封面
市場調查報告書
商品編碼
1909967

在工業過程中實施碳捕獲技術:挑戰與成長機會

Incorporation of Carbon Capture Techniques in Industrial Processes: Challenges and Growth Opportunities

出版日期: | 出版商: Frost & Sullivan | 英文 47 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

全球趨勢、技術突破和合作途徑正在推動變革性碳捕獲技術的發展。

本研究對先進的碳捕集技術進行了全面分析,這些技術是實現全球淨零排放目標、推動工業脫碳的關鍵。研究探討了燃燒前、燃燒後和富氧燃燒三種路徑的整合,每種路徑都採用了不同的子技術,例如化學鏈、氣液吸收、吸附、膜分離、低溫蒸餾和鈣循環,以捕捉水泥、鋼鐵、電力和煉油等難以減排行業的二氧化碳排放。

本次調查將涵蓋以下主題:

  • 我們將對排放減排的產業的核心碳捕獲路徑進行比較分析,評估相關的技術和程式參數,例如能源需求、捕獲效率、系統模組化、工業整合、成本因素、擴充性和可改造性。
  • 深入檢驗創新生態系統,介紹領先的技術提供者、商業計劃開發商、政策制定者和行業合作夥伴關係,並分析最新的學術進展、不斷變化的專利格局和資金籌措舉措,所有這些都在推動全球捕碳封存技術的商業化和工業應用。

目錄

戰略要務

  • 為什麼經濟成長變得越來越困難?
  • The Strategic Imperative 8
  • 三大戰略挑戰對產業製程碳捕獲技術的影響
  • 成長機會驅動Growth Pipeline Engine
  • 調查方法

成長機會分析

  • 分析範圍
  • 分割

成長要素

  • 成長促進因素
  • 成長抑制因素

碳捕獲概述

  • 了解碳捕獲技術
  • 工業二氧化碳捕集方法—價值鏈
  • 燃燒前捕集可減少高壓環境下的能量損失,從而實現更清潔的燃料生產。
  • 蒸氣重組透過碳捕獲最大限度地提高氫氣產量,而氣液吸收透過標靶化的溶劑相互作用實現高效的二氧化碳捕獲。
  • 氣液吸收:化學吸收技術比物理吸收技術更適合碳捕獲。
  • 化學循環:固體氧載體可實現高效的二氧化碳捕獲。自熱重整透過自持式熱整合提高氫氣產量。
  • 燃燒後捕集技術可以經濟高效地對現有發電廠維修和模組化安裝。
  • 吸附法利用可再生固體吸附劑實現高 CO2 選擇性,而膜分離法提供了一種緊湊、模組化且無需化學試劑的 CO2 捕獲解決方案。
  • 低溫蒸餾透過低溫分離實現超高純度 CO2,而鈣循環利用可再生吸附劑實現高效的 CO2 捕獲,且能耗低。
  • 富氧燃燒技術可實現近 100% 的二氧化碳捕獲,並減少氮氧化物 (NOx)排放。
  • 碳捕獲法的比較路徑分析
  • 對各種碳捕獲方法的定性分析

碳捕獲技術開發的創新生態系統

  • 殼牌主導全球碳捕獲商業化進程
  • Saipem提供大規模二氧化碳捕集技術,以加速工業脫碳。
  • 工業碳捕獲領域的其他主要相關人員

主要資金籌措舉措和專利格局

  • 中國的智慧財產權活動在工業碳捕獲領域發揮主導作用。
  • 全球相關人員資金籌措舉措

成長機會領域

  • 成長機會 1:在難以減排的產業中擴大工業碳捕獲規模
  • 成長機會2:碳捕獲中心與共用二氧化碳基礎設施的開發
  • 成長機會3:加速二氧化碳在燃料、化學品和材料領域的應用

未來計劃

  • 成長機會帶來的益處和影響
  • 未來計劃
  • 免責聲明
簡介目錄
Product Code: DB5D

Global Trends, Technological Breakthroughs, and Collaborative Pathways Transforming Carbon Capture

This study presents a comprehensive analysis of advanced carbon capture technologies as key enablers of industrial decarbonization in achieving global net-zero goals. It explores the integration of pre-combustion, post-combustion, and oxy-fuel pathways-each employing distinct sub-methods such as chemical looping, gas-liquid absorption, adsorption, membrane separation, cryogenic distillation, and calcium looping-to capture CO? emissions from hard-to-abate sectors, including cement, steel, power, and refining.

This study covers the following:

  • A comparative analysis of the core-carbon capture pathways by evaluating relevant technical and process parameters such as energy requirement, capture efficiency, system modularity, industrial integration, cost drivers, scalability, and retrofit potential across hard-to-abate sectors.
  • An in-depth examination of the innovation ecosystem, profiling major technology providers, commercial project developers, policymakers, and collaborative industry partnerships, alongside the latest academic advancements, evolving patent landscape, and funding initiatives that are collectively driving the commercialization and industrial adoption of carbon capture and storage technologies worldwide.

Table of Contents

Strategic Imperatives

  • Why Is It Increasingly Difficult to Grow?
  • The Strategic Imperative 8
  • The Impact of the Top 3 Strategic Imperatives on Carbon Capture Techniques in Industrial Processes
  • Growth Opportunities Fuel the Growth Pipeline Engine
  • Research Methodology

Growth Opportunity Analysis

  • Scope of Analysis
  • Segmentation

Growth Generator

  • Growth Drivers
  • Growth Restraints

Carbon Capture at a Glance

  • Understanding Carbon Capture Technologies
  • Industrial CO2 Capture Methods-Value Chain
  • Pre-Combustion Capture Provides Lower Energy Penalties at High Pressure for Cleaner Fuel Production
  • Steam Methane Reforming Maximizes Hydrogen Yield with Incorporated Carbon Capture; Gas-Liquid Absorption Drives Efficient CO2 Capture Through Targeted Solvent Interaction
  • Gas-Liquid Absorption: Chemical Absorption Technologies are Preferred over Physical Absorption for Carbon Capture
  • Chemical Looping Enables Efficient CO2 Capture Through Solid Oxygen Carriers; Autothermal Reforming Enhances Hydrogen Yield with Self-Sustaining Heat Integration
  • Post-Combustion Capture Enables Cost-Effective Retrofits and Modular Deployment in Existing Power Plants
  • Adsorption Offers High CO2 Selectivity with Regenerable Solid Sorbents; Membrane Separation Enables Compact, Modular, and Chemical-Free CO2 Capture Solutions
  • Cryogenic Distillation Achieves Ultra-High Purity CO2 Through Low-Temperature Separation; Calcium Looping Enables Efficient CO2 Capture with Recyclable Sorbents and Low Energy Demand
  • Oxy-Fuel Combustion Enables Nearly 100% CO2 Capture, Eliminating NOx Emissions
  • Comparative Pathway Analysis for Carbon Capture Methods
  • Qualitative Analysis of Various Carbon Capture Methods

Innovations Ecosystem in Developing Carbon Capture Techniques

  • Shell plc Leads Commercialization Efforts in the Global Carbon Capture Landscape
  • Saipem Catalyzes Industrial Decarbonization by Delivering Carbon Capture at Scale
  • Other Key Stakeholders in the Industrial Carbon Capture Space

Key Funding Initiatives and Patent Landscape

  • China Leads IP Activity in the Industrial Carbon Capture Domain
  • Funding Initiatives by Global Stakeholders

Growth Opportunity Universe

  • Growth Opportunity 1: Scaling Industrial Carbon Capture for Hard-to-Abate Sectors
  • Growth Opportunity 2: Developing Carbon Capture Hubs and Shared CO2 Infrastructure
  • Growth Opportunity 3: Accelerating CO2 Utilization into Fuels, Chemicals, and Materials

Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • Legal Disclaimer