封面
市場調查報告書
商品編碼
1844283

自動駕駛晶片市場機會、成長動力、產業趨勢分析及 2025 - 2034 年預測

Autonomous Driving Chips Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 230 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024 年全球自動駕駛晶片市場價值為 242.2 億美元,預計到 2034 年將以 23% 的複合年成長率成長至 1910.7 億美元。

自動駕駛晶片市場 - IMG1

自動駕駛晶片是專用處理器,用於實現智慧車輛功能,執行即時路徑規劃、環境感知、感測器資料融合和自主決策等關鍵功能。隨著汽車製造商穩步邁向更高級別的自動化,從基礎駕駛輔助到完全自動駕駛,對能夠提供超低延遲和高可靠性的晶片的需求也日益成長。高級駕駛輔助系統 (ADAS) 的廣泛採用,以及汽車行業向電動車的轉型,正在擴大對具備可擴展性、高能源效率和高精度運算能力的高性能晶片的需求。加強道路安全的監管壓力也促使汽車原始設備製造商 (OEM) 整合更智慧的電子架構。汽車製造商正在從傳統的基於處理器的平台轉向能夠提供更佳電源管理和性能最佳化的晶片組。這種轉變有助於提高設計靈活性,並允許在各種車型中以經濟高效的方式部署自動駕駛技術,從而推動全球市場的整體發展勢頭。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 242.2億美元
預測值 1910.7億美元
複合年成長率 23%

2024年,專用積體電路 (ASIC) 市場佔據36%的市場佔有率,預計到2034年將以25%的複合年成長率成長。這些晶片經過高度最佳化,可處理特定任務,例如感測器融合、機器視覺和神經網路加速。其專用架構可提高運算效率、降低延遲並增強熱穩定性,這些優勢在緊湊尺寸、功耗最佳化和安全性至關重要的汽車環境中尤為突出。 ASIC 的設計充分考慮了特定的工作負載,這使其在精度和可靠性至關重要的自動駕駛領域尤其重要。

2024年,1級(駕駛輔助)細分市場佔據45%的市場佔有率,預計2025年至2034年的複合年成長率將達到18.8%。儘管市場正朝著更高自動化水平發展,但1級憑藉其經濟實惠、易於整合以及對成熟技術的依賴,仍佔據主導地位。由於消費者對部分自動化的興趣以及監管機構對安全性提升的日益重視,2級功能正日益受到青睞。然而,1級解決方案憑藉其成本效益和較低的複雜性,在大眾市場汽車中仍然備受青睞。

北美自動駕駛晶片市場佔35%的市場佔有率,2024年市場規模達85.4億美元。該地區,尤其是美國,憑藉其先進的研發能力、有利的政策導向、成熟的半導體製造基礎設施以及廣泛的實際測試項目,成為自動駕駛晶片市場的主導力量。這種環境為自動駕駛晶片技術的創新和商業化創造了強勁動力,推動了其在乘用車、電動車和連網行動平台的快速應用。

全球自動駕駛晶片市場的主要參與者包括義法半導體、德州儀器、英特爾(Mobileye)、高通、英飛凌科技、NVIDIA、瑞薩電子、ADI公司和恩智浦半導體。為了鞏固其在自動駕駛晶片市場的競爭優勢,各公司正投資專為邊緣AI處理、低延遲控制和即時感測器解讀而建構的下一代晶片架構。與汽車OEM廠商、一級供應商和AI軟體供應商的策略聯盟,使硬體和自動駕駛堆疊能夠更緊密地整合。研發支出用於提高晶片的可擴展性、降低能耗,並在更小的晶片尺寸內實現更高等級的自動化。

目錄

第1章:方法論

  • 市場範圍和定義
  • 研究設計
    • 研究方法
    • 資料收集方法
  • 資料探勘來源
    • 全球的
    • 地區/國家
  • 基礎估算與計算
    • 基準年計算
    • 市場評估的主要趨勢
  • 初步研究和驗證
    • 主要來源
  • 預報
  • 研究假設和局限性

第 2 章:執行摘要

第3章:行業洞察

  • 產業生態系統分析
    • 供應商格局
    • 利潤率分析
    • 成本結構
    • 每個階段的增值
    • 影響價值鏈的因素
    • 中斷
  • 產業衝擊力
    • 成長動力
      • SAE 2+級和3級車輛的採用率不斷上升
      • 人工智慧和邊緣運算技術的快速發展
      • 汽車原始設備製造商和一級供應商增加投資
      • 政府支持和自動駕駛友善法規
      • 日益成長的安全問題和減少事故的舉措
      • 電動和軟體定義汽車架構的擴展
    • 產業陷阱與挑戰
      • 先進晶片的開發和製造成本高
      • 功能安全認證的複雜性(ASIL-D、ISO 26262)
    • 市場機會
      • 4/5級自動駕駛商用車隊的出現
      • 亞太和中東地區的需求不斷成長
      • 小晶片和模組化架構的興起
      • 與5G和V2X通訊技術的整合
  • 成長潛力分析
  • 專利分析
  • 波特的分析
  • PESTEL分析
  • 成本分解分析
  • 技術和創新格局
    • 當前的技術趨勢
      • 電腦視覺演算法的演變
      • 感測器融合技術趨勢
      • 邊緣運算的進步
      • 即時處理創新
    • 新興技術
  • 監管格局
    • 全球監理框架概覽
    • NHTSA 自動駕駛汽車指南
    • 歐洲型式認證要求
    • 中國國家標準(GB/T)
    • 新興監管趨勢
  • 價格趨勢
    • 按地區
    • 按晶片
  • 生產統計
    • 生產中心
    • 消費中心
    • 匯出和匯入
  • 永續性和 ESG 影響分析
    • 綠色製造實踐
    • 能源效率最佳化
    • 減少晶圓廠運作中的浪費
    • 永續材料的使用
  • 投資與融資趨勢分析
  • 品質和可靠性標準
    • ISO 26262 功能安全 (ASIL-D)
    • AEC-Q100 汽車認證
    • 網路安全標準(ISO 21434)
    • 人工智慧安全和驗證要求
  • 數位轉型的影響
    • 人工智慧驅動的設計自動化
    • 數位孿生實施
    • 基於雲端的開發
    • 晶片開發中的 DevOps
  • 供應鏈彈性評估
    • 關鍵材料依賴性
    • 地理集中風險
    • 單點故障分析
    • 供應鏈多樣化
    • 替代採購策略
    • 供應鏈透明度

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
    • 北美洲
    • 歐洲
    • 亞太地區
    • 拉丁美洲
    • 中東和非洲
  • 主要市場參與者的競爭分析
  • 競爭定位矩陣
  • 戰略展望矩陣
  • 關鍵進展
    • 併購
    • 夥伴關係與合作
    • 新產品發布
    • 擴張計劃和資金

第5章:市場估計與預測:按晶片,2021 - 2034

  • 主要趨勢
  • 微控制器(MCU)
  • 圖形處理器
  • FPGA
  • 專用積體電路 (ASIC)
  • 其他

第6章:市場估計與預測:依自主水平,2021 - 2034 年

  • 主要趨勢
  • 1級(駕駛輔助)
  • 2級(部分自動化)
  • 3級(有條件自動化)
  • 4級(高度自動化)
  • 5級(全自動)

第7章:市場估計與預測:依功能,2021 - 2034

  • 主要趨勢
  • 感知晶片
  • 決策晶片
  • 控制晶片

第8章:市場估計與預測:依車型,2021 - 2034

  • 主要趨勢
  • 乘客
  • 商業的

第9章:市場估計與預測:按地區,2021 - 2034

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
    • 西班牙
    • 北歐人
    • 俄羅斯
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 印尼
    • 菲律賓
    • 泰國
    • 韓國
    • 新加坡
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中東和非洲
    • 沙烏地阿拉伯
    • 南非
    • 阿拉伯聯合大公國

第10章:公司簡介

  • 全球參與者
    • Analog Devices
    • Infineon Technologies
    • Intel (Mobileye)
    • NVIDIA
    • NXP Semiconductors
    • ON Semiconductor
    • Qualcomm
    • Renesas Electronics
    • STMicroelectronics
    • Texas Instruments
  • 區域參與者
    • Ambarella
    • Black Sesame Technologies
    • Cambricon Technologies
    • Esperanto Technologies
    • Hailo Technologies
    • Horizon Robotics
    • Kalray
    • Kneron
  • 新興參與者/顛覆者
    • AImotive
    • Blaize
    • BrainChip
    • Eta Compute
    • Flex Logix
    • GreenWaves Technologies
    • Recogni
    • Syntiant
簡介目錄
Product Code: 14794

The Global Autonomous Driving Chips Market was valued at USD 24.22 billion in 2024 and is estimated to grow at a CAGR of 23% to reach USD 191.07 billion by 2034.

Autonomous Driving Chips Market - IMG1

Autonomous driving chips are purpose-built processors that enable intelligent vehicle functionality, executing critical functions such as real-time path planning, environmental perception, sensor data fusion, and autonomous decision-making. As automakers steadily move toward higher levels of automation, from basic driver assistance to full autonomy, the need for chips that can deliver ultra-low latency and high reliability has intensified. The widespread adoption of advanced driver-assistance systems (ADAS), along with the industry's pivot to electric vehicles, is amplifying the demand for high-performance chips that offer scalability, energy efficiency, and precision computing. Regulatory pressure to enhance road safety is also encouraging automotive OEMs to integrate smarter electronic architectures. Automakers are transitioning away from traditional processor-based platforms in favor of chipsets that provide better power management and performance optimization. This shift supports improved design flexibility and allows cost-effective deployment of autonomous technologies across vehicle categories, driving the overall momentum of the global market.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$24.22 Billion
Forecast Value$191.07 Billion
CAGR23%

In 2024, the application-specific integrated circuits (ASIC) segment held a 36% share and is forecast to grow at a CAGR of 25% through 2034. These chips are highly optimized to handle defined tasks, such as sensor fusion, machine vision, and neural network acceleration. Their dedicated architecture results in greater computational efficiency, reduced latency, and thermal stability, key benefits in automotive environments where compact size, power optimization, and safety are critical. ASICs are designed with specific workloads in mind, making them especially valuable in autonomous driving, where precision and reliability are non-negotiable.

The Level 1 (driver assistance) segment held a 45% share in 2024 and is estimated to grow at a CAGR of 18.8% from 2025 to 2034. While the market is trending toward higher levels of automation, Level 1 remains dominant due to its affordability, ease of integration, and reliance on mature technologies. Level 2 capabilities are growing in prominence, supported by consumer interest in partial automation and growing regulatory focus on safety enhancement. However, Level 1 solutions continue to be favored in mass-market vehicles due to their cost-effectiveness and lower complexity.

North America Autonomous Driving Chips Market held a 35% share and generated USD 8.54 billion in 2024. The region, particularly the United States, is a dominant force due to a blend of advanced R&D capabilities, favorable policy direction, mature semiconductor manufacturing infrastructure, and widespread deployment of real-world testing programs. This environment has created strong momentum for innovation and commercialization of autonomous chip technologies, driving rapid adoption in passenger cars, electric vehicles, and connected mobility platforms.

Key players in the Global Autonomous Driving Chips Market include STMicroelectronics, Texas Instruments, Intel (Mobileye), Qualcomm, Infineon Technologies, NVIDIA, Renesas Electronics, Analog Devices, and NXP Semiconductors. To solidify their competitive edge in the autonomous driving chips market, companies are investing in next-generation chip architectures purpose-built for edge AI processing, low-latency control, and real-time sensor interpretation. Strategic alliances with automotive OEMs, Tier-1 suppliers, and AI software vendors enable tighter integration of hardware and autonomous driving stacks. R&D spending is directed toward improving chip scalability, reducing energy consumption, and enabling higher-level automation in a smaller silicon footprint.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2034
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Chip
    • 2.2.3 Autonomy level
    • 2.2.4 Function
    • 2.2.5 Vehicle
  • 2.3 TAM analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future-outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin analysis
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factors affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Rising adoption of sae level 2+ and level 3 vehicles
      • 3.2.1.2 Rapid advancements in AI and edge computing technologies
      • 3.2.1.3 Increased investments by automotive oems and tier-1 suppliers
      • 3.2.1.4 Government support and AV-friendly regulations
      • 3.2.1.5 Growing safety concerns and accident reduction initiatives
      • 3.2.1.6 Expansion of electric and software-defined vehicle architectures
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High development and manufacturing costs of advanced chips
      • 3.2.2.2 Complexity of functional safety certification (ASIL-D, ISO 26262)
    • 3.2.3 Market opportunities
      • 3.2.3.1 Emergence of level 4/5 autonomous commercial fleets
      • 3.2.3.2 Growing demand in Asia Pacific and Middle East regions
      • 3.2.3.3 Rise of chiplet and modular architectures
      • 3.2.3.4 Integration with 5G and V2X communication technologies
  • 3.3 Growth potential analysis
  • 3.4 Patent analysis
  • 3.5 Porter’s analysis
  • 3.6 PESTEL analysis
  • 3.7 Cost breakdown analysis
  • 3.8 Technology and innovation landscape
    • 3.8.1 Current technological trends
      • 3.8.1.1 Computer vision algorithm evolution
      • 3.8.1.2 Sensor fusion technology trends
      • 3.8.1.3 Edge computing advancement
      • 3.8.1.4 Real-time processing innovations
    • 3.8.2 Emerging technologies
  • 3.9 Regulatory landscape
    • 3.9.1 Global regulatory framework overview
    • 3.9.2 NHTSA autonomous vehicle guidelines
    • 3.9.3 European type approval requirements
    • 3.9.4 China's national standards (GB/T)
    • 3.9.5 Emerging regulatory trends
  • 3.10 Price trends
    • 3.10.1 By region
    • 3.10.2 By chip
  • 3.11 Production statistics
    • 3.11.1 Production hubs
    • 3.11.2 Consumption hubs
    • 3.11.3 Export and import
  • 3.12 Sustainability & ESG impact analysis
    • 3.12.1 Green manufacturing practices
    • 3.12.2 Energy efficiency optimization
    • 3.12.3 Waste reduction in fab operations
    • 3.12.4 Sustainable material usage
  • 3.13 Investment & funding trends analysis
  • 3.14 Quality and reliability standards
    • 3.14.1 ISO 26262 functional safety (ASIL-D)
    • 3.14.2 AEC-Q100 automotive qualification
    • 3.14.3 Cybersecurity standards (ISO 21434)
    • 3.14.4 AI safety and validation requirements
  • 3.15 Digital transformation impact
    • 3.15.1 AI-driven design automation
    • 3.15.2 Digital twin implementation
    • 3.15.3 Cloud-based development
    • 3.15.4 DevOps in chip development
  • 3.16 Supply chain resilience assessment
    • 3.16.1 Critical material dependencies
    • 3.16.2 Geographic concentration risks
    • 3.16.3 Single point of failure analysis
    • 3.16.4 Supply chain diversification
    • 3.16.5 Alternative sourcing strategies
    • 3.16.6 Supply chain transparency

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 Latin America
    • 4.2.5 Middle East & Africa
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans and funding

Chapter 5 Market Estimates & Forecast, By Chip, 2021 - 2034 (USD Bn, Million Units)

  • 5.1 Key trends
  • 5.2 Microcontrollers (MCUs)
  • 5.3 GPU
  • 5.4 FPGA
  • 5.5 ASIC
  • 5.6 Others

Chapter 6 Market Estimates & Forecast, By Autonomy Level, 2021 - 2034 (USD Bn, Million Units)

  • 6.1 Key trends
  • 6.2 Level 1 (driver assistance)
  • 6.3 Level 2 (partial automation)
  • 6.4 Level 3 (conditional automation)
  • 6.5 Level 4 (high automation)
  • 6.6 Level 5 (full automation)

Chapter 7 Market Estimates & Forecast, By Function, 2021 - 2034 (USD Bn, Million Units)

  • 7.1 Key trends
  • 7.2 Perception chips
  • 7.3 Decision-making chips
  • 7.4 Control chips

Chapter 8 Market Estimates & Forecast, By Vehicle, 2021 - 2034 (USD Bn, Million Units)

  • 8.1 Key trends
  • 8.2 Passenger
  • 8.3 Commercial

Chapter 9 Market Estimates & Forecast, By Region, 2021 - 2034 (USD Bn, Million Units)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Nordics
    • 9.3.7 Russia
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 Australia
    • 9.4.5 Indonesia
    • 9.4.6 Philippines
    • 9.4.7 Thailand
    • 9.4.8 South Korea
    • 9.4.9 Singapore
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
  • 9.6 Middle East and Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 South Africa
    • 9.6.3 UAE

Chapter 10 Company Profiles

  • 10.1 Global Players
    • 10.1.1 Analog Devices
    • 10.1.2 Infineon Technologies
    • 10.1.3 Intel (Mobileye)
    • 10.1.4 NVIDIA
    • 10.1.5 NXP Semiconductors
    • 10.1.6 ON Semiconductor
    • 10.1.7 Qualcomm
    • 10.1.8 Renesas Electronics
    • 10.1.9 STMicroelectronics
    • 10.1.10 Texas Instruments
  • 10.2 Regional Players
    • 10.2.1 Ambarella
    • 10.2.2 Black Sesame Technologies
    • 10.2.3 Cambricon Technologies
    • 10.2.4 Esperanto Technologies
    • 10.2.5 Hailo Technologies
    • 10.2.6 Horizon Robotics
    • 10.2.7 Kalray
    • 10.2.8 Kneron
  • 10.3 Emerging Players / Disruptors
    • 10.3.1 AImotive
    • 10.3.2 Blaize
    • 10.3.3 BrainChip
    • 10.3.4 Eta Compute
    • 10.3.5 Flex Logix
    • 10.3.6 GreenWaves Technologies
    • 10.3.7 Recogni
    • 10.3.8 Syntiant