智能廢物管理 (SWM) 支持技術的進步
市場調查報告書
商品編碼
1179815

智能廢物管理 (SWM) 支持技術的進步

Technological Advancements Enabling Smart Waste Management (SWM)

出版日期: | 出版商: Frost & Sullivan | 英文 51 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

解決日益嚴重的廢物問題的最有效方法是採用智能廢物管理 (SWM) 技術,該技術可提供數據智能和對廢物產生模式的實時洞察。廢物處理運營商可以就其廢物收集操作做出更好的決策並提高收集和回收率。 SWM 技術包括使用傳感器、物聯網和機器人技術,使城市能夠順利過渡到採用數據驅動的廢物收集、分類和回收。

本報告探討了全球智能廢物管理 (SWM) 的使能技術,提供了技術概述、技術開發和採用的驅動因素和製約因素分析、技術概況、創新趨勢、知識產權和增長分析機會。

內容

戰略要務

  • 增長問題
  • 戰略要務 8 (TM)
  • 三大戰略要務的影響
  • 增長機會推動增長PipelineEngine (TM)
  • 調查方法

增長機會分析

  • 分析範圍
  • 分類
  • 增長動力
  • 抑制增長的因素

技術快照

  • 全球人口和廢物產生量的增加要求引入廉價的廢物管理解決方案
  • SWM:實現可持續發展的概述/好處
  • 數字化智能廢物管理價值鏈
  • 使用具有集成路線優化功能的智能傳感器和壓實機提高垃圾收集效率
  • 支持智能收集的廢物管理相關技術
  • 路線優化減少了垃圾收集時間並改善了服務
  • 基於雲的平台以及集成的分揀傳感器和機器人助力智能垃圾分類
  • 集成基於物聯網的技術可提高廢物管理的整體效率
  • 用於廢物管理的傳感器可實時監控廢物收集和分類
  • 成功案例:在舊金山部署城市級垃圾分類智能傳感器
  • 成功案例:在韓國首爾集成智能傳感器和壓實機
  • 成功案例:阿姆斯特丹採用圖像識別系統優化垃圾收集
  • 廢物管理:對實現聯合國可持續發展目標至關重要

創新生態系統:值得關注的公司

  • 利用智能傳感器和實時監控軟件平台加強廢物資產管理
  • 人工智能和機器人技術的結合將徹底改變廢物收集和回收
  • 安裝自動廢物輸送系統 (AWCS) 以實現有效的廢物管理
  • 配備傳感器的多用途高速機器人,可有效分類和管理垃圾
  • 用於廢物管理部門數字化和實時監控的端到端軟件平台
  • 物聯網傳感器與智能路由和資產跟蹤解決方案相結合,可實現有效的廢物管理

知識產權分析

  • 在過去三年中,中國在廢物管理研發活動方面處於行業領先地位

增長機會領域

  • 增長機會 1:提高分散式垃圾收集效率的自動化移動機器人
  • 增長機會 2:通過在住宅和工業部門安裝模塊化和智能堆肥機來管理有機廢物
  • 增長機會 3:電子廢物管理的戰略性公私合作 (PPP) 模式

附錄

下一步

簡介目錄
Product Code: DA8A

Smart Technologies Based on Cross-industry Convergence Enhance the Efficiency of Waste Management Practices

The World Bank estimates that rapid population growth and urbanization have resulted in a global average waste generation of about 0.79 kilograms per citizen per day as of 2022. It predicts a direct relationship between waste generation and income levels and projects the daily per capita waste generation in high-income countries to increase by 19.0% by 2050 when compared to 2020 levels. Waste generation levels in developing and emerging economies are comparatively lower. However, the waste generation rate in these economies is estimated to increase by 40.0% by 2050 when compared to 2020 levels. The steady growth trajectory of waste generation will have detrimental implications on the environment, human health, and prosperity; therefore, it is necessary to improve waste collection and recycling rates to reduce the negative impact while extracting more valuable resources from waste to enable a circular economy.

The most efficient way of handling the growing waste problem is the adoption of SWM technologies that offer data intelligence and real-time insights into waste generation patterns. This enables waste operators to improve decision-making regarding waste collection operations, ultimately increasing collection and recycling rates. SWM technologies include the use of sensors, IoT, and robots to enable a smooth transition for cities to adopt data-driven waste collection, sorting, and recycling.

This Frost & Sullivan study covers the following topics:

  • Overview of SWM and current trends, along with factors driving the development and adoption of SWM technologies
  • Major innovations and R&D activities in the utilization of SWM technologies
  • Successful case studies based on the utilization of SWM technologies
  • Patent landscape and growth opportunities enabling SWM technologies

Table of Contents

Strategic Imperatives

  • Why Is It Increasingly Difficult to Grow?The Strategic Imperative 8™: Factors Creating Pressure on Growth
  • The Strategic Imperative 8™
  • The Impact of the Top 3 Strategic Imperatives on the Smart Waste Management (SWM) Industry
  • Growth Opportunities Fuel the Growth Pipeline Engine™
  • Research Methodology

Growth Opportunity Analysis

  • Scope of Analysis
  • Segmentation
  • Growth Drivers
  • Growth Restraints

Technology Snapshot

  • Global Population Growth Along with the Subsequent Increase in Waste Generation Mandates the Deployment of Affordable SWM Solutions
  • SWM-Overview and Benefits to Achieve Sustainability
  • Digitalized and Intelligent Waste Management Value Chain
  • Use of Smart Sensors and Compactors Integrated with Route Optimization Enhances Waste Collection Efficiency
  • Technologies Associated with SWM Aiding Smart Collection
  • Route Optimization Reduces Waste Collection Time and Improves Services
  • Sorting Sensors and Robots Integrated with Cloud-based Platforms Enhance Smart Waste Classification
  • Integration of IoT-based Technologies Enhances Overall Efficiency of Waste Management
  • Sensors Used in SWM for Real-time Monitoring of Waste Collection and Classification
  • Successful Case Studies-San Francisco is Deploying Smart Sensors for City-level based Waste Sorting
  • Successful Case Studies-Seoul City in South Korea is Integrating Smart Sensors with Compactors to Increase Waste Collection Efficiency
  • Successful Case Studies-Amsterdam is Adopting Image Recognition Systems to Optimize Waste Collection
  • SWM Will be Critical to Achieving UN Sustainable Development Goals

Innovation Ecosystem-Companies to Watch

  • Utilization of Smart Sensors and Real-time Monitoring Software Platforms to Enhance Waste Asset Management
  • Integration of AI with Robotics to Revolutionize Waste Collection and Recovery
  • Deploying Automated Waste Conveying Systems (AWCS) for Efficient SWM
  • Multipurpose and High-speed Robots Equipped with Sensors for Effective Waste Sorting and Management
  • End-to-End Software Platform for the Digitalization and Real-time Monitoring of the Waste Management Sector
  • IoT Sensors Coupled with Intelligent Routing and Asset Tracking Solutions for Effective SWM

IP Analysis

  • China Led the Industry in SWM R&D Activity over the Past 3 Years

Growth Opportunity Universe

  • Growth Opportunity 1: Autonomous Mobile Robots to Improve the Efficiency of Decentralized Waste Collection
  • Growth Opportunity 1: Autonomous Mobile Robots to Improve the Efficiency of Decentralized Waste Collection (continued)
  • Growth Opportunity 2: Management of Organic Waste by the Installation of Modular and Smart Composters in Residential and Industrial Sectors
  • Growth Opportunity 2: Management of Organic Waste by the Installation of Modular and Smart Composters in Residential and Industrial Sectors (continued)
  • Growth Opportunity 3: Strategic Private Public Partnership (PPP) Models for the Management of Electronic Waste
  • Growth Opportunity 3: Strategic Private Public Partnership (PPP) Models for the Management of Electronic Waste (continued)

Appendix

  • Technology Readiness Levels (TRL): Explanation

Next Steps

  • Your Next Steps
  • Why Frost, Why Now?
  • Legal Disclaimer