封面
市場調查報告書
商品編碼
1750756

汽車綠色材料:戰略分析

Green Materials in Cars: A Strategic Analysis

出版日期: | 出版商: Frost & Sullivan | 英文 65 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

政府法規和環境議題推動綠色材料未來成長潛力

在環境法規、消費者需求以及人們對傳統材料環境影響日益成長的認知的推動下,汽車產業經歷向永 續性的重大轉變。本報告對汽車產業的綠色材料進行了全面分析,檢驗了其定義、演變、主要類別和應用。報告深入探討了採用綠色材料的戰略意義,分析了其減少環境影響的效益,並比較了OEM的方法。報告也探討了監管格局和未來趨勢,為未來採用永續材料提供了藍圖。

鋼、鋁和基於石化燃料的塑膠等傳統汽車材料帶來了巨大的環境挑戰。

1.高碳足跡:這些材料的提取、加工和製造對溫室氣體排放有重大貢獻。

2.資源枯竭:對石化燃料和金屬礦石等有限資源的依賴引發了人們對資源枯竭和供應鏈脆弱性的擔憂。

3.污染和廢棄物:製造過程和廢棄產品的處理會造成污染並產生垃圾掩埋廢棄物。

作為傳統材料的替代品,OEM擴大在車輛內部各種應用中使用環境永續材料,例如再生塑膠、再生寶特瓶、再生金屬、永續纖維、植物來源複合材料、生質塑膠、植物和樹木以及消費後有機廢棄物,以提供輕量化和永續的優勢。再生塑膠和金屬在汽車產業應用最為廣泛。與其他綠色材料相比,它們兼具成本效益、減少碳排放和循環經濟效益,使其成為OEM的首選。

然而,在這些材料全面應用於汽車之前,仍有許多挑戰。引進綠色永續材料需要巨額投資,這對中小型汽車製造商來說尤其沉重。收集和回收流程不夠完善,無法以與原料價格相媲美的價格獲得高品質的再生產品。儘管生物基材料環保,但由於採購方式低效率(例如砍伐樹木)、某些材料的生物分解性潛力低以及生產成本高昂,它們並非完全永續。

報告的基準年為2024年,對每種材料進行全面分析,討論汽車生態系統中的各種舉措,並強調材料的永續性潛力、趨勢分析和戰略發展,以全面了解行業趨勢。

三大戰略挑戰對汽車製造業的影響

地緣政治動盪

為什麼?

  • 嚴格的環境法規促使OEM製造商在車輛中使用可回收和環保的材料,以減少車輛整個生命週期內的碳排放。
  • 例如,到2030年,歐盟委員會計劃要求OEM在汽車中使用25%的再生塑膠,其中四分之一來自報廢汽車(ELV)。

Frost的觀點

  • 在未來三到五年內,預計主要的OEM將實施封閉式流程,將回收材料納入汽車中,因為與採購和生產原始材料相比,這可以降低生產成本。
  • 儘管人們認為永續實踐會帶來好處,但電動車銷售放緩和補貼終止等經濟逆風可能會導致全球OEM採用永續實踐的速度放緩。

內部挑戰

為什麼?

  • 對碳中和的承諾推動了OEM製造工廠中永續和綠色實踐的整合。
  • 綠色材料為合成材料提供了環保的替代品,但OEM面臨多重挑戰,從採購到製造,再到將其整合到複雜的車輛中。

Frost的觀點

  • 未來幾年,天然植物纖維和生物基聚合物的採用可能會因採購、供應鏈物流和加工複雜性相關的成本障礙而受到阻礙。
  • 在未來三到五年內,OEM將越來越青睞塑膠、鋼和鋁等再生材料,因為它們比原生材料更具成本效益。

顛覆性技術

為什麼?

  • 化學回收製程(例如熱解)用於從現有塑膠和消費後廢棄物回收塑膠。
  • 區塊鏈和人工智慧(AI)等數位工具可以透過追蹤原料來源實現永續和道德的採購,提高供應鏈透明度。

Frost的觀點

  • 減少碳足跡並使汽車行業成為永續製造實踐的領導者的努力將取決於全面採用數位解決方案(區塊鏈、數位雙胞胎、生成人工智慧等),但這些努力只有在2030年之後才會普及。

分析範圍

  • 本研究分析了汽車中不同類型綠色材料的採用情況,並重點介紹了行業OEM所採用的各種舉措。
  • OEM正積極將環境永續材料融入其車型中,以滿足各監管機構設定的脫碳目標,並確保長期永續的供應鏈和具有永續效益的生產方法。
  • 在車輛中使用環保材料有助於減少溫室氣體排放、掩埋和海洋的負擔以及焚燒報廢汽車造成的空氣污染。
  • 本研究透過全面審視汽車生態系統中的各種環保舉措、強調各種材料的永續性潛力並討論策略發展,提供了對產業發展軌蹟的整體看法。
  • 本研究的地理範圍為全球,僅分析綠色材料的車載應用。

成長動力

  • 監管影響:許多國家(特別是歐盟、印度等)都實施了嚴格的汽車報廢和回收法規以及強力的生產者延伸責任(EPR)框架,這導致汽車行業的報廢材料回收率更高、回收力度活性化以及汽車報廢計劃高效。
  • 保持穩定的供應鏈:OEM越來越希望保持其供應鏈的穩定和不間斷,減少對原料的依賴,同時在其車輛中採用更多可回收和環保的材料。
  • 日益重視永續性:汽車生產過程中的永續性發展日益受到重視。使用再生材料(塑膠、金屬等)和生物基替代品有助於減少汽車製造對環境的影響。
  • 擴大電動車電池生產規模:為了滿足全球電動車需求,電池生產必須迅速擴張,以滿足全球能源儲存解決方案的需求。OEM正致力於電池材料回收利用,以滿足生產新型電動車電池所需的鋰、鎳和鈷等材料日益成長的需求。

主要競爭對手

  • Stellantis
  • Volkswagen
  • Ford Motors
  • General Motors
  • Volvo
  • BMW
  • Mercedes-Benz
  • Porsche
  • Renault
  • Kia Motors
  • Nissan
  • Mitsubishi
  • Maserati
  • Fisker Ocean
  • Knauf Industries
  • ECONYL
  • Covestro
  • LyondellBasell
  • Rever Corporation
  • Bcomp
  • Green Dot Bioplastics
  • NatureWorks
  • Cruz Foam
  • Redwood Materials
  • Li-Cycle
  • Glencore International
  • Primobius
  • Retriev Technologies
  • Umicore
  • Ascend Elements
  • RecycliCo Battery Materials
  • Novelis
  • Schnitzer Steel
  • Constellium
  • Aurubis
  • Nth Cycle
  • Hydro
  • UBQ Materials
  • Genecis Bioindustries
  • Continental
  • Toyoda Gosei Co. Ltd.

成長抑制因素

  • 實施成本高:在材料使用、能源產出等領域採用綠色永續材料需要龐大投資,對汽車OEM,尤其是中小型汽車廠商帶來壓力。
  • 複雜的加工要求:回收材料必須經過加工和精製才能達到最佳品質標準。例如,天然纖維具有吸水性,這意味著它們在潮濕環境中尺寸不穩定,機械性能也會下降,因此需要更精細的處理。
  • 供不應求:綠色材料供應鏈尚未成熟,導致OEM難以從多個來源持續穩定地獲得汽車生產所需的材料(如塑膠廢棄物和天然纖維材料)供應,這可能導致採購成本增加。
  • 僅限於豪華車車主:一些定位為塑膠和皮革替代品的環保材料比傳統材料至少貴20%,減緩了它們在大眾汽車中的普及。

目錄

成長要素

  • 成長動力
  • 成長抑制因素
  • 汽車產業傳統材料面臨的挑戰
  • 汽車綠色和永續材料概述
  • 汽車綠色材料的關鍵類別

成長環境

  • 關鍵要點:
  • 汽車產業綠色材料的演變
  • 汽車綠色材料分析
  • 影響汽車產業採用綠色材料的法規
  • 汽車製造商選擇性採用綠色材料
  • 汽車綠色材料的未來成長潛力
  • OEM比較分析:綠色材料採用情況

汽車中的再生材質:塑膠、橡膠、金屬

  • 汽車再生材料的主要類別
  • 汽車回收:概述
  • 再生塑膠在汽車中的應用:亮點
  • 汽車主要使用塑膠概述
  • 再生塑膠在汽車中的應用分析
  • 再生塑膠在汽車中的用途
  • 由再生塑膠製成的環保布料
  • 汽車產業塑膠回收再利用面臨的挑戰
  • 主要OEM再生塑膠利用現況及未來展望
  • 案例研究:Stellantis 對再生塑膠的使用
  • 再生橡膠在汽車中的應用:亮點
  • 再生橡膠在汽車上的應用
  • 案例研究:Continental回收輪胎
  • 再生金屬在汽車中的應用:亮點
  • 汽車主要使用金屬概況
  • 金屬回收在汽車產業的意義
  • 閉合迴路金屬OEM閉迴路鋁回收
  • 汽車業的再生金屬
  • 汽車回收材料的主要經驗教訓

汽車電池回收

  • 汽車中回收電池的使用:亮點
  • 從電動車電池回收回收的關鍵材料
  • 電動汽車電池類型和回收潛力
  • 電動車電池回收市場前景亮點
  • 管理電動車電池回收的關鍵法規
  • 案例研究:Mercedes-Benz電動汽車電池回收
  • 電動汽車電池回收產業的努力
  • 重點

汽車中的生物基材料

  • 汽車中生物材料的主要類別
  • 為什麼汽車產業要在汽車中使用生物材料?
  • 生物基聚合物在汽車中的應用:亮點
  • 概述和生物分解性
  • OEM使用生物基聚合物的舉措
  • 汽車中的天然纖維:亮點
  • 傳統纖維與天然纖維
  • 概述和生物分解性
  • 天然纖維汽車的重大舉措
  • 天然纖維OEM舉措
  • 汽車有機廢棄物利用:亮點
  • 汽車有機廢棄物:產業措施與挑戰
  • 案例研究:Kia汽車使用的生物基材料
  • 關鍵點

成長機會宇宙

  • 成長機會1:回收可實現高效率的廢棄物處理
  • 成長機會2:汽車設計應考慮綠色材料策略
  • 成長機會3:回收電池材料對於電動車循環經濟非常重要

附錄與後續步驟

  • 成長機會的益處和影響
  • 後續步驟
  • 附件列表
  • 免責聲明
簡介目錄
Product Code: PFK2-44

Government Regulations and Environmental Concerns Drive Future Growth Potential of Green and Eco-Friendly Materials

The automotive industry is undergoing a profound shift towards sustainability, driven by environmental regulations, consumer demand, and a growing awareness of the environmental impact of traditional materials. This report comprehensively analyzes green materials in the automotive sector, examining their definition, evolution, key categories, and applications. The report delves into the strategic implications of adopting green materials, analyzing their environmental impact reductions and comparing OEM approaches. The report also explores the regulatory landscape and future trends, providing a roadmap for sustainable material adoption in the future.

Traditional automotive materials, such as steel, aluminum, and plastics derived from fossil fuels, pose significant environmental challenges:

1. High Carbon Footprint: These materials' extraction, processing, and manufacturing contribute significantly to greenhouse gas emissions.

2. Resource Depletion: Reliance on finite resources like fossil fuels and metal ores raises concerns about resource depletion and supply chain vulnerability.

3. Pollution and Waste: Manufacturing processes and end-of-life disposal generate pollution and contribute to landfill waste.

As an alternative to traditional materials, OEMs are increasingly experimenting with green and sustainable materials such as recycled plastics, recycled PET bottles, recycled metals, natural fibers, plant-based composites, bioplastics, and organic wastes from plants, trees, and consumers in different automotive applications within a car to offer lightweight and sustainable benefits. Recycled plastics and metals are the most adopted in the automotive industry. It provides a compelling combination of cost-effectiveness, reduced carbon emission benefits, and circular economy advantages compared with other green materials, making it the leading choice among OEMs.

However, challenges persist with the full-scale implementation of these materials in vehicles. Implementing green and environmentally sustainable materials involves huge investments, which especially burdens small- and medium-scale automotive OEMs. Recovery and recycling processes are not compelling enough to obtain high-quality recycled products at a cost that can compete with primary raw material prices. Though bio-based materials are environmentally friendly, they are not entirely sustainable owing to inefficient sourcing methods (e.g., deforestation of trees), low biodegradability potential in some materials, and higher production costs.

The base year of the report is 2024. It comprehensively analyzes each material and discusses different initiatives in the automotive ecosystem, highlighting the sustainability potential of materials, trend analysis, and strategic developments to provide a comprehensive understanding of the industry's trajectory.

The Impact of the Top 3 Strategic Imperatives on the Automotive Production Industry

Geopolitical Chaos

Why:

  • Strict environmental regulations are increasingly forcing OEMs to implement recycled and eco-friendly materials in vehicles and reduce carbon emissions throughout the vehicle life cycle.
  • For example, by 2030, the EU Commission will require OEMs to use 25% recycled plastics in their vehicles, with a quarter of it coming from end-of-life vehicles (ELVs).

Frost Perspective:

  • In the next 3 to 5 years, major OEMs will enact closed-loop processes to incorporate recycled materials into their vehicles. This is because of the reduced production costs when compared to virgin material sourcing and production.
  • Economic headwinds, including a slowdown in EV sales and withdrawn subsidies, will contribute to the global slowdown of sustainable practices by OEMs despite the recognized benefits.

Internal Challenges

Why:

  • Carbon neutrality commitments drive the integration of sustainable and green practices at OEM manufacturing plants.
  • Though green materials are eco-friendly alternatives to synthetic counterparts, OEMs face multiple challenges, from sourcing to manufacturing processes to integrating them into the complex vehicles.

Frost Perspective:

  • The adoption of natural plant fibers and bio-based polymers will be hindered over the next few years by cost barriers associated with sourcing, supply chain logistics, and processing complexities.
  • In the next 3 to 5 years, OEMs will increasingly favor recycled materials like plastics, steel, and aluminum due to their cost-effectiveness compared to virgin materials.

Disruptive Technologies

Why:

  • Chemical recycling processes, such as pyrolysis, are used to recycle plastics from existing plastics and consumer waste.
  • Digital tools like blockchain and artificial intelligence (AI) enhance supply chain transparency by tracing raw material origins for sustainable and ethical sourcing.

Frost Perspective:

  • Efforts to both reduce carbon footprints and position the automotive industry as a leader in sustainable manufacturing practices will rely on full-scale adoption of digital solutions (such as blockchain, digital twins, and generative AI). Yet, these efforts will not be widespread until after 2030.

Scope of Analysis

  • This study analyzes the adoption of different types of green materials in cars, providing highlights on the different initiatives adopted by OEMs in the industry.
  • OEMs are actively embracing environmentally sustainable materials in their vehicle models to meet the decarbonization goals set forth by various regulators and to make their supply chain sustainable and manufacturing practices cost-effective in the long run.
  • Adopting green materials in vehicles can reduce greenhouse gas emissions and their burden on landfills, oceans, and air pollution caused by the burning of scrap from ELVs.
  • The study offers a holistic view of the different eco-friendly initiatives in the automotive ecosystem, highlights the sustainability potential of different materials, and discusses strategic developments to provide a comprehensive view of the industry's trajectory.
  • The geographical scope of this study is global and only analyzes in-vehicle applications of green materials.

Growth Drivers

  • Regulatory impact: Many countries (e.g., especially the EU, India) are enforcing strict ELV and recycling regulations and strong extended producer responsibility (EPR) frameworks. This is eventually leading to better scrap material recovery, increasing recycling initiatives, and efficient vehicle disposal projects among automakers in the industry.
  • Maintaining a stable supply chain: OEMs are increasingly looking at making their supply chain stable and uninterrupted, and reducing their dependence on virgin materials while using more recycled and eco-friendly materials in their vehicles.
  • Growing sustainability awareness: There is a growing emphasis on implementing sustainability in automotive production processes. Using recycled materials (e.g., plastics, metals) and bio-based alternatives will reduce the environmental impact of vehicle manufacturing.
  • Battery production scaling for EVs: Global EV demand requires rapid scaling of battery production to meet the global need for energy storage solutions. OEMs are initiating battery material recycling initiatives to meet the growing demand for materials such as lithium, nickel, and cobalt for new EV battery production.

Key Competitors

  • Stellantis
  • Volkswagen
  • Ford Motors
  • General Motors
  • Volvo
  • BMW
  • Mercedes-Benz
  • Porsche
  • Renault
  • Kia Motors
  • Nissan
  • Mitsubishi
  • Maserati
  • Fisker Ocean
  • Knauf Industries
  • ECONYL
  • Covestro
  • LyondellBasell
  • Rever Corporation
  • Bcomp
  • Green Dot Bioplastics
  • NatureWorks
  • Cruz Foam
  • Redwood Materials
  • Li-Cycle
  • Glencore International
  • Primobius
  • Retriev Technologies
  • Umicore
  • Ascend Elements
  • RecycliCo Battery Materials
  • Novelis
  • Schnitzer Steel
  • Constellium
  • Aurubis
  • Nth Cycle
  • Hydro
  • UBQ Materials
  • Genecis Bioindustries
  • Continental
  • Toyoda Gosei Co. Ltd.

Growth Restraints

  • High implementation costs: Implementing green and environmentally sustainable materials in areas such as material usage and energy generation involves huge investments, burdening automotive OEMs, especially small- and medium-scale automakers.
  • Complex processing requirements: Recycled materials must be processed and refined to meet the optimal quality standards. For instance, natural fibers have water-absorbing properties, leading to dimensional instability and reduced mechanical properties in humid environments, which requires higher processing treatments.
  • Lack of steady supply of eco-friendly materials: The supply chain of green materials is immature and could be challenging for OEMs to get a steady supply (e.g., of plastics waste, natural fiber material) from multiple sources on a consistent basis for their vehicle production, thereby leading to increased sourcing costs.
  • Limited only to luxury vehicle owners: Some of the eco-friendly materials that are positioned as alternatives to plastic and leather are at least 20% more expensive when compared to the traditional materials, which will slow their adoption in mass market vehicles.

Table of Contents

Growth Generator

  • Growth Drivers
  • Growth Restraints
  • Challenges of Traditional Materials in Automotive Industry
  • Green vs. Sustainable Materials in Cars: Overview
  • Key Categories of Green Materials in Cars

Growth Environment

  • Key Takeaways
  • Evolution of Green Materials in Automotive Industry
  • Analysis of Green Materials Used in Vehicles
  • Regulations Influencing Adoption of Green Materials in Automotive Industry
  • Select Green Material Implementation by OEMs in Vehicles
  • Future Growth Potential for Green Materials in Cars
  • OEM Comparative Analysis: Adoption of Green Materials

Recycled Materials in Cars Plastics, Rubber, Metals

  • Key Categories of Recycled Materials in Cars
  • Recycling in Automotive: Overview
  • Recycled Plastics Use in Cars: Highlights
  • Overview of Key Plastics Used in Cars
  • Recycled Plastics Usage Analysis in Vehicles
  • Recycled Plastics Application in Cars
  • Eco-friendly Fabrics from Recycled Plastics: Industry Initiatives
  • Challenges to Plastics Recycling in Automotive Industry
  • Recycled Plastics Use and Future Vision by Key OEMs
  • Case Study: Recycled Plastics Usage By Stellantis
  • Recycled Rubbers Use in Cars: Highlights
  • Recycled Rubber Application in Cars
  • Case Study: Recycled Tires by Continental
  • Recycled Metals Use in Cars: Highlights
  • Overview of Key Metals Used in Cars
  • Significance of Metal Recycling in Automotive Industry
  • Recycled Metals: Closed-loop Aluminum Recycling by OEMs
  • Recycled Metals Initiatives in the Automotive Industry
  • Key Takeaways from Recycled Materials in Cars

Recycled Batteries in Cars

  • Recycled Batteries Use in Cars: Highlights
  • Key Materials Recovered from EV Battery Recycling
  • EV Battery Types and Salvageability
  • EV Battery Recycling Market Outlook: Highlights
  • Major Regulations Governing EV Battery Recycling
  • Case Study: Mercedes-Benz EV Battery Recycling
  • EV Battery Recycling: Industry Initiatives
  • Key Takeaways

Bio-based Materials in Cars

  • Key Categories of Bio-based Materials in Cars
  • Why is the Automotive Industry Using Bio-based Materials in Cars?
  • Bio-based Polymers Use in Cars: Highlights
  • Overview and Potential for Biodegradability
  • Bio-based Polymers Usage: Select Initiatives by OEMs
  • Natural Fibers Use in Cars: Highlights
  • Comparison of Traditional Fiber vs. Natural Fibers
  • Overview and Potential for Biodegradability
  • Natural Fibers: Key Initiatives in Cars
  • Natural Fibers: Select Initiatives by OEMs
  • Organic Waste Use in Cars: Highlights
  • Organic Wastes in Automotive: Industry Initiatives and Key Challenges
  • Case Study: Use of Bio-materials in Kia's Vehicles
  • Key Takeaways

Growth Opportunity Universe

  • Growth Opportunity 1: Recycling will Enable Efficient EOL Disposal Practices
  • Growth Opportunity 2: Green Material Strategies Should be Considered during Vehicle Design
  • Growth Opportunity 3: Battery Materials Recycling is Crucial for EV Circular Economy

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • List of Exhibits
  • Legal Disclaimer