全球永續酵素市場(2026-2036)
市場調查報告書
商品編碼
1874695

全球永續酵素市場(2026-2036)

The Global Sustainable Enzymes Market 2026-2036

出版日期: | 出版商: Future Markets, Inc. | 英文 156 Pages, 35 Tables, 9 Figures | 訂單完成後即時交付

價格

永續酶市場是工業生物技術領域最具活力且成長最快的細分市場之一。該市場涵蓋專門開發和用於減少環境影響、實現循環經濟模式以及替代製造業中有害化學製程的工業酵素。對永續性的關注正在從根本上重塑對工業酶的需求。儘管在洗滌劑、食品加工和紡織等傳統應用領域持續成長,但新興的以永續性為中心的應用正在推動市場快速擴張。酵素法塑膠和紡織品回收或許是最具變革性的發展。酵素能夠分解PET塑膠和聚酯紡織品,將其轉化為可無限循環利用的優質單體。這項技術有助於應對每年1.5億至2億噸的全球塑膠垃圾挑戰,同時與原生生產相比,可減少30%至50%的二氧化碳排放。

生物燃料生產仍然是關鍵推動因素,纖維素酶和半纖維素酶可將農業廢棄物轉化為再生燃料。紙漿和造紙業正擴大採用酵素漂白來消除氯基化學品,紡織品製造商也正在使用酵素來取代織物加工中的強酸和強鹼。這些替代方案帶來了顯著的環境效益,包括降低 50-70% 的能源消耗、降低 40-60% 的用水量,以及徹底消除有害化學廢物。

人工智慧和機器學習正在革新酶的開發,將開發時間從 3-5 年縮短至 6-18 個月,並將成本降低 50-70%。生成式人工智慧模型繞過了傳統的定向進化試誤法,透過計算工程改造酶,使其具備所需的特性。這種加速使得快速開發用於新型永續發展應用的專用酵素成為可能。蛋白質工程的進步正在創造出能夠在以往需要化學催化劑的嚴苛工業環境中發揮作用的極端酵素。增強的耐熱性、耐酸鹼性和耐溶劑性拓寬了酵素的應用範圍,而酵素的重複利用和固定化技術則提高了製程的經濟性。

永續酵素市場與循環經濟原則密不可分。除了回收之外,酵素還能實現農業和工業廢棄物的增值利用,將副產品轉化為高價值的化學品、材料和燃料。與全細胞發酵相比,使用分離酶的無細胞生物催化系統可節省 60-80% 的能源,並透過簡化純化過程獲得更清潔的產品。

本報告深入分析了全球永續酵素市場,並提供了關於市場動態、技術創新和競爭格局的見解。

目錄

第一章 摘要整理

  • 工業生物製造
  • 工業生物製造工藝
  • 永續工業酵素市場
  • 酵素在現代工業中的重要性
  • 市場推動因素
  • 市場阻礙因素
  • 規模化生產與製造挑戰
  • 工業價值鏈
  • 監理環境
    • 概述
    • 酵素新用途的監管審批
  • 工業酵素的技術進步與新興應用
    • 蛋白質工程、定向演化
    • 宏基因體學方法
    • 酵素固定化技術
    • 計算酵素設計
    • 製藥與生技產業
    • 化妝品和個人護理
    • 生物修復
    • 奈米技術
    • 3D生物列印
    • 酵素回收與循環材料
  • 工業酵素的永續性和環境問題
    • 工業酵素在永續生產中的作用
    • 酵素生產的生命週期評估
    • 酵素產業的循環經濟舉措

第二章 引言

  • 工業酵素的分類
  • 工業酵素的類型
    • 碳水化合物酶
    • 蛋白酶
    • 脂肪酶
    • 纖維素酶
    • 澱粉酶
    • 其他
  • 生產方法
    • 動植物萃取
    • 微生物發酵
    • 基因改造生物
    • 無細胞酵素系統

第三章 工業用酵素市場

  • 技術/材料分析
    • 洗滌劑用酶
    • 食品加工用酶
    • 紡織加工用酶
    • 造紙和紙漿加工用酶
    • 皮革加工用酶
    • 生質燃料生產用酶
    • 動物飼料用酶
    • 醫藥與診斷用酶
    • 廢棄物管理與生物修復用酶
    • 農業和作物改良用酶
  • 市場分析
    • 主要公司與競爭對手市場概況
    • 市場成長推動因素及趨勢
    • 未來展望
    • 風險與機遇
    • 定價

第四章:全球收入

  • 依應用市場劃分
  • 依類型劃分
  • 依原料劃分
  • 依形態劃分

第五章 公司簡介(85家公司簡介)

第六章:研究方法

第七章:參考文獻

The sustainable enzymes market represents one of the most dynamic and rapidly growing segments within industrial biotechnology. This market encompasses industrial enzymes specifically developed and applied to reduce environmental impact, enable circular economy models, and replace harmful chemical processes across manufacturing sectors. Sustainability concerns are fundamentally reshaping industrial enzyme demand. Traditional applications in detergents, food processing, and textiles continue to grow, but emerging sustainability-focused applications are driving accelerated expansion. Enzymatic recycling of plastics and textiles represents perhaps the most transformative development, with enzymes capable of depolymerizing PET plastics and polyester textiles into virgin-quality monomers for infinite recycling. This technology addresses the global challenge of 150-200 million tonnes of annual plastic waste while reducing carbon emissions by 30-50% compared to virgin production.

Biofuel production remains a significant driver, with cellulases and hemicellulases enabling conversion of agricultural waste into renewable fuels. The pulp and paper industry increasingly adopts enzymatic bleaching to eliminate chlorine-based chemicals, while textile manufacturers use enzymes to replace harsh acids and alkalis in fabric processing. These substitutions deliver substantial environmental benefits: 50-70% energy reduction, 40-60% water savings, and elimination of toxic chemical waste streams.

Artificial intelligence and machine learning are revolutionizing enzyme development, reducing timelines from 3-5 years to 6-18 months while cutting costs by 50-70%. Generative AI models now design enzymes with desired properties computationally, bypassing traditional directed evolution's trial-and-error approach. This acceleration enables rapid development of specialized enzymes for emerging sustainability applications. Protein engineering advances have produced extremozymes functioning in harsh industrial conditions previously requiring chemical catalysts. Enhanced thermostability, pH tolerance, and solvent resistance expand enzyme applicability while improving process economics through enzyme reuse and immobilization technologies.

The sustainable enzymes market is intrinsically linked to circular economy principles. Beyond recycling applications, enzymes enable valorization of agricultural and industrial waste streams, converting by-products into valuable chemicals, materials, and fuels. Cell-free biocatalysis systems using isolated enzymes rather than whole-cell fermentation offer 60-80% energy reductions and cleaner products with simplified purification.

"The Global Sustainable Enzymes Market 2026-2036" provides critical insights into the global sustainable industrial enzymes market. As artificial intelligence revolutionizes enzyme design and enzymatic recycling emerges as a game-changing solution to plastic waste, understanding market dynamics, technological innovations, and competitive landscapes becomes essential for stakeholders across biotechnology, chemical manufacturing, textiles, food processing, and waste management sectors. The report provides exhaustive analysis of sustainable enzyme applications spanning detergents, food and beverage processing, textile manufacturing, biofuels production, pharmaceutical development, and the rapidly emerging enzymatic recycling sector. Special emphasis is placed on breakthrough technologies including AI-driven enzyme discovery, cell-free biomanufacturing systems, and enzymatic depolymerization of plastics and textiles-innovations that are fundamentally reshaping circular economy approaches and enabling virgin-quality material recovery from post-consumer waste streams.

With growing regulatory pressure for sustainable manufacturing, carbon emission reduction targets, and circular economy mandates, enzymes offer compelling advantages: 50-70% energy savings compared to chemical processes, 40-60% water consumption reduction, elimination of toxic chemical waste, and significantly lower carbon footprints. This report examines how these sustainability drivers are accelerating enzyme adoption across industries while analyzing the complex regulatory landscape, particularly the evolving recognition of enzymatic recycling as an official recycling pathway in key markets including the European Union, Germany, United States, and Asia-Pacific regions.

Market segmentation analysis covers enzyme types (carbohydrases, proteases, lipases, cellulases, amylases), sources (microbial, plant, animal), forms (liquid, powder, granular), and applications across ten major industrial sectors. Detailed revenue forecasts through 2036 quantify growth opportunities while identifying emerging applications in plastic degradation, textile recycling, and bio-based chemical production that represent the highest-growth segments.

The competitive landscape section profiles 84 leading companies and innovative startups driving sustainable enzyme innovation, from established multinational corporations to venture-backed biotechnology pioneers. Analysis encompasses technology platforms, production capabilities, strategic partnerships, funding rounds, and market positioning, providing decision-makers with actionable intelligence on competitive dynamics and potential collaboration opportunities.

Technology deep-dives examine protein engineering, directed evolution, metagenomic enzyme discovery, computational design using generative AI and machine learning, enzyme immobilization techniques for enhanced reusability, and integration of digital technologies with bioprocessing. Special sections address scale-up challenges, infrastructure development requirements, and capital investment considerations for moving technologies from laboratory to commercial production-critical factors determining market entry success and competitive advantage.

Report Contents Include:

  • Executive summary of sustainable enzymes market dynamics and growth projections
  • Comprehensive analysis of industrial biomanufacturing processes and classifications
  • Detailed market drivers, restraints, and regulatory landscape across major regions
  • Breakthrough technological advancements: AI-driven enzyme design, enzymatic recycling, cell-free systems
  • In-depth applications analysis across 10 industrial sectors with enzyme type specifications
  • Competitive landscape and strategic positioning of 84 key players and emerging innovators
  • Global revenue forecasts 2026-2036 segmented by application, type, source, and form
  • Price trend analysis and forecast through 2036
  • Infrastructure investment requirements and scale-up challenges
  • Circular economy integration strategies and sustainability metrics
  • 33 detailed data tables and 9 illustrative figures
  • Companies Profiled include: AgBiome, Agrivida, Amano Enzyme Inc., Aminoverse, Anodyne Chemistries, Ansa Biotechnologies, Apexzymes, Arctos, Arzeda, Atantares, Basecamp Research, BASF, Biocatalysts Ltd., BioBetter, Bio Fab NZ, BioMap, Biomatter, Biosyntia, Cambrium GmbH, Carbios, Cascade Biocatalysts Inc., CinderBio, Clariant AG, Codexis, Constructive Bio, Debut Biotechnology, Diffuse Bio, DSM-Firmenich, Dupont, Eco Fuel Technology Inc., Elemental Enzymes Inc., EnginZyme AB, EnPlusOne Biosciences, Enzyan Biocatalysis GmbH, Enzymaster, Enzymit, Enzyme, Enzymicals AG, Epoch Biodesign, Ester Biotech, Etcembly, Eversyn, eXoZymes Inc., FabricNano, Futurity Bio-Ventures Ltd., Gen3Bio, General Biological, Ginkgo Bioworks, Global Bioenergies SA, Honext Material SL, HydGene Renewables, Immobazyme, Imperagen Limited, Iogen Corporation, Johnson Matthey and more......

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Industrial Biomanufacturing
  • 1.2. Industrial Biomanufacturing Processes
  • 1.3. Sustainable Industrial Enzymes Markets
  • 1.4. Importance of Enzymes in Modern Industry
  • 1.5. Market Drivers
  • 1.6. Market Restraints
  • 1.7. Scale-Up and Manufacturing Challenges
  • 1.8. Industry Value Chain
  • 1.9. Regulatory Landscape
    • 1.9.1. Overview
    • 1.9.2. Regulatory Recognition of Emerging Enzyme Applications
      • 1.9.2.1. Enzymatic Recycling Regulatory Status
      • 1.9.2.2. Policy Evolution and Positive Signals
      • 1.9.2.3. Expected Regulatory Developments
      • 1.9.2.4. Impact on Market Development
      • 1.9.2.5. Broader Policy Implications
  • 1.10. Technological Advancements and Emerging Applications in Industrial Enzymes
    • 1.10.1. Protein Engineering and Directed Evolution
    • 1.10.2. Metagenomic Approaches
    • 1.10.3. Enzyme Immobilization Techniques
      • 1.10.3.1. Immobilization for Enzymatic Recycling Applications
      • 1.10.3.2. Emerging Immobilization Technologies
    • 1.10.4. Computational Enzyme Design
      • 1.10.4.1. Generative AI and Deep Learning Models
      • 1.10.4.2. Integration with Experimental Data
      • 1.10.4.3. Advanced Computational Techniques
      • 1.10.4.4. Applications and Impact
      • 1.10.4.5. Challenges and Future Directions
    • 1.10.5. Pharmaceutical and Biotechnology Industries
    • 1.10.6. Cosmetics and Personal Care
    • 1.10.7. Bioremediation
    • 1.10.8. Nanotechnology
    • 1.10.9. 3D Bioprinting
    • 1.10.10. Enzymatic Recycling and Circular Materials
      • 1.10.10.1. Plastic and Polyester Recycling
      • 1.10.10.2. Textile Recycling Applications
      • 1.10.10.3. Applicable Polymer Types
      • 1.10.10.4. Process Technology
      • 1.10.10.5. Environmental and Economic Benefits
      • 1.10.10.6. Design for Circularity
      • 1.10.10.7. Industry Adoption
      • 1.10.10.8. Challenges and Development Needs
  • 1.11. Sustainability and Environmental Considerations for Industrial Enzymes
    • 1.11.1. Role of Industrial Enzymes in Sustainable Production
    • 1.11.2. Life Cycle Assessment of Enzyme Production
    • 1.11.3. Circular Economy Initiatives in the Enzyme Industry

2. INTRODUCTION

  • 2.1. Classification of industrial enzymes
  • 2.2. Types of Industrial Enzymes
    • 2.2.1. Carbohydrases
    • 2.2.2. Proteases
    • 2.2.3. Lipases
    • 2.2.4. Cellulases
    • 2.2.5. Amylases
    • 2.2.6. Others
  • 2.3. Production Methods
    • 2.3.1. Extraction from Plant and Animal Sources
    • 2.3.2. Microbial Fermentation
    • 2.3.3. Genetically Engineered Organisms
    • 2.3.4. Cell-Free Enzyme Systems
      • 2.3.4.1. Cell-Free Enzyme Production
      • 2.3.4.2. Cell-Free Biocatalysis
      • 2.3.4.3. Commercial Applications
      • 2.3.4.4. Process Integration
      • 2.3.4.5. Comparison with Precision Fermentation

3. INDUSTRIAL ENZYMES MARKET

  • 3.1. Technology/materials analysis
    • 3.1.1. Detergent Enzymes
    • 3.1.2. Food Processing Enzymes
    • 3.1.3. Textile Processing Enzymes
    • 3.1.4. Paper and Pulp Processing Enzymes
    • 3.1.5. Leather Processing Enzymes
    • 3.1.6. Biofuel Production Enzymes
    • 3.1.7. Animal Feed Enzymes
    • 3.1.8. Pharmaceutical and Diagnostic Enzymes
    • 3.1.9. Waste Management and Bioremediation Enzymes
    • 3.1.10. Agriculture and Crop Improvement Enzymes
  • 3.2. Market analysis
    • 3.2.1. Key players and competitive landscape
    • 3.2.2. Market Growth Drivers and Trends
    • 3.2.3. Future outlook
    • 3.2.4. Risks and Opportunities
    • 3.2.5. Pricing
      • 3.2.5.1. Pricing Trends
      • 3.2.5.2. Factors Affecting Pricing
      • 3.2.5.3. Price Forecast

4. GLOBAL REVENUES

  • 4.1. By application market
  • 4.2. By type
  • 4.3. By source
  • 4.4. By form

5. COMPANY PROFILES(85 company profiles)

6. RESEARCH METHODOLOGY

7. REFERENCES

List of Tables

  • Table 1. Biomanufacturing revolutions and representative products
  • Table 2. Industrial Biomanufacturing categories
  • Table 3. Overview of Biomanufacturing Processes
  • Table 4. Market Drivers for Industrial Enzymes
  • Table 5. Market Restraints for Industrial Enzymes
  • Table 6. Scaling Challenges in Enzyme Production and Application
  • Table 7. Regulatory Status of Enzymatic Recycling by Region
  • Table 8. Comparison of Traditional vs. AI-Driven Enzyme Development
  • Table 9. Enzymatic Recycling vs. Traditional Recycling Methods
  • Table 10. Polymer Types Suitable for Enzymatic Recycling
  • Table 11. Circular Economy Benefits of Enzymatic Recycling
  • Table 12.Commonly Used Industrial Enzymes
  • Table 13. Industrial Enzyme Applications
  • Table 14. Comparative analysis of industrial enzyme manufacturing
  • Table 15. Key Properties and Advantages of Industrial Enzymes
  • Table 16. Comparison of Enzyme Production and Application Methods
  • Table 17. Types of Detergent Enzymes
  • Table 18.Types of Food Processing Enzymes
  • Table 19. Types of Textile Processing Enzymes
  • Table 20. Circular Economy Benefits of Enzymatic Recycling
  • Table 21. Types of Paper and Pulp Processing Enzymes
  • Table 22. Types of Leather Processing Enzymes
  • Table 23. Types of Biofuel Production Enzymes
  • Table 24. Types of Animal Feed Enzymes
  • Table 25. Types of Pharmaceutical and Diagnostic Enzymes
  • Table 26. Types of Waste Management and Bioremediation Enzymes
  • Table 27. Types of Agriculture and Crop Improvement Enzymes
  • Table 28. Comparison of enzyme types
  • Table 29. Key players in industrial enzymes
  • Table 30. Market Growth Drivers and Trends in industrial enzymes
  • Table 31. Risks and Opportunities in industrial enzymes
  • Table 32. Global revenues for industrial enzymes from to 2036, Billions USD
  • Table 33. Market Segmentation by Type of Industrial Enzymes 2023-2036 (Billion USD)
  • Table 34. Market Segmentation by Source of Industrial Enzymes 2023-2036 (Billion USD)
  • Table 35. Market Segmentation by Form of Industrial Enzymes 2023-2036 (Revenue Billion USD)
  • able 35. Market Segmentation by Form of Industrial Enzymes 2023-2036 (Revenue Billion USD)

List of Figures

  • Figure 1. Industry Value Chain Industrial Enzymes
  • Figure 2. Global revenues for industrial enzymes from to 2036, Billions USD
  • Figure 3. Market Segmentation by Type of Industrial Enzymes 2023-2036 (Billion USD)
  • Figure 4. Market Segmentation by Source of Industrial Enzymes 2023-2036 (Billion USD)
  • Figure 5. Market Segmentation by Form of Industrial Enzymes 2023-2036 (Revenue Billion USD)
  • Figure 6. Enzymatic recycling of plastics
  • Figure 7. sunliquid-R production process
  • Figure 8. Light Bio Bioluminescent plants
  • Figure 9. Corbion FDCA production process