![]() |
市場調查報告書
商品編碼
1916385
氮化鎵裝置市場分析及預測(至2035年):依應用、類型、技術、組件、裝置、最終用戶、過程、產品及功能分類Gallium Nitride Device Market Analysis and Forecast to 2035: Application, Type, Technology, Component, Device, End User, Process, Product, Functionality |
||||||
預計氮化鎵裝置市場規模將從2025年的41億美元成長到2035年的63億美元,年複合成長率約為17.5%。預計氮化鎵裝置市場規模將從2025年的41.324億美元成長到2035年的206.43億美元,2026年至2035年的年複合成長率約為17.5%。
氮化鎵(GaN)已成為下一代功率和射頻(RF)電子裝置的關鍵寬能帶隙(WBG)平台,在關鍵地區,政策、技術和應用需求相互促進。政府藍圖和資助框架明確指出,包括 GaN 在內的寬能帶隙功率電子裝置對於提高國家能源效率和增強半導體韌性非常重要。美國能源局尖端材料與製造技術辦公室(AMMTO)的《寬能帶隙功率電子戰略框架》(2025年草案)指出,寬能帶隙裝置是降低交通運輸、電網和資料中心系統轉換損耗的關鍵裝置,並將汽車逆變器、充電器和再生能源列為重點部署領域,並給予優先支援。
在歐洲,2023年至2024年實施的《歐盟晶片法案》和《晶片聯合計畫》將向先進半導體試驗生產線注入超過110億歐元的公共資金。這其中包括一條專用的寬能帶隙(WBG)試驗生產線,目的是推動氮化鎵(GaN)及相關技術的產業化,這是歐洲確保自身技術主權政策的一部分。在企業方面,Infineon2023年年度報告指出,氮化鎵在移動充電、資料中心電源、住宅太陽能逆變器和車載電動汽車充電器等領域「即將取得突破」,使其與碳化矽(SiC)一起成為公司電源產品組合中的主要成長動力。
| 市場區隔 | |
|---|---|
| 類型 | 光電元件、分離式功率元件、整合式功率元件、分離式射頻元件、整合式射頻元件 |
| 產品 | 表面黏著技術、通孔、晶片級封裝、裸晶 |
| 技術 | 氮化鎵基板碳化矽、氮化鎵基板矽、氮化鎵基板藍寶石、體氮化鎵 |
| 組件 | 電晶體、二極體、單晶片積體電路(MMIC)、積體電路模組(IC)、擴大機元件 |
| 用途 | 電訊與資訊通訊技術、汽車與電動出行、家用電子電器、工業與電力系統、國防與航太、能源與再生能源系統等應用領域 |
| 裝置 | 功率半導體、高頻半導體、光半導體 |
| 流程 | MOCVD、HVPE |
| 最終用戶 | 原始設備製造商、一級整合商、代工廠/整合裝置製造商、契約製造製造商、研究機構和學術機構 |
| 功能 | 高頻、高功率、高效率、混合型 |
從技術角度來看,同行評審的研究證實了氮化鎵(GaN)的固有優勢。 GaN 具有約 3.4 eV 的寬帶隙、高臨界場強和高電子遷移率,使其在功率轉換和高頻放大方面均比矽具有更快的開關速度、更高的功率密度和更高的效率。這些基本特性引領顯著的發展趨勢。在電力電子領域,近期基於 GaN 的併網太陽能逆變器和多轉換器再生能源系統的研究表明,其效率的提升使其能夠實現高頻、高功率運行,並製造出更緊湊的被動元件,直接面向太陽能和微電網應用。
在高頻領域,氮化鎵(GaN)功率放大器已成為5G大規模MIMO和雷達前端的核心技術。商用GaN功率放大器,例如Qorvo於2023年發布的QPA0524,針對C波段及鄰近頻譜的5G通訊和國防雷達進行了最佳化。未來的戰略機會集中在三個方面。首先是電動車(EV)和充電基礎設施。美國能源局(DOE)的垂直GaN車輛電氣化計劃以及Infineon的企業聲明表明,GaN將助力實現更高效、高功率的車載充電器和直流快速充電器。其次是再生能源和電網。基於GaN的逆變器可用於太陽能發電和混合AC/DC微電網,預計將顯著提高效率和功率密度,符合政府的清潔能源目標。第三是6G時代的射頻系統。國際白皮書《為 6G 實現射頻(2023-2024)》預測,亞太兆赫和毫米波頻段將對功率效率和頻寬提出嚴格的要求,這將需要高功率密度的GaN 前端,用於整合通訊和感測、先進雷達和射頻能量應用。
細分市場概覽
根據氮化鎵(GaN)裝置的功能細分,市場可分為高頻、高功率、高效率和混合型GaN裝置。高頻GaN元件在功能細分市場中佔據主導地位,這主要歸功於其在5G基地台、射頻前端模組、雷達、衛星通訊和國防電子等領域的重要角色。與矽和砷化鎵(GaAs)相比,GaN具有更高的電子遷移率,能夠實現更高的功率密度和更低的損耗,使其能夠在毫米波頻段運作。例如,2023年2月,NXP Semiconductors擴展了其用於5G大規模MIMO基地台的射頻GaN產品線,目標是高頻宏蜂窩/小型基地台基礎設施。2024年7月,Qorvo宣布了一項新的多年期國防射頻GaN供應協議,進一步鞏固了該領域在高頻關鍵任務應用領域的領先地位。高功率GaN元件是成長第二快的細分市場,其成長動力主要來自電動車、再生能源系統、直流快速充電器和工業電源等領域。氮化鎵(GaN)在高溫環境下的高電壓處理能力使其能夠實現更高的功率密度和更小的系統尺寸。例如,Infineon Technologies於2024年3月發布了新一代650V CoolGaN™功率電晶體,用於電動車車載充電器和太陽能逆變器。 Wolfspeed也在2023年8月擴大了位於莫霍克谷工廠的GaN產能,以滿足汽車和能源客戶日益成長的需求,這表明該公司在高功率GaN領域持續加強投資。高效GaN裝置在消費性電子產品、資料中心和電信設備的電源領域正迅速普及,因為更高的效率可以直接轉化為更低的散熱、更小的尺寸和更低的營運成本。 GaN更高的開關頻率和更低的導通損耗使其成為緊湊型快速充電器和伺服器電源的理想選擇。例如,Navitas Semiconductor於2023年5月資金籌措,用於在新設計的資料中心電源架構中採用GaNFast™積體電路。此外,Anchor Innovations 將於2024年 1月推出一系列超緊湊型 GaN 基底快速充電轉接器,展示以效率為中心的GaN 技術如何重塑面向消費者和企業的主流電源解決方案。
氮化鎵(GaN)元件市場可依產品封裝方式細分為:表面黏著技術(SMD)、通孔封裝、晶片級封裝(CSP)和裸晶。行動電氣化、快速充電設備、再生能源電力系統和高頻資料中心電源架構的融合推動這四大 GaN 封裝細分市場的需求,為消費性電子和工業應用創造了機會。表面黏著技術封裝(SMD)佔據 GaN 裝置市場的主導地位。這些緊湊、易於自動化組裝的封裝形式具有高功率密度、優異的散熱性能和經濟高效的製造能力,在消費性電子、汽車、電信和資料中心電源的量產中佔據主導地位。例如,瑞薩電子於2025年 7月發布了其新開發的650V GaN FET。該產品提供 TOLT 和 TOLL 兩種封裝形式,適用於表面黏著技術,是繼2024年收購 Transphorm 的GaN 技術之後的一項重要產品發布。此次收購將瑞薩電子的GaN 產品線從消費性電子電源轉換應用擴展到了工業電源轉換應用領域。表面黏著技術貼裝氮化鎵裝置在加速其普及應用的夥伴關係中也扮演著重要角色。2025年12月,安森美半導體宣布與全球多家代工廠建立戰略合作夥伴關係,共同開發採用高效封裝的先進650V氮化鎵功率元件,適用於人工智慧資料中心、電動車充電、工業和航太系統等表面黏著技術應用。樣品預計將於2026年初交付。
晶片級封裝是成長最快的細分市場,其成長主要得益於超緊湊型消費性充電器、汽車電子產品以及對寄生效應要求極低的高頻電源。例如,以GaNFast晶片級功率IC聞名的Navitas Semiconductor於2025年5月發布了一款全新的高效12kW GaN & SiC功率平台,顯示緊湊型裝置能夠同時提升資料中心和人工智慧運算應用的效能和密度。製造能力的擴展也進一步推動了晶片級封裝的發展。例如,德克薩斯於2024年10月宣布,將在日本將其GaN半導體產能擴大四倍,使高度整合、緊湊型GaN晶片能夠在消費和工業市場廣泛應用。通孔封裝的成長較為溫和,且仍具有重要意義,主要應用於傳統工業應用和對機械強度要求極高的高可靠性領域。例如,瑞薩電子的第四代 GaN 產品提供表面黏著技術貼裝和 TO-247(通孔)兩種封裝方式,確保為高功率工業轉換器和馬達驅動裝置提供產品供應,而傳統的基板安裝仍然是這些應用的標準。
區域概覽
依地區分類,氮化鎵(GaN)裝置市場分析涵蓋北美、歐洲、亞太、拉丁美洲以及中東和非洲。亞太地區在2025年引領市場。該地區的成長主要得益於家用電子電器、電動車和通訊產業的強勁需求。中國在電力電子和快速充電應用領域主導GaN技術的應用,計畫於2025年1月將GaN功率元件引進消費級充電器和工業系統。日本正積極推廣GaN技術在汽車和工業系統的應用,計畫於2025年3月將GaN功率模組整合到電動車動力傳動系統和工廠自動化設備中。韓國加速GaN在電信和資料中心基礎設施領域的應用,計劃於2025年5月前推出用於5G基地台和伺服器電源的GaN射頻和功率裝置。印度擴大GaN在再生能源和電力管理領域的應用,計劃於2025年7月前推出用於電網的GaN逆變器和GaN轉換器。
北美已成為氮化鎵(GaN)裝置市場的主要中心,佔30%的市場。該地區的發展動力主要來自汽車、通訊和工業領域對高效能功率電子和射頻應用的需求。美國主導這一應用趨勢,於2025年3月推出了用於電動車和工業轉換器高壓運行的新一代GaN場效電晶體(FET)。同年7月,緊湊型GaN射頻電晶體提升了5G網路和衛星通訊的效能;同年9月,基於GaN的功率模組實現了更低的散熱需求和更長的使用壽命。
受電力電子、電動車和通訊領域日益成長的應用需求推動,歐洲氮化鎵(GaN)裝置市場正以16.5%的年複合成長率快速擴張。德國正引領氮化鎵在汽車和工業電力系統的應用,計畫於2025年2月將基於氮化鎵的電力電子產品引進電動車動力傳動系統。法國計畫於2025年4月將高頻氮化鎵射頻元件整合到航太和國防雷達系統。義大利和西班牙則致力於在再生能源系統中應用氮化鎵技術,並計劃於2025年8月推出用於太陽能和風能發電的氮化鎵逆變器和轉換器。
預計到2025年,拉丁美洲氮化鎵(GaN)裝置市場規模將達到2.405億美元,並因電力電子、再生能源和通訊領域應用的不斷擴大而持續成長。巴西主導在再生能源和工業應用領域引領GaN元件的普及,計劃於2025年2月推出用於太陽能逆變器和工業驅動器的GaN基功率模組。智利計劃於2025年6月推出用於高效能功率轉換的GaN基轉換器。阿根廷和哥倫比亞計劃於2025年8月將GaN高頻電晶體整合到5G網路和無線系統中。
在中東和非洲地區,氮化鎵(GaN)裝置市場正以18.2%的年複合成長率快速成長,這主要得益於對節能電力電子、通訊基礎設施和再生能源系統的投資。2025年2月,GaN元件將在中東的太陽能發電廠和智慧電網中得到應用。2025年4月,GaN高頻元件將在海灣國家的5G基地台和衛星通訊系統中投入使用。2025年6月,高效能GaN射頻和功率元件在以色列國防和航太系統的整合工作穩步推進。2025年8月,基於GaN的轉換器將開始逐步應用於非洲的太陽能發電設施和離網電力系統。
主要趨勢和促進因素
對能源效率和高功率密度的需求不斷成長,將推動氮化鎵裝置的普及應用。
家用電子電器、資料中心、通訊和工業設備等領域對氮化鎵(GaN)裝置的需求。與傳統的矽 MOSFET 相比,GaN 半導體具有顯著降低的導通損耗、更高的開關頻率和更優異的散熱性能,實現更高效的功率轉換和更低的能耗。隨著裝置尺寸不斷縮小,同時對高功率的需求卻不斷提高,GaN 使設計人員能夠使用更小的被動元件,降低散熱需求,並實現更高的功率密度,支援緊湊輕量化的系統結構。從2023年到2025年,Infineon、Navitas Semiconductor、Power Integrations 和 Wise Integration 等主要企業擴展了其 GaN 功率 IC 和分立裝置產品組合,以滿足快速充電器、伺服器電源、電動車充電器和工業轉換器等領域對效率的更高需求。因此,在那些將能源效率、溫度控管和空間最佳化作為關鍵設計考慮的應用中,GaN 裝置的應用越來越廣泛。
汽車和工業系統的電氣化推動了氮化鎵裝置的應用
全球汽車和工業領域電氣化的快速發展,顯著推動了對高性能電力電子裝置的需求,這些裝置能夠在比傳統矽元件更高的電壓和頻率下運作。氮化鎵(GaN)裝置具有更快的開關速度、卓越的效率和高功率密度,可用於電動車車載充電器、DC-DC 轉換器和工業自動化系統中緊湊的輕量化功率。 GaN 裝置的效率高達 96-98%,且散熱性能優異,有助於 OEM 廠商延長電動車續航里程、減輕系統重量並提高整體能量轉換效率。到2023年,用於汽車的GaN 車載充電器的銷量將超過200萬台,這表明其在新電動車設計中得到了廣泛應用。包括STMicroelectronics、Transphorm、Infineon和ROHM Semiconductor在內的主要半導體公司,正透過新產品發布、戰略合作和產能擴張等方式推廣高壓和車規級 GaN 裝置,鞏固 GaN 作為下一代電動技術的工業系統地位。
Gallium Nitride Device Market is anticipated to expand from $4.1 billion in 2025 to $6.3 billion by 2035, growing at a CAGR of approximately 17.5%. The Gallium Nitride Device Market is anticipated to expand from $4,132.4 million in 2025 to $20,643.0 million by 2035, growing at a CAGR of approximately 17.5% from 2026 to 2035.
Gallium nitride (GaN) has consolidated its position as a core wide-bandgap platform for next-generation power and RF electronics, with policy, technology, and application pull now reinforcing one another across major regions. Government roadmaps and funding frameworks explicitly single out wide-bandgap power electronics, including GaN, as critical for national energy efficiency and semiconductor resilience; the U.S. Department of Energy's Advanced Materials and Manufacturing Technologies Office (AMMTO) Wide Bandgap Power Electronics Strategic Framework (draft released 2025) identifies WBG devices as essential to cutting conversion losses in transportation, grid, and data-center systems, framing targeted support for automotive inverters, chargers, and renewables as high-impact deployment arenas.
In Europe, the 2023-2024 implementation of the EU Chips Act and Chips Joint Undertaking channels more than EUR 11 billion of public funding into advanced semiconductor pilot lines, including a dedicated Wide Bandgap (WBG) Pilot Line to industrialize GaN and related technologies as part of Europe's sovereignty agenda. On the corporate side, Infineon's 2023 Annual Report explicitly states that GaN is "on the brink of a breakthrough" in mobile charging, data-center power supplies, residential solar inverters, and on-board EV chargers, and positions GaN as a key growth lever alongside SiC in its power portfolio.
| Market Segmentation | |
|---|---|
| Type | Optoelectronic Devices, Discrete Power Devices, Integrated Power Devices, Discrete RF Devices, Integrated RF Devices |
| Product | Surface-Mount, Through-Hole, Chip-Scale Package, Bare Die |
| Technology | GaN-on-SiC, GaN-on-Si, GaN-on-Sapphire, Bulk GaN |
| Component | Transistors, Diodes, MMICs, Integrated Modules (ICs), Amplifier Components |
| Application | Telecommunications & ICT, Automotive & E-Mobility, Consumer Electronics, Industrial & Power Systems, Defense & Aerospace, Energy & Renewable Energy Systems, Others Applications |
| Device | Power Semiconductors, RF Semiconductors, Opto-Semiconductors |
| Process | MOCVD, HVPE |
| End User | OEMs, Tier-1 Integrators, Foundries/IDMs, Contract Manufacturers, Research & Academics |
| Functionality | High-Frequency, High-Power, High-Efficiency, Hybrid |
Technologically, peer-reviewed work underlines GaN's intrinsic advantages: GaN's wide bandgap of about 3.4 eV, high critical field, and high electron mobility enable faster switching, higher power density, and greater efficiency than silicon in both power conversion and RF amplification. These fundamentals are translating into visible trends. In power electronics, recent studies on GaN-based grid-connected PV inverters and multi-converter renewable systems demonstrate efficiency gains that support higher-frequency, higher-power operation and more compact passives, directly targeting solar and microgrid applications.
In RF, GaN power amplifiers have become central to 5G massive-MIMO and radar front-ends, with commercial GaN PAs such as Qorvo's QPA0524, released in 2023, optimized for 5G communications and defense radar in C-band and adjacent spectra. Looking ahead, strategic opportunities cluster around three axes: first, EV and charging infrastructure, where DOE-backed vertical GaN programs for vehicle electrification and corporate messaging from Infineon point to GaN enabling more efficient, higher-power onboard chargers and DC fast chargers; second, renewables and grid, where GaN-based inverters for PV and hybrid AC/DC microgrids promise step-change efficiency and power-density improvements that align with government clean-energy targets; and third, 6G-era RF systems, where international white papers on RF enabling 6G (2023-2024) foresee stringent power efficiency and bandwidth demands in sub-THz and mmWave regimes that favor high-power-density GaN front-ends for joint communication-sensing, advanced radar, and RF energy applications.
Segment Overview
Based on the Functionality segmentation of the GaN device market, the market is segmented into High-Frequency, High-Power, High-Efficiency, and Hybrid GaN devices. Among these, High-Frequency GaN devices lead the functionality segment, primarily due to their critical role in 5G base stations, RF front-end modules, radar, satellite communications, and defense electronics. GaN's high electron mobility enables operation at millimeter-wave frequencies with superior power density and lower losses than silicon or GaAs. For example, in February 2023, NXP Semiconductors expanded its RF GaN portfolio for 5G massive-MIMO base stations, targeting high-frequency macro and small-cell infrastructure, while in July 2024, Qorvo announced new multi-year defense RF GaN supply contracts, reinforcing the dominance of this segment in high-frequency mission-critical applications. High-Power GaN devices represent the next strongest growth segment, supported by electric vehicles, renewable energy systems, fast DC chargers, and industrial power supplies. GaN's ability to handle high voltages at elevated temperatures allows higher power density and smaller system footprints. As an illustration, Infineon Technologies launched its 650 V CoolGaN(TM) power transistor generation in March 2024, aimed at EV onboard chargers and solar inverters, while Wolfspeed expanded its Mohawk Valley GaN fab capacity in August 2023 to meet rising demand from automotive and energy customers, highlighting sustained investment momentum in high-power GaN. High-Efficiency GaN devices are gaining rapid traction in consumer electronics, data centers, and telecom power supplies, where efficiency improvements directly reduce heat, size, and operating costs. GaN enables higher switching frequencies and lower conduction losses, making it ideal for compact fast chargers and server power units. For instance, Navitas Semiconductor secured new funding-backed design wins in May 2023 for GaNFast(TM) ICs in data-center power architectures, and Anker Innovations launched a new GaN-based ultra-compact fast-charging adapter lineup in January 2024, demonstrating how efficiency-focused GaN is reshaping mainstream consumer and enterprise power solutions.
Based on the Product segment packaging of the GaN device market, the market is segmented into Surface-Mount, Through-Hole, Chip-Scale Package, and Bare Die. Electrification of mobility, fast-charging consumer electronics, renewable energy power systems, and high-frequency data-center power architectures are jointly driving demand across all four GaN packaging sub-segments, creating opportunities from consumer to industrial applications. Surface-Mount packages lead the GaN device market. These compact, automated-assembly-friendly formats dominate high-volume manufacturing for consumer, automotive, telecom, and data-center power supplies because they offer high power density, thermal performance, and cost-effective production. For example, Renesas launched new 650 V GaN FETs in July 2025 - available in surface-mount-friendly TOLT and TOLL configurations marking a major product rollout after its acquisition of Transphorm's GaN technology in 2024. This broadened Renesas' GaN portfolio across consumer to industrial power conversion applications. Surface-mount GaN devices are also key in partnerships accelerating their use. onsemi announced in December 2025 a strategic collaboration with GlobalFoundries to co-develop advanced 650 V GaN power products that will use efficient packaging suitable for surface-mount applications across AI data centers, EV charging, industrial, and aerospace systems, with samples planned in early 2026.
Chip-Scale Packages are the fastest-growing sub-segment, driven by ultra-compact consumer chargers, automotive electronics, and high-frequency power supplies requiring minimal parasitic effects. For instance, companies like Navitas Semiconductor - known for GaNFast chip-level power ICs - showcased new 12 kW GaN & SiC power platforms with high efficiency in May 2025, underscoring how compact devices push both performance and density for data-center and AI compute applications. Chip-scale implementations are further supported by manufacturing capacity expansions such as Texas Instruments' October 2024 announcement of quadrupling GaN semiconductor capacity in Japan, enabling broader deployment of highly integrated, small-footprint GaN chips across consumer and industrial markets. Through-Hole packages show moderate growth and remain relevant mainly for legacy industrial applications and high-reliability segments where mechanical robustness is critical. For example, Renesas' Gen IV GaN launches include TO-247 (through-hole) options alongside surface-mount offerings, ensuring availability for high-power industrial converters and motor drives where traditional board assembly is still prevalent.
Geographical Overview
Based on region, the GaN device market is studied across North America, Europe, Asia-Pacific, Latin America, and Middle East & Africa. Asia-Pacific dominated the market in 2025. The region's growth is driven by strong demand from consumer electronics, electric vehicles, and telecommunications. China is leading GaN adoption in power electronics and fast-charging applications, with GaN-based power devices deployed in consumer chargers and industrial systems in January 2025. Japan is advancing GaN technology for automotive and industrial systems, integrating GaN power modules into EV powertrains and factory automation equipment in March 2025. South Korea is adopting GaN for telecom and data center infrastructure, implementing GaN RF and power devices in 5G base stations and server power supplies in May 2025. India is increasing GaN use in renewable energy and power management, introducing GaN-based converters for solar inverters and grid applications in July 2025.
North America is emerging as a major hub for the GaN device market, holding a market share of 30%. The region is driven by high-efficiency power electronics and RF applications across automotive, telecom, and industrial sectors. The United States is spearheading adoption: in March 2025, next-generation GaN FETs were introduced for higher voltage operation in EVs and industrial converters; in July 2025, compact GaN RF transistors enhanced 5G network and satellite communication performance; and in September 2025, GaN-based power modules demonstrated reduced cooling requirements and longer lifetimes.
Europe's GaN device market is expanding at a CAGR of 16.5% due to rising adoption in power electronics, electric mobility, and telecommunications. Germany is advancing GaN adoption in automotive and industrial power systems, implementing GaN-based power electronics in EV powertrains in February 2025. France is integrating high-frequency GaN RF devices into aerospace and defense radar systems in April 2025. Italy and Spain are leveraging GaN in renewable energy systems, deploying GaN-based inverters and converters for solar and wind applications in August 2025.
The Latin American GaN device market, valued at USD 240.5 million in 2025, is growing due to increasing adoption in power electronics, renewable energy, and telecommunications. Brazil is leading adoption for renewable energy and industrial applications, introducing GaN-based power modules for solar inverters and industrial drives in February 2025. Chile is deploying GaN-based converters for high-efficiency power conversion in June 2025. Argentina and Colombia are integrating GaN RF transistors into 5G networks and wireless systems in August 2025.
In the Middle East and Africa, the GaN device market is growing at a CAGR of 18.2%, driven by investments in energy-efficient power electronics, telecommunications infrastructure, and renewable energy systems. The Middle East is adopting GaN devices in solar power plants and smart grids in February 2025. Gulf countries are implementing GaN RF devices in 5G base stations and satellite communication systems in April 2025. Israel is integrating high-performance GaN RF and power devices into defense and aerospace systems in June 2025. Africa is gradually deploying GaN-based converters for solar installations and off-grid power systems in August 2025.
Key Trends and Drivers
Rising Demand for Energy Efficiency and High Power Density Driving GaN Device Adoption-
The growing focus on energy-efficient and high-performance electronics is fueling demand for gallium nitride (GaN) devices across consumer electronics, data centers, telecom, and industrial equipment. GaN semiconductors offer significantly lower conduction losses, higher switching frequencies, and superior thermal performance compared with traditional silicon MOSFETs, enabling more efficient power conversion and reduced energy consumption. As devices shrink while delivering higher power outputs, GaN allows designers to use smaller passive components, reduce cooling requirements, and achieve higher power density, supporting compact and lightweight system architectures. Between 2023 and 2025, leading companies such as Infineon, Navitas Semiconductor, Power Integrations, and Wise Integration expanded GaN power IC and discrete portfolios to meet these efficiency-driven demands in fast chargers, server power supplies, EV chargers, and industrial converters. Consequently, GaN devices are increasingly preferred in applications where energy efficiency, thermal management, and space optimization are critical design priorities.
Electrification of Automotive and Industrial Systems Driving GaN Device Adoption-
The rapid global shift toward electrification in automotive and industrial sectors is significantly boosting demand for high-performance power electronics capable of operating at higher voltages and frequencies than conventional silicon solutions. Gallium nitride (GaN) devices provide faster switching speeds, superior efficiency, and higher power density, enabling compact, lightweight power stages in EV onboard chargers, DC-DC converters, and industrial automation systems. With efficiencies reaching 96-98% and enhanced thermal performance, GaN-based solutions help OEMs extend EV driving range, reduce system weight, and improve overall energy conversion. By 2023, automotive GaN onboard chargers surpassed 2 million units, highlighting widespread adoption in new EV designs. Leading semiconductor companies, including STMicroelectronics, Transphorm, Infineon, and ROHM Semiconductor, are advancing high-voltage and automotive-grade GaN devices through new launches, strategic partnerships, and capacity expansions, solidifying GaN as a critical enabling technology for next-generation electric mobility and industrial electrification.
Research Scope