量子糾錯(QEC)材料旨在保護量子資訊免受雜訊、退相干和操作缺陷的影響,這些因素都會影響量子系統的性能。這些材料構成了量子位元及其相關組件的基礎,因為它們必須維持較長的相干時間,提供穩定的量子操作,並支援容錯架構所需的演算法。該領域正從小型演示向更大規模、更穩健的量子計算系統過渡,這增加了對能夠在較長時間內保持量子位元功能的高級材料的需求。新近改良的QEC材料,包括改良的超導薄膜、高純度半導體結構和新興的拓樸材料,不斷提高穩定性並降低錯誤率。它們的進步使得新一代量子裝置能夠處理比早期原型更複雜的計算任務,從而加速轉向能夠可靠地執行曾經被認為無法實現的操作的系統。這些進展凸顯了QEC材料在量子計算走向更廣泛的商業和科學應用過程中所扮演的關鍵角色。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 2.13億美元
預測值 6.664億美元
複合年成長率 11.3%

2024年,超導材料市場規模達8,390萬美元。推動市場成長的因素包括支援量子位元功能的創新材料,其中超導材料正不斷最佳化,以降低能量損耗並提高純度,從而保持強相干性並支援高閾值量子糾錯設計。基於半導體的量子材料採用同位素精煉的矽和先進的異質結構,以降低自旋和電荷相關的噪聲,從而提高量子位元行為的可預測性。具有色心結構的鑽石基材料在結構控制和光學一致性方面不斷取得進步,進一步鞏固了其在混合量子糾錯和光子使能量子糾錯應用中的地位。

到2024年,容錯量子運算領域將佔據50.1%的市場。對高可靠性運作的需求提升了對能夠支援更深層量子電路且不會累積有害誤差的材料的需求。量子模擬和專門的材料科學工作負載也高度依賴量子運算,以提供對分子和特殊系統穩定、詳細的洞察,這些系統需要相當高的運行深度和精確度。

2024年,美國量子糾錯材料市場規模達7,900萬美元。北美仍然是全球發展的關鍵樞紐,其中美國憑藉著許多研究機構、新創公司和科技公司在量子硬體規模化方面的廣泛參與,引領著這一領域的發展。區域性措施著重於超導和離子阱平台,而大學和國家實驗室則致力於推進長期容錯設計的研發。加拿大則透過對光子架構和矽基自旋量子位元的研究,為持續創新做出貢獻。

目錄

第1章:方法論與範圍

第2章:執行概要

第3章:行業洞察

  • 產業生態系分析
    • 供應商格局
    • 利潤率
    • 每個階段的價值增加
    • 影響價值鏈的因素
    • 中斷
  • 產業影響因素
    • 成長促進因素
      • 對容錯量子運算的需求
      • 先進量子位元材料
      • 材料工程創新
    • 產業陷阱與挑戰
      • 擴展和整合方面的挑戰
      • 對輻射和雜散訊號高度敏感
    • 市場機遇
      • 材料驅動的量子網路
      • 推動新型量子應用
      • 支持混合經典-量子系統
  • 成長潛力分析
  • 監管環境
    • 北美洲
    • 歐洲
    • 亞太地區
    • 拉丁美洲
    • 中東和非洲
  • 波特的分析
  • PESTEL 分析
  • 技術與創新格局
    • 當前技術趨勢
    • 新興技術
  • 價格趨勢
    • 按地區
    • 依材料類型
  • 未來市場趨勢
  • 專利格局
  • 貿易統計(HS編碼)(註:僅提供重點國家的貿易統計資料)
    • 主要進口國
    • 主要出口國
  • 永續性和環境方面
    • 永續實踐
    • 減少廢棄物策略
    • 生產中的能源效率
    • 環保舉措
  • 碳足跡考量

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
    • 按地區
      • 北美洲
      • 歐洲
      • 亞太地區
      • 拉丁美洲
      • MEA
  • 公司矩陣分析
  • 主要市場參與者的競爭分析
  • 競爭定位矩陣
  • 關鍵進展
    • 併購
    • 合作夥伴關係與合作
    • 新產品發布
    • 擴張計劃

第5章:市場估算與預測:依材料類型分類,2021-2034年

  • 超導材料
  • 半導體量子材料
  • 鑽石和彩色中心材料
  • 基板和介電材料
  • 封裝和保護材料

第6章:市場估算與預測:基於量子位元平台,2021-2034年

  • 超導量子位元材料
  • 囚禁離子量子位元材料
  • 中性原子量子位元材料
  • 貓量子位元材料
  • 光子量子位元材料
  • 自旋量子位元材料(矽和碳化矽)
  • 拓樸量子位元材料

第7章:市場估計與預測:依應用領域分類,2021-2034年

  • 容錯量子運算
  • 量子模擬與材料科學
  • 量子密碼學
  • 量子增強型人工智慧和最佳化

第8章:市場估算與預測:依地區分類,2021-2034年

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 西班牙
    • 義大利
    • 歐洲其他地區
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 韓國
    • 亞太其他地區
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 南非
    • 阿拉伯聯合大公國
    • 中東和非洲其他地區

第9章:公司簡介

  • Element Six
  • IQM
  • Alice & Bob
  • SpinQ
  • Infineon Technologies
  • Oxford Instruments
  • Atom Computing
  • QuEra Computing
  • Xanadu
  • PsiQuantum
  • Infleqtion
簡介目錄
Product Code: 15395

The Global Quantum Error Correction Materials Market was valued at USD 213 million in 2024 and is estimated to grow at a CAGR of 11.3% to reach USD 666.4 million by 2034.

Quantum Error Correction Materials Market - IMG1

Quantum error correction (QEC) materials are engineered to safeguard quantum information from noise, decoherence, and operational imperfections that impact the performance of quantum systems. These materials form the foundation of qubits and associated components, as they must sustain long coherence times, deliver stable quantum operations, and support the algorithms needed for fault-tolerant architectures. The field is transitioning from small-scale demonstrations to larger, more robust quantum computing systems, increasing demand for advanced materials that maintain qubit functionality over extended timeframes. Newly refined QEC materials, including improved superconducting films, high-purity semiconductor structures, and emerging topological materials, continue to elevate stability and reduce error rates. Their advancement is enabling generations of quantum devices capable of handling more complex computational tasks than earlier prototypes, helping accelerate the shift toward systems that can reliably perform operations once considered unattainable. These developments highlight the critical role of QEC materials as quantum computing moves toward broader commercial and scientific relevance.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$213 Million
Forecast Value$666.4 Million
CAGR11.3%

The superconducting materials segment generated USD 83.9 million in 2024. Market growth is being shaped by innovations in materials that support qubit function, with superconducting options increasingly optimized for reduced energy loss and enhanced purity to maintain strong coherence and support high-threshold quantum error-correcting designs. Semiconductor-based quantum materials incorporate isotopically refined silicon and advanced heterostructures to reduce both spin and charge-related noise, contributing to more predictable qubit behavior. Diamond-based materials with color-center configurations are achieving improvements in structural control and optical consistency, further reinforcing their position in hybrid and photon-enabled QEC applications.

The fault-tolerant quantum computing segment accounted for a 50.1% share in 2024. Demand for high-reliability operations has elevated the need for materials that can support deeper quantum circuits without accumulating detrimental errors. Quantum simulation and specialized materials-science workloads also rely heavily on QEC to deliver stable, detailed insights into molecular and exotic systems that require substantial operational depth and accuracy.

U.S. Quantum Error Correction Materials Market reached USD 79 million in 2024. North America remains a key hub for global development, with the United States driving momentum through extensive participation from research institutions, startups, and technology companies working to scale quantum hardware. Regional initiatives emphasize superconducting and trapped-ion platforms while universities and national laboratories push forward the development of long-term fault-tolerant designs. Canada contributes to ongoing innovation through research in photonic architectures and silicon-based spin qubits.

Major organizations active in the Global Quantum Error Correction Materials Market include Element Six, IQM, Alice & Bob, SpinQ, Infineon Technologies, Oxford Instruments, Atom Computing, QuEra Computing, Xanadu, PsiQuantum, and Infleqtion. Companies operating in the Quantum Error Correction Materials Market are strengthening their market positions by prioritizing high-purity production methods, advancing cryogenic material performance, and investing in scalable fabrication techniques. Many organizations are forming partnerships with quantum hardware developers to ensure alignment between material design and qubit architecture, enabling more efficient implementation. Firms are also increasing funding for research on low-loss superconductors, refined semiconductor substrates, and stable defect-engineered materials to minimize noise and extend coherence times.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis
  • 2.2 Key market trends
    • 2.2.1 Material type
    • 2.2.2 Qubit platform
    • 2.2.3 Application
    • 2.2.4 Regional
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin
    • 3.1.3 Value addition at each stage
    • 3.1.4 Factor affecting the value chain
    • 3.1.5 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Demand for fault-tolerant quantum computing
      • 3.2.1.2 Advanced qubit materials
      • 3.2.1.3 Innovations in material engineering
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 Challenges in scaling and integration
      • 3.2.2.2 High sensitivity to radiation and stray signals
    • 3.2.3 Market opportunities
      • 3.2.3.1 Material-driven quantum networking
      • 3.2.3.2 Enabling new quantum applications
      • 3.2.3.3 Support for hybrid classical-quantum systems
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and innovation landscape
    • 3.7.1 Current technological trends
    • 3.7.2 Emerging technologies
  • 3.8 Price trends
    • 3.8.1 By region
    • 3.8.2 By material type
  • 3.9 Future market trends
  • 3.10 Patent landscape
  • 3.11 Trade statistics (HS code) (Note: the trade statistics will be provided for key countries only)
    • 3.11.1 Major importing countries
    • 3.11.2 Major exporting countries
  • 3.12 Sustainability and environmental aspects
    • 3.12.1 Sustainable practices
    • 3.12.2 Waste reduction strategies
    • 3.12.3 Energy efficiency in production
    • 3.12.4 Eco-friendly initiatives
  • 3.13 Carbon footprint consideration

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 By region
      • 4.2.1.1 North America
      • 4.2.1.2 Europe
      • 4.2.1.3 Asia Pacific
      • 4.2.1.4 LATAM
      • 4.2.1.5 MEA
  • 4.3 Company matrix analysis
  • 4.4 Competitive analysis of major market players
  • 4.5 Competitive positioning matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans

Chapter 5 Market Estimates and Forecast, By Material Type, 2021-2034 (USD Million) (Kilo Tons)

  • 5.1 Key trends
  • 5.2 Superconducting materials
  • 5.3 Semiconductor quantum materials
  • 5.4 Diamond & color center materials
  • 5.5 Substrate & dielectric materials
  • 5.6 Encapsulation & protective materials

Chapter 6 Market Estimates and Forecast, By Qubit Platform, 2021-2034 (USD Million) (Kilo Tons)

  • 6.1 Key trends
  • 6.2 Superconducting qubit materials
  • 6.3 Trapped-ion qubit materials
  • 6.4 Neutral-atom qubit materials
  • 6.5 Cat qubit materials
  • 6.6 Photonic qubit materials
  • 6.7 Spin qubit materials (silicon & SiC)
  • 6.8 Topological qubit materials

Chapter 7 Market Estimates and Forecast, By Application, 2021-2034 (USD Million) (Kilo Tons)

  • 7.1 Key trends
  • 7.2 Fault-tolerant quantum computing
  • 7.3 Quantum simulation and material science
  • 7.4 Quantum cryptography
  • 7.5 Quantum-enhanced AI and optimization

Chapter 8 Market Estimates and Forecast, By Region, 2021-2034 (USD Million) (Kilo Tons)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 France
    • 8.3.4 Spain
    • 8.3.5 Italy
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 Australia
    • 8.4.5 South Korea
    • 8.4.6 Rest of Asia Pacific
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
    • 8.5.4 Rest of Latin America
  • 8.6 Middle East and Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 South Africa
    • 8.6.3 UAE
    • 8.6.4 Rest of Middle East and Africa

Chapter 9 Company Profiles

  • 9.1 Element Six
  • 9.2 IQM
  • 9.3 Alice & Bob
  • 9.4 SpinQ
  • 9.5 Infineon Technologies
  • 9.6 Oxford Instruments
  • 9.7 Atom Computing
  • 9.8 QuEra Computing
  • 9.9 Xanadu
  • 9.10 PsiQuantum
  • 9.11 Infleqtion