封面
市場調查報告書
商品編碼
1892136

無膜電解:近期技術突破與成長機會

Membraneless Electrolysis: Recent Technical Breakthroughs and Growth Opportunities

出版日期: | 出版商: Frost & Sullivan | 英文 51 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

各種無膜電解技術評估 - 技術藍圖與產業現狀

無膜電解技術正迅速發展,有望成為永續氫氣生產的變革性技術,有效解決傳統膜電解技術在成本、耐久性和氣體純度方面所面臨的挑戰。近年來,電極結構、氧化還原介質設計和流體管理方面的創新不斷提升,提高了無膜電解技術在各種電解槽配置中的效率、擴充性和操作柔軟性。催化劑材料和電解槽設計的創新則降低了消費量,並提高了對包括海水在內的不純原料的耐受性。再生能源、工業脫碳和化學製造等領域的跨產業合作加速該技術的商業化進程,並為清潔能源和氫能經濟市場帶來新的成長機會。

本研究涵蓋以下內容:

  • 未來五年無膜電解技術的應用範圍、成長要素和限制因素概述
  • 本文概述了綠色氫氣生產及其面臨的傳統電解槽挑戰,並著重闡述了無膜系統的必要性。
  • 對各種無膜電解技術(例如,浮力驅動、流通式、流通式、濃度驅動、毛細管流動驅動和分離反應器式)進行全面介紹和比較分析,並對製程流程進行評估。
  • 無膜電解方法的比較評估(重點在於效能指標、能源效率和可擴展性)
  • 創新生態系統分析:全面審視該領域的主要商業參與者、學術進展、專利趨勢、資金籌措舉措以及相關人員應重點關注的關鍵成長機會,將其視為下一個成長前沿。

目錄

戰略要務

  • 為什麼經濟成長變得越來越困難?
  • The Strategic Imperative 8
  • 三大戰略要務對工業工程產業的影響
  • 成長引擎由成長機會驅動
  • 調查方法

成長機會分析

  • 分析範圍
  • 區隔

成長促進因素

  • 成長要素
  • 成長限制阻礙因素

技術概述

  • 綠色氫能概述
  • 傳統電解技術面臨的挑戰
  • 新興的無膜電解技術
  • 無膜電解中被動流動浮力驅動的氣體分離
  • 浮力驅動無膜電解槽的階段性功能
  • 基於無膜電解槽被動流動的濃度驅動型氣體分離方法
  • 濃度驅動型無膜電解槽的逐步運行
  • 無膜電解中的主動流動式流動法
  • 流通式無膜電解槽的逐步工作原理
  • 基於無膜電解中主動流動的流通式過程
  • 無膜電解槽中流通法的逐步功能
  • 獨立式無膜電解:氧氣和氫氣生成,以改善氣體管理
  • 分階段運行分離式反應無膜電解槽
  • 毛細管流動驅動的無膜電解槽氣體分離方法
  • 毛細管流動驅動無膜電解槽的逐步功能
  • 各種無膜電解槽技術的比較分析

創新生態系統

  • 利用先進的毛細管進料電解高效制氫
  • 利用無膜電解模組化生產綠氫
  • 推動無膜電解技術的主要企業和大學

主要資金籌措舉措和專利狀況

  • 全球相關人員資金籌措舉措
  • 中國在無膜電解技術專利申請方面處於領先地位

成長機會領域

  • 成長機會1:透過無膜電解,將污水轉化為氫氣,擴大價值創造範圍
  • 成長機會2:在惡劣環境和偏遠地區實現按需氫氣和製氧
  • 成長機會3:無膜電解促進低碳肥料和生物煉製廠的發展

附錄與未來發展

  • 成長機會帶來的益處和影響
  • 後續步驟
  • 免責聲明
簡介目錄
Product Code: DB5C

Assessing Various Membraneless Technologies for the Electrolysis Process-Technology Roadmap and Industry Landscape

Membraneless electrolysis is rapidly advancing as a transformative technology for sustainable hydrogen production, offering solutions to membrane-related cost, durability, and gas purity challenges. Recent breakthroughs in electrode architecture, redox mediator design, and flow management have enhanced the efficiency, scalability, and operational flexibility of membraneless electrolysis across diverse electrolyzer configurations. Innovations in catalyst materials and cell engineering within this process are reducing energy consumption and enabling tolerance to feedstocks containing impurities, including seawater. Cross-sector collaboration integrating renewable energy, industrial decarbonization, and chemical manufacturing is accelerating commercialization and unlocking growth opportunities across clean energy and hydrogen economy markets.

This research study covers the following:

  • An overview of the scope, growth drivers, and restraints shaping the adoption of membraneless electrolysis technologies over the next five years
  • An introduction to green hydrogen production and the challenges associated with conventional electrolyzers, underscoring the need for membraneless systems
  • A comprehensive introduction and comparative analysis of various membraneless electrolysis technologies (e.g., buoyancy-driven, flow-by, flow-through, concentration-driven, capillary flow-driven, and decoupled reactor-based), evaluating their technical process
  • A comparative assessment of membraneless electrolysis approaches, highlighting performance metrics, energy efficiency, and scalability potential
  • An analysis of the innovation ecosystem, encompassing key commercial players, academic advancements, patent trends, funding initiatives, and key growth opportunities upon which stakeholders working in this domain can focus on for the next frontier of growth

Table of Contents

Strategic Imperatives

  • Why Is It Increasingly Difficult to Grow?
  • The Strategic Imperative 8
  • The Impact of the Top 3 Strategic Imperatives on the Industrial Engineering Industry
  • Growth Opportunities Fuel the Growth Pipeline Engine
  • Research Methodology

Growth Opportunity Analysis

  • Scope of Analysis
  • Segmentation

Growth Generator

  • Growth Drivers
  • Growth Restraints

Technology Snapshot

  • An Introduction to Green Hydrogen
  • Challenges Facing Traditional Electrolysis Technologies
  • Introduction to Emerging Membraneless Electrolysis Technology
  • Passive Flow-Based Buoyancy-Driven Gas Separation in Membraneless Electrolysis
  • Stepwise Functioning of a Buoyancy-Driven Membraneless Electrolyzer
  • Passive Flow based Concentration-Driven Approach for Gas Separation in Membraneless Electrolyzers
  • Stepwise Functioning of a Concentration-Driven Membraneless Electrolyzer
  • Active Flow-Based Flow-By Method in Membraneless Electrolysis
  • Stepwise Functioning of a Flow-By Membraneless Electrolyzer
  • Active Flow-Based Flow-Through Process in Membraneless Electrolysis
  • Stepwise Functioning of a Flow By Membraneless Electrolyzer
  • Decoupled Membraneless Electrolysis: Oxygen and Hydrogen Evolution for Improved Gas Management
  • Stepwise Functioning of a Decoupled Reaction-Based Membraneless Electrolyzer
  • Capillary Flow-Driven Approach for Gas Separation in Membraneless Electrolyzers
  • Stepwise Functioning of a Capillary Flow-Driven Membraneless Electrolyzer
  • Comparative Analysis of Various Membraneless Electrolyzer Technologies

Innovation Ecosystem

  • High-Efficiency Hydrogen Production via Advanced Capillary-Fed Electrolysis
  • Modular Green Hydrogen Production via Membraneless Electrolysis
  • Key Companies and Universities Advancing Membraneless Electrolysis Technology

Key Funding Initiatives & Patent Landscape

  • Funding Initiatives By Global Stakeholders
  • China is at the Forefront of Patent Filings in Membraneless Electrolysis Technology

Growth Opportunity Universe

  • Growth Opportunity 1: Expanding Wastewater-to-Hydrogen Valorization with Membraneless Electrolysis
  • Growth Opportunity 2: Enabling On-Demand Hydrogen and Oxygen Generation in Extreme and Remote Environments
  • Growth Opportunity 3: Driving Low-Carbon Fertilizer and Biorefinery Growth Through Membraneless Electrolysis

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • Legal Disclaimer