產業用酵素的全球市場(2026年~2036年)
市場調查報告書
商品編碼
1808073

產業用酵素的全球市場(2026年~2036年)

The Global Industrial Enzymes Market 2026-2036

出版日期: | 出版商: Future Markets, Inc. | 英文 150 Pages, 36 Tables, 9 Figures | 訂單完成後即時交付

價格

全球工業酵素市場是生物技術產業中最具活力且發展最快的領域之一,其驅動力源於對永續生產流程、環境法規以及酵素工程技術突破的日益增長的需求。這些生物催化劑主要透過利用基因改造微生物的先進發酵技術生產,已成為實現綠色化學目標的重要工具,同時在各種工業應用中保持經濟競爭力。市場擴張在代表酵素商業化下一個前沿的新興應用領域尤為顯著,例如生物燃料生產、塑膠廢物回收和二氧化碳利用。

食品和飲料加工是最大的應用領域,約佔全球市場的23%,這得益於消費者對天然成分、清潔標籤產品和強化營養成分需求的不斷增長。洗滌劑產業佔第二大市場,佔20%,受益於日益增強的環保意識以及減少家用和工業清潔劑中化學品使用的監管壓力。生物燃料生產目前僅佔10%的市場佔有率,但擁有最高的成長潛力,預計隨著全球再生能源法規的加強,該領域將大幅擴張。

動物飼料應用是關鍵推動因素,其驅動力來自全球蛋白質消費量的上升、抗生素生長促進劑的監管限制以及人們對可持續畜牧業實踐日益增長的認識。紡織加工酶可實現環保的替代製造方法,從而減少用水量並消除織物前處理和整理過程中傳統上使用的刺激性化學物質。隨著技術進步和監管框架的演變,製藥、廢棄物管理和農業集約化領域的新應用代表著重要的長期機會。

人工智慧、機器學習和生物技術的融合徹底改變了酶的開發,顯著縮短了發現時間,同時擴展了可實現的酶特性範圍。蛋白質工程的進展也使得穩定性、活性和底物特異性的最佳化成為可能。無細胞酶生產系統和替代表達宿主(包括基於植物的平台)代表具有改變製造業經濟潛力的新興技術。

工業酵素市場處於永續工業轉型的前沿,它使製造商能夠降低能源消耗、消除危險化學品並最大限度地減少廢物產生,同時保持產品品質和經濟競爭力。日益增長的環保監管壓力和消費者對永續產品的需求,使得酵素成為幾乎所有工業領域綠色製造的關鍵。工業酵素市場的持續擴張不僅反映了技術進步,也反映了向永續發展驅動的商業模式和循環經濟原則的根本性轉變,這些轉變將塑造未來幾十年的工業發展。

本報告分析了全球工業酵素市場,提供了市場規模和成長預測、酵素類型比較、技術路線圖以及76家主要公司的概況。

目錄

第1章 摘要整理

  • 概要
  • 生物製造酵素
  • 酵素的類型的比較
  • 科技藍圖

第2章 技術分析

  • 洗滌劑用酶
  • 食品加工用酶
  • 紡織加工用酶
  • 紙張與紙漿加工用酶
  • 皮革加工用酶
  • 生質燃料生產用酶
  • 動物飼料用酶
  • 製藥和診斷用酶
  • 廢棄物管理與生物修復用酶
  • 農業和作物改良用酶
  • 脫碳和二氧化碳排放用酵素利用率

第3章 市場分析

  • 主要公司及競爭格局
  • 市場成長因素及趨勢
  • 工業酵素的技術課題與機會
  • 酵素加工的經濟競爭力
  • 法規
  • 價值鏈
  • 未來展望
  • 技術成熟度 (TRL)
  • 潛在市場規模
  • 風險與機遇
  • 全球收入

第4章 企業簡介(76家企業的簡介)

第5章 參考文獻

The global industrial enzymes market represents one of the most dynamic and rapidly expanding sectors within the broader biotechnology industry, driven by increasing demand for sustainable manufacturing processes, environmental regulations, and technological breakthroughs in enzyme engineering. These biological catalysts, primarily produced through advanced fermentation technologies using genetically modified microorganisms, have become indispensable tools for achieving green chemistry objectives while maintaining economic competitiveness across diverse industrial applications. The market's expansion is particularly pronounced in emerging applications including biofuels production, plastic waste recycling, and carbon dioxide utilization, which collectively represent the next frontier of enzyme commercialization.

Food and beverage processing constitutes the largest application segment, accounting for approximately 23% of the global market, driven by increasing consumer demand for natural ingredients, clean-label products, and enhanced nutritional profiles. The detergent industry represents the second-largest segment at 20%, benefiting from growing environmental consciousness and regulatory pressure to reduce chemical usage in household and industrial cleaning products. Biofuels production, while currently smaller at 10% market share, demonstrates the highest growth potential with projections indicating substantial expansion as renewable energy mandates strengthen globally.

Animal feed applications represent a critical growth driver, supported by increasing global protein consumption, regulatory restrictions on antibiotic growth promoters, and growing awareness of sustainable livestock production practices. Textile processing enzymes enable eco-friendly manufacturing alternatives that reduce water consumption and eliminate harsh chemicals traditionally used in fabric preparation and finishing. Emerging applications in pharmaceutical manufacturing, waste management, and agricultural enhancement represent significant long-term opportunities as technology development progresses and regulatory frameworks evolve.

The convergence of artificial intelligence, machine learning, and biotechnology has revolutionized enzyme development, dramatically reducing discovery timelines while expanding the range of achievable enzyme properties. Directed evolution techniques combined with computational design enable creation of highly specialized enzymes for specific industrial challenges, while advances in protein engineering allow optimization of stability, activity, and substrate specificity. Cell-free enzyme production systems and alternative expression hosts including plant-based platforms represent emerging technologies with potential to transform manufacturing economics.

The industrial enzymes market stands at the forefront of sustainable industrial transformation, enabling manufacturers to reduce energy consumption, eliminate hazardous chemicals, and minimize waste generation while maintaining product quality and economic competitiveness. Growing regulatory pressure for environmental protection, combined with consumer demand for sustainable products, positions enzymes as essential enablers of green manufacturing across virtually all industrial sectors. The market's continued expansion reflects not only technological advancement but also fundamental shifts toward sustainability-driven business models and circular economy principles that will define industrial development in the coming decades.

"The Global Industrial Enzymes Market 2026-2036" provides an in-depth analysis of the industrial enzymes market from 2026-2036, examining the dynamic landscape of biological catalysts that are revolutionizing manufacturing processes worldwide. As industries increasingly prioritize environmental sustainability, cost efficiency, and regulatory compliance, industrial enzymes have emerged as critical enablers of green chemistry and circular economy principles. This report examines the complex ecosystem of industrial enzyme applications, from established markets including food processing and detergents to emerging applications in waste management, agriculture, and carbon capture technologies. The analysis encompasses detailed market segmentation by application areas, geographic regions, technology platforms, production hosts, and enzyme stability characteristics, providing stakeholders with comprehensive insights into market dynamics and growth opportunities.

The competitive landscape features a mix of established multinational corporations and innovative biotechnology companies developing next-generation enzyme solutions. Market leaders leverage extensive R&D capabilities, global distribution networks, and strategic partnerships to maintain competitive advantages, while emerging companies focus on specialized applications and breakthrough technologies that address specific industrial challenges.

Report contents include:

  • Market Overview: Comprehensive analysis of global industrial enzymes market size, growth projections, and key success factors
  • Bio-manufactured Enzymes: Advanced production technologies and fermentation platforms driving commercial enzyme development
  • Enzyme Types Comparison: Detailed evaluation of different enzyme categories, applications, and performance characteristics
  • Technology Roadmap: Strategic technology development timeline and innovation priorities across enzyme sector
  • Technology Analysis
    • Detergent Enzymes: Complete analysis of proteases, amylases, lipases, cellulases, mannanases, pectate lyases, and peroxidases for cleaning applications
    • Food Processing Enzymes: Comprehensive coverage of amylases, proteases, lipases, pectinases, lactase, transglutaminase, glucose oxidase, xylanases, invertase, and chymosin
    • Textile Processing Enzymes: Detailed examination of cellulases, amylases, catalases, laccases, pectinases, proteases, lipases, peroxidases, and xylanases for sustainable textile manufacturing
    • Paper and Pulp Processing: Analysis of xylanases, cellulases, lipases, laccases, amylases, pectinases, proteases, ligninases, mannanases, and esterases
    • Leather Processing: Coverage of proteases, lipases, amylases, cellulases, laccases, keratinases, pectinases, catalases, and tannases
    • Biofuel Production: Lignocellulosic bioethanol enzymes, cellulases, hemicellulases, thermostable enzymes, and cost-performance metrics
    • Animal Feed Enzymes: Phytases, xylanases, beta-glucanases, proteases, amylases, cellulases, lipases, mannanases, alpha-galactosidases, and pectinases
    • Pharmaceutical and Diagnostic: Restriction endonucleases, DNA ligases, polymerases, reverse transcriptases, proteases, glucose oxidase, cholesterol oxidase, luciferases, alkaline phosphatases, and horseradish peroxidase
    • Waste Management and Bioremediation: Plastic recycling enzymes, enzymatic depolymerization technologies, and implementation challenges
    • Agriculture and Crop Improvement: Cellulases, chitinases, beta-glucanases, phytases, xylanases, proteases, ligninases, phosphatases, nitrogenases, and peroxidases
    • Decarbonization and CO2 Utilization: Carbonic anhydrase, formate dehydrogenase, and innovative enzymatic approaches for carbon capture and conversion
  • Market Analysis
    • Competitive Landscape: Key market players, strategic positioning, and industry consolidation trends
    • Growth Drivers and Market Trends: Primary factors driving market expansion and emerging application opportunities
    • Technology Challenges and Opportunities: Technical barriers, innovation priorities, and breakthrough potential
    • Economic Competitiveness: Cost analysis, value propositions, and competitive positioning versus chemical alternatives
    • Regulatory Framework: Global regulatory landscape, approval processes, and compliance requirements
    • Value Chain Analysis: Supply chain dynamics, distribution channels, and market access strategies
    • Future Outlook: Long-term market projections, emerging technologies, and industry transformation trends
    • Technology Readiness Levels: Development status and commercial viability across enzyme categories
    • Addressable Market Size: Market sizing methodology, growth projections, and segment analysis
    • Risk and Opportunity Assessment: Market risks, competitive threats, and strategic opportunities
    • Global Revenue Analysis: Comprehensive revenue projections by application markets, regional markets, technology platforms, production hosts, and enzyme stability characteristics
  • Company Profiles of 76 leading companies across the industrial enzymes value chain, including established market leaders and innovative emerging companies: Agrivida, Allozymes, Amano Enzyme Inc., Ansa Biotechnologies, Aralez Bio, Arzeda, BASF, Biocatalysts Ltd., BioBetter, Bio Fab NZ, BioMap, Biomatter, Biosyntia, bitBiome, Cambrium GmbH, Carbios, Cascade Biocatalysts Inc., ChiralVision B.V., CinderBio, Codexis, Constructive Bio, Debut Biotechnology, Diffuse Bio, DNA Script, DSM-Firmenich, DuPont, Dyadic International, Eco Fuel Technology Inc., EnginZyme AB, EnPlusOne Biosciences, Enzyan Biocatalysis GmbH, Enzymaster, Enzyme Development Corporation, Enzymit, Enzymatic Deinking Technologies, Enzymicals AG, Epoch Biodesign, Etcembly, Eversyn, FabricNano, Futurity Bio-Ventures Ltd., Fermbox Bio, Fermentalg, Fooditive Group, Formo Bio, Gen3Bio, Ginkgo Bioworks, Global Bioenergies SA, Honext Material SL, HydGene Renewables, Imperagen Limited and more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Overview
  • 1.2. Bio-manufactured enzymes
  • 1.3. Comparison of enzyme types
  • 1.4. Technology Roadmap

2. TECHNOLOGY ANALYSIS

  • 2.1. Detergent Enzymes
    • 2.1.1. Proteases
    • 2.1.2. Amylases
    • 2.1.3. Lipases
    • 2.1.4. Cellulases
    • 2.1.5. Mannanases
    • 2.1.6. Pectate Lyases
    • 2.1.7. Peroxidases
  • 2.2. Food Processing Enzymes
    • 2.2.1. Amylases
    • 2.2.2. Proteases
    • 2.2.3. Lipases
    • 2.2.4. Pectinases
    • 2.2.5. Lactase
    • 2.2.6. Transglutaminase
    • 2.2.7. Glucose Oxidase
    • 2.2.8. Xylanases
    • 2.2.9. Invertase
    • 2.2.10. Chymosin
  • 2.3. Textile Processing Enzymes
    • 2.3.1. Cellulases
    • 2.3.2. Amylases
    • 2.3.3. Catalases
    • 2.3.4. Laccases
    • 2.3.5. Pectinases
    • 2.3.6. Proteases
    • 2.3.7. Lipases
    • 2.3.8. Peroxidases
    • 2.3.9. Xylanases
  • 2.4. Paper and Pulp Processing Enzymes
    • 2.4.1. Xylanases
    • 2.4.2. Cellulases
    • 2.4.3. Lipases
    • 2.4.4. Laccases
    • 2.4.5. Amylases
    • 2.4.6. Pectinases
    • 2.4.7. Proteases
    • 2.4.8. Ligninases
    • 2.4.9. Mannanases
    • 2.4.10. Esterases
  • 2.5. Leather Processing Enzymes
    • 2.5.1. Proteases
    • 2.5.2. Lipases
    • 2.5.3. Amylases
    • 2.5.4. Cellulases
    • 2.5.5. Laccases
    • 2.5.6. Keratinases
    • 2.5.7. Pectinases
    • 2.5.8. Catalases
    • 2.5.9. Tannases
  • 2.6. Biofuel Production Enzymes
    • 2.6.1. Enzymes for lignocellulosic derived bioethanol
    • 2.6.2. Cellulases for lignocellulosic bioethanol
    • 2.6.3. Hemicellulases and synergistic enzyme cocktails
    • 2.6.4. Thermostable and extremophilic enzymes
    • 2.6.5. Cost-performance metrics for thermostable enzymes
  • 2.7. Animal Feed Enzymes
    • 2.7.1. Phytases
    • 2.7.2. Xylanases
    • 2.7.3. Beta-Glucanases
    • 2.7.4. Proteases
    • 2.7.5. Amylases
    • 2.7.6. Cellulases
    • 2.7.7. Lipases
    • 2.7.8. Mannanases
    • 2.7.9. Alpha-Galactosidases
    • 2.7.10. Pectinases
  • 2.8. Pharmaceutical and Diagnostic Enzymes
    • 2.8.1. Restriction Endonucleases
    • 2.8.2. DNA Ligases
    • 2.8.3. Polymerases
    • 2.8.4. Reverse Transcriptases
    • 2.8.5. Proteases
    • 2.8.6. Glucose Oxidase
    • 2.8.7. Cholesterol Oxidase
    • 2.8.8. Luciferases
    • 2.8.9. Alkaline Phosphatases
    • 2.8.10. Horseradish Peroxidase
  • 2.9. Waste Management and Bioremediation Enzymes
    • 2.9.1. Enzymes for plastics recycling
    • 2.9.2. Enzymatic depolymerization
    • 2.9.3. Challenges in enzymatic depolymerization
  • 2.10. Agriculture and Crop Improvement Enzymes
    • 2.10.1. Cellulases
    • 2.10.2. Chitinases
    • 2.10.3. beta-Glucanases
    • 2.10.4. Phytases
    • 2.10.5. Xylanases
    • 2.10.6. Proteases
    • 2.10.7. Ligninases
    • 2.10.8. Phosphatases
    • 2.10.9. Nitrogenases
    • 2.10.10. Peroxidases
  • 2.11. Enzymes for Decarbonization and CO2 Utilization
    • 2.11.1. Carbonic anhydrase in CO2 capture technologies
    • 2.11.2. Formate dehydrogenase and CO2-to-chemicals pathways
    • 2.11.3. Selected enzymatic approaches to CO2 capture and conversion

3. MARKET ANALYSIS

  • 3.1. Key players and competitive landscape
  • 3.2. Market Growth Drivers and Trends
  • 3.3. Technology challenges and opportunities for industrial enzymes
  • 3.4. Economic competitiveness of enzymatic processing
  • 3.5. Regulations
  • 3.6. Value chain
  • 3.7. Future outlook
  • 3.8. Technology Readiness Level (TRL)
  • 3.9. Addressable Market Size
  • 3.10. Risks and Opportunities
  • 3.11. Global revenues
    • 3.11.1. By Application Market
    • 3.11.2. By Regional Market
    • 3.11.3. By Technology Platform
    • 3.11.4. By Production Host
    • 3.11.5. By Enzyme Stability/Temperature Range

4. COMPANY PROFILES (76 company profiles)

5. REFERENCES

List of Tables

  • Table 1. Types of industrial enzymes
  • Table 2. Comparison of enzyme types
  • Table 3. Types of Detergent Enzymes
  • Table 4. Types of Food Processing Enzymes
  • Table 5. Types of Textile Processing Enzymes
  • Table 6. Types of Paper and Pulp Processing Enzymes
  • Table 7. Types of Leather Processing Enzymes
  • Table 8. Types of Biofuel Production Enzymes
  • Table 9. Lignocellulosic Enzyme Systems and Performance
  • Table 10. Cellulase Component Functions and Characteristics
  • Table 11. Hemicellulase Systems and Substrate Specificity
  • Table 12. Thermostable Enzyme Sources and Characteristics
  • Table 13. Thermostable Enzyme Economic Analysis Framework
  • Table 14. Types of Animal Feed Enzymes
  • Table 15. Types of Pharmaceutical and Diagnostic Enzymes
  • Table 16. Types of Waste Management and Bioremediation Enzymes
  • Table 17. Enzymes for Plastics Recycling Applications
  • Table 18. Challenges in Enzymatic Depolymerization
  • Table 19. Types of Agriculture and Crop Improvement Enzymes
  • Table 20. Enzymes for Decarbonization and CO2 Utilization
  • Table 21. Carbonic Anhydrase Applications in CO2 Capture
  • Table 22. Formate Dehydrogenase Systems for CO2 Conversion
  • Table 23. Enzymatic CO2 Capture and Conversion Technologies
  • Table 24. Key players in industrial enzymes
  • Table 25. Market Growth Drivers and Trends in industrial enzymes
  • Table 26. Technology Challenges and Opportunities for Industrial Enzymes
  • Table 27. Industrial enzymes Regulations
  • Table 28. Value chain: Industrial enzymes
  • Table 29. Technology Readiness Level (TRL): Biocatalysts
  • Table 30. Addressable market size for industrial enzymes
  • Table 31. Risks and Opportunities in industrial enzymes
  • Table 32. Global revenues for industrial enzymes, by applications market (2020-2036), billions USD
  • Table 33. Global revenues for industrial enzymes, by regional market (2020-2036), billions USD
  • Table 34. Global revenues for industrial enzymes, By Technology Platform (2020-2036), billions USD
  • Table 35. Global revenues for industrial enzymes, By Production Host (2020-2036), billions USD
  • Table 36. Global revenues for industrial enzymes, By Enzyme Stability/Temperature Range (2020-2036), billions USD

List of Figures

  • Figure 1. Technology Roadmap for Industrial Enzymes (Biocatalysts)
  • Figure 2. Addressable market size for industrial enzymes
  • Figure 3. Global revenues for industrial enzymes, by applications market (2020-2036), billions USD
  • Figure 4. Global revenues for industrial enzymes, by regional market (2020-2036), billions USD
  • Figure 5. Global revenues for industrial enzymes, By Technology Platform (2020-2036), billions USD
  • Figure 6. Global revenues for industrial enzymes, By Production Host (2020-2036), billions USD
  • Figure 7. Global revenues for industrial enzymes, By Enzyme Stability/Temperature Range (2020-2036), billions USD
  • Figure 8. Light Bio Bioluminescent plants
  • Figure 9. Corbion FDCA production process