封面
市場調查報告書
商品編碼
1797984

2032 年鹼性水電電解市場預測:按產品類型、流量、容量、應用、最終用戶和地區進行的全球分析

Alkaline Water Electrolysis Market Forecasts to 2032 - Global Analysis By Product Type, Flow Rate, Capacity, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球鹼性水電電解市場預計在 2025 年價值 2,421 億美元,到 2032 年將達到 8,878 億美元,預測期內複合年成長率為 20.4%。

鹼性水電電解是一種成熟的電化學方法,利用鹼性電解質(通常是氫氧化鉀 (KOH))將水分解成氫氣和氧氣,從而產生氫氣。該方法在相對較低的溫度和壓力下運行,因其成本效益、耐用性和擴充性受到工業應用的青睞。此方法利用兩個電極和一個膜來分離氣體,適合大規模氫氣生產。

電力產業對清潔氫的需求不斷增加

發電和運輸業對清潔氫氣日益成長的需求是鹼性水電電解市場的主要驅動力。隨著各國努力實現能源結構脫碳,氫氣正逐漸成為可再生能源儲存的關鍵載體和燃料電池應用的燃料。鹼性電解系統為大規模製氫提供了一種經濟高效且可靠的解決方案。其長期的行業經驗鞏固了其信譽,使其成為尋求實現氣候變遷目標的公用事業公司和政府的首選。

高功率需求

鹼性水電電解系統的高功率需求仍然是一項重大挑戰,尤其是在電力成本高或碳排放密集的地區。雖然該製程已得到驗證且穩定,但其高能耗限制了盈利,除非與低成本的再生能源相結合。此外,它對電網的依賴阻礙了靈活性並增加了營業成本。這種限制使得該行業謹慎行事,尤其是與固體氧化物電解槽和質子交換膜 (PEM) 系統等更有效率、更先進的電解技術相比。

擴大可再生能源整合

可再生能源的日益整合為鹼性水電電解提供了重大機會。隨著全球風能和太陽能裝置容量的不斷擴大,剩餘的再生能源可以透過鹼性系統高效利用,用於綠色氫氣生產。與離網和混合動力電源的兼容性增強了遠端和分散式應用的吸引力。可再生能源與電解的整合減少了限制,改善了能源儲存,並支持國家氫能策略,尤其是在向淨零目標轉型的市場中。

可再生能源供應波動

波動的可再生能源供應對鹼性水電電解系統的性能和經濟性構成了重大威脅。與電解槽不同,鹼性系統缺乏有效處理間歇性電源所需的動態反應能力。這限制了它們在太陽能和風能輸入波動的情況下實現最佳運作的能力。不穩定的電力輸入也會影響組件壽命和氫氣純度,導致維護成本增加和運作效率降低,這可能會阻礙其在一些可再生能源豐富的地區推廣。

COVID-19的影響:

新冠疫情最初擾亂了全球供應鏈,導致鹼性水電電解市場的設備交付和計劃實施延遲。然而,以綠色基礎設施為重點的疫情後復甦計劃,已帶動氫能技術投資復甦。各國政府已將經濟獎勵策略轉向清潔能源,加速推動氫能先導計畫和長期舉措。這場危機也凸顯了能源韌性的重要性,進一步激發了人們對分散式氫能發電的興趣。因此,儘管短期影響是負面的,但長期前景已顯著改善。

固體鹼性水電電解槽市場預計將在預測期內佔據最大佔有率

固體鹼性水電電解槽因其成本效益高、易於擴大規模和運行穩定性,預計將在預測期內佔據最大的市場佔有率。這類系統廣泛應用於工業規模的氫氣生產,而純度和長期耐用性至關重要。其可靠的業績記錄和低成本的鹼性溶液使其成為氫能已開發經濟體和新興經濟體的理想選擇。持續的技術改進也使其比PEM替代品更具競爭力。

預計在預測期內,10 m3/h 以下的部分將呈現最高的複合年成長率。

預計在預測期內,低於10立方公尺/小時的細分市場將實現最高成長率,這得益於研究、中試和小規模工業環境中對緊湊型模組化電解槽的需求不斷成長。這些低容量設備非常適合測試氫能應用、教育用途,或與分散式太陽能系統整合。它們價格實惠、佔用空間小,並且適合在偏遠地區部署,這對於專注於早期氫能部署的已開發經濟體和新興經濟體都具有吸引力。

佔比最大的地區:

預計亞太地區將在預測期內佔據最大的市場佔有率。這得歸功於中國、日本和韓國等國強力的政府舉措、大規模可再生能源設施建設以及工業氫氣消費量的不斷成長。支持性法規結構和官民合作關係正在加速國內氫氣生產能力的提升。此外,該地區在減少碳排放的努力以及大規模基礎設施計劃正使亞太地區成為全球消費量投資中心。

複合年成長率最高的地區:

預計北美地區在預測期內的複合年成長率最高,這得益於聯邦政府資金的增加、脫碳目標的製定以及美國和加拿大大規模清潔氫能計劃的推進。主要企業正在投資電解槽的製造和部署,而《通膨削減法案》和其他清潔能源立法也提供了顯著的獎勵。隨著交通運輸和工業領域需求的不斷成長,北美正迅速崛起,成為綠色氫能價值鏈中具有競爭力的參與者。

免費客製化服務

此報告的訂閱者可以使用以下免費自訂選項之一:

  • 公司簡介
    • 全面分析其他市場參與者(最多 3 家公司)
    • 主要企業的SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶興趣對主要國家進行的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 主要研究資料
    • 二手研究資料
    • 先決條件

第3章市場走勢分析

  • 驅動程式
  • 抑制因素
  • 機會
  • 威脅
  • 產品分析
  • 應用分析
  • 最終用戶分析
  • 新興市場
  • COVID-19的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球鹼性水電電解市場(依產品類型)

  • 固體鹼性水電電解設備
  • 陰離子交換膜鹼性水電電解裝置
  • 液態鹼性水電電解設備

6. 全球鹼性水電電解市場(按流量)

  • 小於10立方米/小時
  • 10~30 m3/h
  • 30~60 m3/h
  • 60~80 m3/h
  • 80立方米/小時以上

7. 全球鹼性水電電解市場(依容量)

  • 小於1MW
  • 1~5MW
  • 5~20MW
  • 超過20MW

8. 全球鹼性水電電解市場(依應用)

  • 發電廠
  • 鋼鐵廠
  • 電子和光伏
  • 工業氣體
  • 其他用途

9. 全球鹼性水電電解市場(依最終用戶)

  • 能源公司
  • 化學公司
  • 工業氣體公司
  • 政府機構
  • 運輸公司

第 10 章全球鹼性水電電解市場(按地區)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第12章 公司概況

  • Nel Hydrogen
  • Asahi Kasei
  • Green Hydrogen.dk
  • ShaanXi HuaQin
  • Next Hydrogen Corp.
  • Hydrogenics
  • Thyssenkrupp
  • Teledyne Energy Systems, Inc.
  • McPhy Energy SA
  • Siemens Energy AG
  • ITM Power PLC
  • Plug Power Inc.
  • John Cockerill Group
  • Enapter AG
  • Bloom Energy Corp.
  • Proton Motor Power Systems PLC
  • Fusion Fuel Green PLC
  • Ohmium International
Product Code: SMRC30354

According to Stratistics MRC, the Global Alkaline Water Electrolysis Market is accounted for $242.1 billion in 2025 and is expected to reach $887.8billion by 2032 growing at a CAGR of 20.4% during the forecast period. Alkaline Water Electrolysis is a well-established electrochemical process used to produce hydrogen by splitting water into hydrogen and oxygen using an alkaline electrolyte, typically potassium hydroxide (KOH). Operating at relatively low temperatures and pressures, it is favored for its cost-effectiveness, durability, and scalability in industrial applications. This method utilizes two electrodes and a diaphragm to separate gases, making it suitable for large-scale hydrogen generation.

Market Dynamics:

Driver:

Rising demand for clean hydrogen in power

Rising demand for clean hydrogen in power generation and transportation sectors is significantly driving the alkaline water electrolysis market. As nations strive to decarbonize their energy mix, hydrogen emerges as a key vector for storing renewable energy and fueling fuel cell applications. Alkaline systems offer a cost-effective and reliable solution for mass hydrogen production. Their long-standing presence in the industry further enhances trust, making them a preferred choice for utilities and governments aiming to meet climate goals.

Restraint:

High power requirement

The high power requirement of alkaline water electrolysis systems remains a major challenge, especially in regions with expensive or carbon-intensive electricity. Although the process is proven and stable, its energy consumption rate limits profitability unless paired with low-cost renewable power. Additionally, grid dependency can hinder flexibility and raise operational costs. This constraint has made industries cautious, particularly when comparing with more efficient or advanced electrolysis technologies like Proton Exchange Membrane (PEM) systems or Solid Oxide Electrolyzers.

Opportunity:

Expansion in renewable energy integration

The expansion in renewable energy integration offers a robust opportunity for alkaline water electrolysis adoption. As wind and solar capacity scales globally, surplus renewable electricity can be efficiently utilized for green hydrogen production through alkaline systems. Their compatibility with off-grid or hybrid power sources enhances their attractiveness for remote or decentralized applications. This convergence of renewables and electrolysis helps mitigate curtailment, improves energy storage, and supports national hydrogen strategies, especially in markets transitioning toward net-zero targets.

Threat:

Fluctuating renewable energy supply

Fluctuating renewable energy supply poses a key threat to the performance and economics of alkaline water electrolysis systems. Unlike PEM electrolyzers, alkaline systems lack the dynamic response capability required to efficiently handle intermittent power. This limits their ability to run optimally with variable solar or wind inputs. Inconsistent electricity input may also affect component life and hydrogen purity, potentially increasing maintenance costs and reducing operational efficiency, thereby discouraging adoption in certain renewable-rich regions.

Covid-19 Impact:

The COVID-19 pandemic initially disrupted global supply chains, delaying equipment deliveries and project implementations across the alkaline water electrolysis market. However, post-pandemic recovery plans emphasizing green infrastructure led to renewed investments in hydrogen technology. Governments channeled stimulus packages toward clean energy, accelerating hydrogen pilot projects and long-term initiatives. The crisis also highlighted the need for energy resilience, further pushing interest in decentralized hydrogen generation. Consequently, while short-term impacts were negative, the long-term outlook improved substantially.

The solid alkaline water electrolyzers segment is expected to be the largest during the forecast period

The solid alkaline water electrolyzers segment is expected to account for the largest market share during the forecast period propelled by, its cost-efficiency, ease of scale-up, and operational stability. These systems are widely adopted in industrial-scale hydrogen production where purity and long-term durability are essential. Their proven track record and low-cost alkaline solution make them a favorable choice in both developed and emerging hydrogen economies. Continued technological refinements are also enhancing their competitiveness against PEM alternatives.

The less than 10 m3/h segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the less than 10 m3/h segment is predicted to witness the highest growth rate influenced by, increasing demand for compact and modular electrolyzers in research, pilot, and small-scale industrial settings. These low-capacity units are ideal for testing hydrogen applications, educational use, or integrating with solar PV systems in decentralized setups. Their affordability, minimal space requirement, and suitability for remote deployments make them attractive in both developed and emerging economies focusing on early-stage hydrogen deployment.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, fuelled by strong government initiatives, massive renewable energy installations, and rising industrial hydrogen consumption in countries like China, Japan, and South Korea. Supportive regulatory frameworks and public-private partnerships are accelerating domestic hydrogen production capacities. Moreover, the region's commitment to reducing carbon emissions, coupled with large-scale infrastructure projects, is positioning Asia Pacific as a global hub for green hydrogen investments.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by increased federal funding, decarbonization goals, and major clean hydrogen projects across the U.S. and Canada. Key players are investing in electrolyzer manufacturing and deployment, while the Inflation Reduction Act and other clean energy legislation offer significant incentives. With growing demand from the transportation and industrial sectors, North America is rapidly emerging as a competitive player in the green hydrogen value chain.

Key players in the market

Some of the key players in Alkaline Water Electrolysis Market include Nel Hydrogen, Asahi Kasei, Green Hydrogen.dk, ShaanXi HuaQin, Next Hydrogen Corp., Hydrogenics, Thyssenkrupp, Teledyne Energy Systems, Inc., McPhy Energy S.A., Siemens Energy AG, ITM Power PLC, Plug Power Inc., John Cockerill Group, Enapter AG, Bloom Energy Corp., Proton Motor Power Systems PLC, Fusion Fuel Green PLC and Ohmium International.

Key Developments:

In July 2025, Asahi Kasei announced the supply of its Aqualyzer(TM) C3, a 1 MW containerized alkaline water electrolyzer, to the Central Finland Mobility Foundation. The unit is expected to begin hydrogen production operations in early 2026 to support local green mobility projects.

In June 2025, Nel Hydrogen introduced its newest alkaline electrolyzer model featuring improved energy efficiency and increased hydrogen production capacity. The updated stack design reduces operating costs while extending equipment lifetime. Nel collaborated with major green hydrogen project developers in Europe to pilot the technology in utility-scale applications, aiming to support rapid decarbonization.

In March 2025, ITM Power entered into an agreement with Deutsche Bahn AG to supply hydrogen production systems supporting Germany's sustainable rail transportation network. The collaboration aims to replace diesel trains with hydrogen-powered alternatives, enhancing clean mobility infrastructure across the country.

Product Types Covered:

  • Solid Alkaline Water Electrolyzers
  • Anion Exchange Membrane Alkaline Water Electrolyzers
  • Liquid Alkaline Water Electrolyzers

Flow Rates Covered:

  • Less Than 10 m3/h
  • 10-30 m3/h
  • 30-60 m3/h
  • 60-80 m3/h
  • Above 80 m3/h

Capacities Covered:

  • Below 1 MW
  • 1-5 MW
  • 5-20 MW
  • Above 20 MW

Applications Covered:

  • Power Plants
  • Steel Plants
  • Electronics and PV
  • Industrial Gases
  • Other Applications

End Users Covered:

  • Energy Companies
  • Chemical Companies
  • Industrial Gas Companies
  • Government Agencies
  • Transportation Companies

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Alkaline Water Electrolysis Market, By Product Type

  • 5.1 Introduction
  • 5.2 Solid Alkaline Water Electrolyzers
  • 5.3 Anion Exchange Membrane Alkaline Water Electrolyzers
  • 5.4 Liquid Alkaline Water Electrolyzers

6 Global Alkaline Water Electrolysis Market, By Flow Rate

  • 6.1 Introduction
  • 6.2 Less Than 10 m3/h
  • 6.3 10-30 m3/h
  • 6.4 30-60 m3/h
  • 6.5 60-80 m3/h
  • 6.6 Above 80 m3/h

7 Global Alkaline Water Electrolysis Market, By Capacity

  • 7.1 Introduction
  • 7.2 Below 1 MW
  • 7.3 1-5 MW
  • 7.4 5-20 MW
  • 7.5 Above 20 MW

8 Global Alkaline Water Electrolysis Market, By Application

  • 8.1 Introduction
  • 8.2 Power Plants
  • 8.3 Steel Plants
  • 8.4 Electronics and PV
  • 8.5 Industrial Gases
  • 8.6 Other Applications

9 Global Alkaline Water Electrolysis Market, By End User

  • 9.1 Introduction
  • 9.2 Energy Companies
  • 9.3 Chemical Companies
  • 9.4 Industrial Gas Companies
  • 9.5 Government Agencies
  • 9.6 Transportation Companies

10 Global Alkaline Water Electrolysis Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Nel Hydrogen
  • 12.2 Asahi Kasei
  • 12.3 Green Hydrogen.dk
  • 12.4 ShaanXi HuaQin
  • 12.5 Next Hydrogen Corp.
  • 12.6 Hydrogenics
  • 12.7 Thyssenkrupp
  • 12.8 Teledyne Energy Systems, Inc.
  • 12.9 McPhy Energy S.A.
  • 12.10 Siemens Energy AG
  • 12.11 ITM Power PLC
  • 12.12 Plug Power Inc.
  • 12.13 John Cockerill Group
  • 12.14 Enapter AG
  • 12.15 Bloom Energy Corp.
  • 12.16 Proton Motor Power Systems PLC
  • 12.17 Fusion Fuel Green PLC
  • 12.18 Ohmium International

List of Tables

  • Table 1 Global Alkaline Water Electrolysis Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Alkaline Water Electrolysis Market Outlook, By Product Type (2024-2032) ($MN)
  • Table 3 Global Alkaline Water Electrolysis Market Outlook, By Solid Alkaline Water Electrolyzers (2024-2032) ($MN)
  • Table 4 Global Alkaline Water Electrolysis Market Outlook, By Anion Exchange Membrane Alkaline Water Electrolyzers (2024-2032) ($MN)
  • Table 5 Global Alkaline Water Electrolysis Market Outlook, By Liquid Alkaline Water Electrolyzers (2024-2032) ($MN)
  • Table 6 Global Alkaline Water Electrolysis Market Outlook, By Flow Rate (2024-2032) ($MN)
  • Table 7 Global Alkaline Water Electrolysis Market Outlook, By Less Than 10 m3/h (2024-2032) ($MN)
  • Table 8 Global Alkaline Water Electrolysis Market Outlook, By 10-30 m3/h (2024-2032) ($MN)
  • Table 9 Global Alkaline Water Electrolysis Market Outlook, By 30-60 m3/h (2024-2032) ($MN)
  • Table 10 Global Alkaline Water Electrolysis Market Outlook, By 60-80 m3/h (2024-2032) ($MN)
  • Table 11 Global Alkaline Water Electrolysis Market Outlook, By Above 80 m3/h (2024-2032) ($MN)
  • Table 12 Global Alkaline Water Electrolysis Market Outlook, By Capacity (2024-2032) ($MN)
  • Table 13 Global Alkaline Water Electrolysis Market Outlook, By Below 1 MW (2024-2032) ($MN)
  • Table 14 Global Alkaline Water Electrolysis Market Outlook, By 1-5 MW (2024-2032) ($MN)
  • Table 15 Global Alkaline Water Electrolysis Market Outlook, By 5-20 MW (2024-2032) ($MN)
  • Table 16 Global Alkaline Water Electrolysis Market Outlook, By Above 20 MW (2024-2032) ($MN)
  • Table 17 Global Alkaline Water Electrolysis Market Outlook, By Application (2024-2032) ($MN)
  • Table 18 Global Alkaline Water Electrolysis Market Outlook, By Power Plants (2024-2032) ($MN)
  • Table 19 Global Alkaline Water Electrolysis Market Outlook, By Steel Plants (2024-2032) ($MN)
  • Table 20 Global Alkaline Water Electrolysis Market Outlook, By Electronics and PV (2024-2032) ($MN)
  • Table 21 Global Alkaline Water Electrolysis Market Outlook, By Industrial Gases (2024-2032) ($MN)
  • Table 22 Global Alkaline Water Electrolysis Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 23 Global Alkaline Water Electrolysis Market Outlook, By End User (2024-2032) ($MN)
  • Table 24 Global Alkaline Water Electrolysis Market Outlook, By Energy Companies (2024-2032) ($MN)
  • Table 25 Global Alkaline Water Electrolysis Market Outlook, By Chemical Companies (2024-2032) ($MN)
  • Table 26 Global Alkaline Water Electrolysis Market Outlook, By Industrial Gas Companies (2024-2032) ($MN)
  • Table 27 Global Alkaline Water Electrolysis Market Outlook, By Government Agencies (2024-2032) ($MN)
  • Table 28 Global Alkaline Water Electrolysis Market Outlook, By Transportation Companies (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.