封面
市場調查報告書
商品編碼
1750750

分析師對基於代理的人工智慧的看法

Analyst Perspective on Agentic AI

出版日期: | 出版商: Frost & Sullivan | 英文 14 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

2025年至2027年的預期

人工智慧(AI)已存在數十年,客服中心產業也已利用 AI 多年,但近年來 AI 的進步速度很快。業界對下一代 GenAI(也稱為基於代理的AI 或自主 AI)的期望已在2024年底有所提升。基於代理的AI 可以充當黏合劑,跨資料孤島協調複雜的流程,同時即時適應,並與編配內外眾多應用程式中的其他數位代理、機器人、機器人和人類合作。

雖然基於代理的人工智慧的前身能力強大,但它們主要受限於基於規則的工作流程,無法自主行動,例如自主決策、執行任務或創建工作流程。在引進 LLM 之前,竭盡所能,使自助服務在品質和功能上更加人性化。隨著 LLM 的成熟和使用量的增加,邁向能夠自主行動、幾乎無需人工干預的數位化勞動力。透過輸入使用者的使命、願景以及與問題或情況相關的背景資訊,LLM 可以收集資訊、進行分析、規劃、決策,並代表使用者採取行動。

那麼,基於代理的人工智慧是什麼?它與 GenAI、ChatGPT 等技術有何不同?本文是分析師對基於代理的人工智慧的觀點,並探討了企業和解決方案提供者在2025-2027年期間應該期待什麼。

目錄

基於代理的人工智慧開發在客服中心即服務(CCaaS)產業中的策略重要性

背景與定義:什麼是基於代理的人工智慧以及它有何不同?

  • 基礎模型

基於代理的人工智慧是下一代副駕駛嗎?

  • 基於代理的人工智慧系統
  • AI技術堆疊多種多樣

優勢/促進因素

  • 適應性
  • 更佳理解客戶情緒和意圖
  • 自學與知識管理
  • 個人化
  • 遵守
  • 積極性
  • 推動數位化

基於代理的人工智慧開啟了令人著迷的使用案例

  • 客戶服務
  • 人力資源:招募、聘用、入職、指導、培訓
  • 現場服務
  • IT/網路/安全
  • 詐欺檢測/預防
簡介目錄
Product Code: KB82-76

What to Expect in 2025-2027

Although artificial intelligence (AI) has been around for decades, and the contact center industry has been leveraging it for years, recent advancements in AI have rapidly accelerated. The latter half of 2024 spouted industry excitement for next-level GenAI - agentic AI, also sometimes called autonomous AI. Agentic AI can act as the glue for orchestrating complex processes across data silos, adapting in real-time, in innumerable applications - both inside and outside of an organization, in concert with other digital agents, bots, robots and humans.

The precursors to agentic AI, while capable, were primarily constrained by rules-based workflows and did not act independently, as in proactively making decisions or carrying out tasks and creating workflows on their own. Before the addition of LLMs, we did what we could to make self-service more human-like in quality and capability. The maturation and use of increasingly more capable LLMs lead us towards a digital workforce that can act autonomously, with little human intervention. Designed with input on the user's mission or vision, along with context on the issue or situation, they can gather information, analyze, plan, make decisions, and act on behalf of the user and act more like the user.

So, what is agentic AI, and how does it differ from GenAI, ChatGPT, and the rest? This insight is an analyst's perspective on agentic AI and what businesses and solution providers should expect throughout the 2025-2027 timeframe.

Table of Contents

Strategic Imperatives for the Development of Agentic AI in the Contact Center as a Service CCaaS Industry

Context and Definition: What is Agentic AI and How is it Different?

  • Foundational Models

Is Agentic AI a Next-gen Copilot?

  • Agentic AI Systems
  • AI Tech Stack is Varied

Benefits/Drivers

  • Adaptability
  • Better Understanding of Customer Sentiment and Intent
  • Self-learning and Knowledge Management
  • Personalization
  • Compliance
  • Proactivity
  • Driving Towards Digital

Agentic AI Opens Up Tantalizing Use Cases

  • Customer Service
  • HR - Recruitment, Hiring, Onboarding, Coaching, and Training
  • Field Service
  • IT/Networking/Security
  • Fraud Detection/Prevention