量子運算的全球市場(2026年~2046年)
市場調查報告書
商品編碼
1774032

量子運算的全球市場(2026年~2046年)

The Global Quantum Computing Market 2026-2046

出版日期: | 出版商: Future Markets, Inc. | 英文 353 Pages, 88 Tables, 65 Figures | 訂單完成後即時交付

價格

2025年,量子運算市場迎來了前所未有的轉捩點,技術創新加速,投資湧入,以及跨產業實際量子應用的湧現。繼2024年全球量子投資首次突破10億美元之後,該領域持續吸引創紀錄的資金,並在商業實際應用方面取得實質進展。量子運算生態系統已發展成為一個複雜的多層次市場,涵蓋硬體平台、軟體開發工具、雲端服務和產業特定應用。多種量子技術相互競爭和補充,包括超導量子位元、離子阱系統、光學量子電腦和矽自旋量子位元。這種技術多樣性降低了單一方法的風險,同時加速了多條路徑的創新。

2025年的投資動能強勁。第一季的融資包括:

  • SandboxAQ 在 2024 年 12 月獲得 3 億美元融資的基礎上,於 2025 年 4 月完成了 1.5 億美元的後續融資。
  • Quantum Machines 籌集了 1.7 億美元,反映出投資者對量子控制系統和基礎設施的強勁信心。
  • IQM Quantum Computers 獲得了 7,300 萬美元(6,800 萬歐元)的融資。

2025 年第二季見證了量子計算史上最大的一筆交易,最終 IonQ 以 10.8 億美元收購了 Oxford Ionics,這筆交易具有里程碑意義。這筆巨額交易標誌著量子領域向整合和戰略技術整合的根本性轉變,同時也凸顯了先進控制技術在量子可擴展性方面的重要性。 2025 年的融資活動呈現出幾個關鍵趨勢:平均融資規模大幅增加,大型交易通常超過 5,000 萬美元,這表明投資者對量子計算商業可行性的信心日益增強。企業策略投資者,尤其是Google、英偉達、英特爾和微軟等科技巨頭,正在向量子運算領域投入越來越多的資金,因為他們意識到量子運算對其長期競爭地位的戰略重要性。投資激增源於 2024 年的關鍵技術突破,包括谷歌的 Willow 晶片演示和量子糾錯方面的重大進展。尤其是,隨著量子運算硬體接近容錯水準以及實際應用的可能性越來越大,投資者對該領域商業潛力的信心正在加速成長。

在技術進步、巨額投資資本以及金融服務、製藥、材料科學和人工智慧等行業新實際應用整合的推動下,量子運算市場將持續爆炸性成長。 2025 年初強勁的投資活動,加上持續的技術進步和日益增長的行業應用,表明量子計算正在從純粹的研究領域轉變為一個具有商業可行性的技術領域,並有望在未來十年內實現主流部署。

本報告對快速發展的量子運算生態系統進行了全面的分析,提供了有關市場動態、技術發展、投資趨勢和未來成長機會的關鍵見解。

目錄

第1章 摘要整理

  • 第一次與第二次量子革命
  • 當前量子運算市場格局
  • 投資版圖
  • 全球政府舉措
  • 市場版圖
  • 量子運算產業趨勢 (2023-2025)
  • 量子運算終端市場及優勢
  • 商業模式
  • 路線圖
  • 量子科技應用面臨的課題
  • SWOT 分析
  • 量子計算價值鏈
  • 量子運算與人工智慧
  • 全球市場預測 (2025-2046)

第2章 簡介

  • 什麼是量子計算?
  • 運行原理
  • 古典的運算和量子運算
  • 量子運算技術
  • 其他技術的競爭
  • 市場概要

第3章 量子演算法

  • 量子軟體堆疊

第4章 量子運算硬體設備

  • 量子位元技術
  • 架構方法

第5章 量子運算基礎設施

  • 基礎設施需求
  • 硬體無關平台
  • 低溫恆溫器
  • 量子位元讀數

第6章 量子運算軟體

  • 技術描述
  • 基於雲端的服務 - QCaaS(量子運算即服務)
  • 市場參與者

第7章 市場與用途

  • 醫藥品
  • 化學品
  • 運輸
  • 金融服務
  • 汽車

第8章 其他的交叉技術

  • 量化學和AI
  • 量子通訊
  • 量子感測器

第9章 量子運算和AI

  • 簡介
  • 用途
  • 人工智慧與量子運算接口
  • 經典計算中的人工智慧
  • 市場參與者與策略
  • 量子運算與人工智慧的關係

第10章 量子運算無k材料

  • 超導體
  • 光電,矽光子學,光學零組件
  • 奈米材料

第11章 市場分析

  • 產業的主要企業
  • 投資資金籌措

第12章 企業簡介(企業217公司的簡介)

第13章 調查手法

第14章 用語和定義

第15章 參考文獻

The quantum computing market has reached an unprecedented inflection point in 2025, characterized by accelerating technological breakthroughs, massive investment inflows, and the emergence of practical quantum applications across multiple industries. Building on the remarkable momentum from 2024, when global quantum investments surpassed $1 billion for the first time, the sector continues to attract record-breaking funding while demonstrating tangible progress toward commercial viability. The quantum computing ecosystem has evolved into a sophisticated, multi-layered market encompassing hardware platforms, software development tools, cloud services, and industry-specific applications. Multiple quantum technologies compete and complement each other, including superconducting qubits, trapped ion systems, photonic quantum computers, and emerging silicon spin qubits. This technological diversity reduces the risk of betting on a single approach while accelerating innovation across multiple pathways.

2025 has witnessed extraordinary investment momentum. Q1 funding included:

  • SandboxAQ secured a $150 million add-on funding round in April 2025, building on their massive $300 million raise in December 2024.
  • Quantum Machines raised $170 million, reflecting strong investor confidence in quantum control systems and infrastructure.
  • IQM Quantum Computers secured $73 million (Euro-68 million).

The second quarter of 2025 witnessed further significant market activity, culminating in IonQ's groundbreaking $1.08 billion acquisition of Oxford Ionics, representing the largest transaction in quantum computing history. This mega-deal signals a fundamental shift toward consolidation and strategic technology integration within the quantum sector, while highlighting the critical importance of advanced control technologies for quantum scalability. Several key trends have emerged throughout 2025's funding activity. Average round sizes have increased substantially, with major transactions regularly exceeding $50 million, indicating growing investor confidence in quantum computing's commercial viability. Corporate strategic investors, particularly major technology companies like Google, Nvidia, Intel, and Microsoft, are making increasingly significant investments, recognizing quantum computing's strategic importance for long-term competitive positioning..The investment surge follows significant technical breakthroughs in 2024, including Google's Willow chip demonstration and major advances in quantum error correction. These achievements have accelerated investor confidence in the sector's commercial potential, particularly as quantum computing hardware approaches fault tolerance and practical applications become increasingly achievable.

The quantum computing market is positioned for continued explosive growth, driven by the convergence of technological advancement, substantial investment capital, and emerging practical applications across industries including financial services, pharmaceuticals, materials science, and artificial intelligence. The strong investment activity in early 2025, combined with continued technological progress and expanding industry adoption, suggests that quantum computing is transitioning from a purely research-focused field to a commercially viable technology sector poised for mainstream deployment over the next decade.

"The Global Quantum Computing Market 2026-2046" represents the most comprehensive analysis of the rapidly evolving quantum computing ecosystem, providing critical insights into market dynamics, technological developments, investment trends, and future growth opportunities. This authoritative report delivers essential intelligence for stakeholders, investors, technology leaders, and policy makers navigating the quantum revolution.

This extensive market intelligence report examines the quantum computing landscape across multiple dimensions, analyzing hardware technologies including superconducting qubits, trapped ion systems, silicon spin qubits, photonic quantum computers, neutral atom platforms, topological qubits, and quantum annealers. The report provides detailed market forecasts extending to 2046, covering revenue projections, installed base growth, pricing trends, and technology adoption patterns across global markets. With quantum computing transitioning from research laboratories to commercial applications, this analysis identifies key inflection points, market opportunities, and strategic positioning requirements for market participants. The report thoroughly examines the quantum software ecosystem, including development platforms, quantum algorithms, machine learning applications, optimization solutions, and cryptography implementations. Critical infrastructure requirements, including cryogenic systems, control electronics, and quantum-classical hybrid architectures, receive comprehensive coverage. Regional market dynamics, government initiatives, and national quantum strategies are analyzed across North America, Europe, Asia-Pacific, and emerging markets, providing global perspective on quantum computing development.

Report contents include:

  • Comprehensive quantum computing market sizing and forecasts (2026-2046) with detailed revenue projections by technology, application, and geography
  • Installed base forecasting by quantum technology platform including superconducting, trapped ion, silicon spin, photonic, neutral atom, and topological systems
  • Pricing analysis and trends across different quantum computing system categories and deployment models
  • Hardware revenue forecasting by technology platform and system type with detailed market segmentation
  • Data center deployment analysis comparing quantum computer adoption to global data center infrastructure growth
  • Technology Landscape and Competitive Intelligence:
    • Deep-dive analysis of quantum hardware technologies including technical specifications, performance benchmarks, and commercial readiness levels
    • Comprehensive market player profiles across hardware, software, applications, and infrastructure segments
    • Quantum software stack analysis covering development platforms, algorithms, applications, and cloud services
    • Infrastructure requirements assessment including cryogenic systems, control electronics, and specialized components
    • Materials analysis for quantum computing including superconductors, photonics, and nanomaterials
  • Industry Applications and Use Cases:
    • Sector-specific quantum computing applications in pharmaceuticals, chemicals, transportation, financial services, and automotive industries
    • Market opportunity assessment across drug discovery, molecular simulation, optimization, cryptography, and artificial intelligence
    • Crossover technologies including quantum communications, quantum sensing, and quantum-AI convergence
    • Commercial applications analysis with total addressable market (TAM) calculations for key vertical markets
    • Case studies and implementation roadmaps for enterprise quantum adoption
  • Investment Landscape and Strategic Analysis:
    • Detailed funding analysis covering venture capital, corporate investment, government funding, and M&A activity (2024-2025)
    • Strategic partnership analysis and business model evolution in the quantum ecosystem
    • Government initiatives and national quantum strategies with funding commitments and policy implications
    • Investment trends analysis including geographic distribution, sector focus, and funding stage dynamics
    • Market challenges assessment including technical barriers, commercialization hurdles, and adoption constraints
  • Future Outlook:
    • SWOT analysis for quantum computing market development with strategic recommendations
    • Commercial readiness roadmaps by technology platform with timeline projections to 2046
    • Quantum computing value chain analysis identifying key stakeholders and value capture opportunities
    • Risk assessment and mitigation strategies for quantum technology investment and adoption
    • Emerging trends analysis including quantum-AI convergence, hybrid computing architectures, and next-generation applications

This comprehensive report features detailed profiles of 217 companies shaping the quantum computing ecosystem, providing essential intelligence on market leaders, emerging players, and innovative startups across the quantum value chain. The profiled companies include A* Quantum, AbaQus, Aegiq, Agnostiq, Algorithmiq Oy, Airbus, Alpine Quantum Technologies GmbH (AQT), Alice&Bob, Aliro Quantum, Anyon Systems Inc., Archer Materials, Arclight Quantum, Arctic Instruments, ARQUE Systems GmbH, Atlantic Quantum, Atom Computing, Atom Quantum Labs, Atos Quantum, Baidu Inc., BEIT, Bifrost Electronics, Bleximo, BlueFors, BlueQubit, Bohr Quantum Technology, BosonQ Ps, C12 Quantum Electronics, Cambridge Quantum Computing (CQC), CAS Cold Atom, CEW Systems Canada Inc., ColibriTD, Classiq Technologies, Commutator Studios GmbH, Crystal Quantum Computing, D-Wave Systems, Diatope GmbH, Dirac, Diraq, Delft Circuits, Duality Quantum Photonics, EeroQ, eleQtron, Elyah, Entropica Labs, Ephos, Equal1, EvolutionQ, First Quantum Inc., Fujitsu, Good Chemistry, Google Quantum AI, Groove Quantum, g2-Zero, Haiqu, Hefei Wanzheng Quantum Technology Co. Ltd., High Q Technologies Inc., Horizon Quantum Computing, HQS Quantum Simulations, HRL, Huayi Quantum, IBM, Iceberg Quantum, Icosa Computing, ID Quantique, InfinityQ, Infineon Technologies AG, Infleqtion, Intel, IonQ, IQM Quantum Computers, JiJ, JoS QUANTUM GmbH, KETS Quantum Security, Kipu Quantum, Kiutra GmbH, Kuano Limited, Kvantify, Ligentec, LQUOM, Lux Quanta, Maybell Quantum Industries, Menlo Systems GmbH, Menten AI, Microsoft, Miraex, Molecular Quantum Solutions, Montana Instruments, Multiverse Computing, Nanofiber Quantum Technologies, NEC Corporation, Next Generation Quantum, neQxt GmbH, Nomad Atomics, Nord Quantique, Nordic Quantum Computing Group AS, Norma, NTT, Nu Quantum, 1Qbit, ORCA Computing, Orange Quantum Systems, Origin Quantum Computing Technology, Oxford Ionics, Oxford Quantum Circuits (OQC), ParityQC, Pasqal, Peptone, Phasecraft, Photonic Inc., Pixel Photonics, Planqc GmbH, Polaris Quantum Biotech (POLARISqb), Post Quantum, PQShield, ProteinQure, PsiQuantum, Q* Bird, QBoson, Qblox, qBraid, Q-CTRL, QC Design, QC Ware, QC82, QEDMA, Qilimanjaro Quantum Tech, Qindom, QMware, QMill, Qnami, QNu Labs, Qolab, QPerfect and more......

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. First and Second quantum revolutions
  • 1.2. Current quantum computing market landscape
    • 1.2.1. Technical Progress and Persistent Challenges
    • 1.2.2. Key developments
  • 1.3. Investment Landscape
    • 1.3.1. Quantum Technologies Investments 2024-2025
  • 1.4. Global Government Initiatives
  • 1.5. Market Landscape
  • 1.6. Recent Quantum Computing Industry Developments 2023-2025
  • 1.7. End Use Markets and Benefits of Quantum Computing
  • 1.8. Business Models
  • 1.9. Roadmap
  • 1.10. Challenges for Quantum Technologies Adoption
  • 1.11. SWOT analysis
  • 1.12. Quantum Computing Value Chain
  • 1.13. Quantum Computing and Artificial Intelligence
  • 1.14. Global market forecast 2025-2046
    • 1.14.1. Revenues
    • 1.14.2. Installed Base Forecast
      • 1.14.2.1. By system
      • 1.14.2.2. By technology
    • 1.14.3. Pricing
    • 1.14.4. Hardware
      • 1.14.4.1. By system
      • 1.14.4.2. By technology
    • 1.14.5. Quantum Computing in Data centres

2. INTRODUCTION

  • 2.1. What is quantum computing?
  • 2.2. Operating principle
  • 2.3. Classical vs quantum computing
  • 2.4. Quantum computing technology
    • 2.4.1. Quantum emulators
    • 2.4.2. Quantum inspired computing
    • 2.4.3. Quantum annealing computers
    • 2.4.4. Quantum simulators
    • 2.4.5. Digital quantum computers
    • 2.4.6. Continuous variables quantum computers
    • 2.4.7. Measurement Based Quantum Computing (MBQC)
    • 2.4.8. Topological quantum computing
    • 2.4.9. Quantum Accelerator
  • 2.5. Competition from other technologies
  • 2.6. Market Overview
    • 2.6.1. Investment in Quantum Computing
    • 2.6.2. Business Models
      • 2.6.2.1. Quantum as a Service (QaaS)
      • 2.6.2.2. Strategic partnerships
      • 2.6.2.3. Vertically integrated and modular
      • 2.6.2.4. Mixed quantum stacks
    • 2.6.3. Semiconductor Manufacturers

3. QUANTUM ALGORITHMS

  • 3.1. Quantum Software Stack
    • 3.1.1. Quantum Machine Learning
    • 3.1.2. Quantum Simulation
    • 3.1.3. Quantum Optimization
    • 3.1.4. Quantum Cryptography
      • 3.1.4.1. Quantum Key Distribution (QKD)
      • 3.1.4.2. Post-Quantum Cryptography

4. QUANTUM COMPUTING HARDWARE

  • 4.1. Qubit Technologies
    • 4.1.1. Overview
    • 4.1.2. Noise effects
    • 4.1.3. Logical qubits
    • 4.1.4. Quantum Volume
    • 4.1.5. Algorithmic Qubits
    • 4.1.6. Superconducting Qubits
      • 4.1.6.1. Technology description
      • 4.1.6.2. Initialization, Manipulation, and Readout
      • 4.1.6.3. Materials
      • 4.1.6.4. Market players
      • 4.1.6.5. Roadmap
      • 4.1.6.6. Swot analysis
    • 4.1.7. Trapped Ion Qubits
      • 4.1.7.1. Technology description
      • 4.1.7.2. Initialization, Manipulation, and Readout
      • 4.1.7.3. Hardware
      • 4.1.7.4. Materials
        • 4.1.7.4.1. Integrating optical components
        • 4.1.7.4.2. Incorporating high-quality mirrors and optical cavities
        • 4.1.7.4.3. Engineering the vacuum packaging and encapsulation
        • 4.1.7.4.4. Removal of waste heat
      • 4.1.7.5. Roadmap
      • 4.1.7.6. Market players
      • 4.1.7.7. Swot analysis
    • 4.1.8. Silicon Spin Qubits
      • 4.1.8.1. Technology description
      • 4.1.8.2. Initialization, Manipulation, and Readout
      • 4.1.8.3. Integration with CMOS Electronics
      • 4.1.8.4. Quantum dots
      • 4.1.8.5. Market players
      • 4.1.8.6. SWOT analysis
    • 4.1.9. Topological Qubits
      • 4.1.9.1. Technology description
        • 4.1.9.1.1. Cryogenic cooling
      • 4.1.9.2. Initialization, Manipulation, and Readout of Topological Qubits
      • 4.1.9.3. Scaling topological qubit arrays
      • 4.1.9.4. Roadmap
      • 4.1.9.5. Market players
      • 4.1.9.6. SWOT analysis
    • 4.1.10. Photonic Qubits
      • 4.1.10.1. Photonics for Quantum Computing
      • 4.1.10.2. Technology description
      • 4.1.10.3. Initialization, Manipulation, and Readout
      • 4.1.10.4. Hardware Architecture
      • 4.1.10.5. Roadmap
      • 4.1.10.6. Market players
      • 4.1.10.7. Swot analysis
    • 4.1.11. Neutral atom (cold atom) qubits
      • 4.1.11.1. Technology description
      • 4.1.11.2. Market players
      • 4.1.11.3. Swot analysis
    • 4.1.12. Diamond-defect qubits
      • 4.1.12.1. Technology description
      • 4.1.12.2. SWOT analysis
      • 4.1.12.3. Market players
    • 4.1.13. Quantum annealers
      • 4.1.13.1. Technology description
      • 4.1.13.2. Initialization and Readout of Quantum Annealers
      • 4.1.13.3. Solving combinatorial optimization
      • 4.1.13.4. Applications
      • 4.1.13.5. Roadmap
      • 4.1.13.6. SWOT analysis
      • 4.1.13.7. Market players
  • 4.2. Architectural Approaches

5. QUANTUM COMPUTING INFRASTRUCTURE

  • 5.1. Infrastructure Requirements
  • 5.2. Hardware agnostic platforms
  • 5.3. Cryostats
  • 5.4. Qubit readout

6. QUANTUM COMPUTING SOFTWARE

  • 6.1. Technology description
  • 6.2. Cloud-based services- QCaaS (Quantum Computing as a Service)
  • 6.3. Market players

7. MARKETS AND APPLICATIONS

  • 7.1. Pharmaceuticals
    • 7.1.1. Market overview
      • 7.1.1.1. Drug discovery
      • 7.1.1.2. Diagnostics
      • 7.1.1.3. Molecular simulations
      • 7.1.1.4. Genomics
      • 7.1.1.5. Proteins and RNA folding
    • 7.1.2. Market players
  • 7.2. Chemicals
    • 7.2.1. Market overview
    • 7.2.2. Market players
  • 7.3. Transportation
    • 7.3.1. Market overview
    • 7.3.2. Market players
  • 7.4. Financial services
    • 7.4.1. Market overview
    • 7.4.2. Market players
  • 7.5. Automotive
    • 7.5.1. Market overview
    • 7.5.2. Market players

8. OTHER CROSSOVER TECHNOLOGIES

  • 8.1. Quantum chemistry and AI
    • 8.1.1. Technology description
    • 8.1.2. Applications
    • 8.1.3. Market players
  • 8.2. Quantum Communications
    • 8.2.1. Technology description
    • 8.2.2. Types
    • 8.2.3. Applications
    • 8.2.4. Market players
  • 8.3. Quantum Sensors
    • 8.3.1. Technology description
    • 8.3.2. Applications
    • 8.3.3. Companies

9. QUANTUM COMPUTING AND AI

  • 9.1. Introduction
  • 9.2. Applications
  • 9.3. AI Interfacing with Quantum Computing
  • 9.4. AI in Classical Computing
  • 9.5. Market Players and Strategies
  • 9.6. Relationship between quantum computing and artificial intelligence

10. MATERIALS FOR QUANTUM COMPUTING

  • 10.1. Superconductors
    • 10.1.1. Overview
    • 10.1.2. Types and Properties
    • 10.1.3. Temperature (Tc) of superconducting materials
    • 10.1.4. Superconducting Nanowire Single Photon Detectors (SNSPD)
    • 10.1.5. Kinetic Inductance Detectors (KIDs)
    • 10.1.6. Transition Edge Sensors (TES)
    • 10.1.7. Opportunities
  • 10.2. Photonics, Silicon Photonics and Optical Components
    • 10.2.1. Overview
    • 10.2.2. Types and Properties
    • 10.2.3. Vertical-Cavity Surface-Emitting Lasers (VCSELs)
    • 10.2.4. Alkali azides
    • 10.2.5. Optical Fiber and Quantum Interconnects
    • 10.2.6. Semiconductor Single Photon Detectors
    • 10.2.7. Opportunities
  • 10.3. Nanomaterials
    • 10.3.1. Overview
    • 10.3.2. Types and Properties
      • 10.3.2.1. 2D Materials
      • 10.3.2.2. Transition metal dichalcogenide quantum dots
      • 10.3.2.3. Graphene Membranes
      • 10.3.2.4. 2.5D materials
      • 10.3.2.5. Carbon nanotubes
        • 10.3.2.5.1. Single Walled Carbon Nanotubes
        • 10.3.2.5.2. Boron Nitride Nanotubes
      • 10.3.2.6. Diamond
      • 10.3.2.7. Metal-Organic Frameworks (MOFs)
    • 10.3.3. Opportunities

11. MARKET ANALYSIS

  • 11.1. Key industry players
    • 11.1.1. Start-ups
    • 11.1.2. Tech Giants
    • 11.1.3. National Initiatives
  • 11.2. Investment funding
    • 11.2.1. Venture Capital
    • 11.2.2. M&A
    • 11.2.3. Corporate Investment
    • 11.2.4. Government Funding

12. COMPANY PROFILES (217 company profiles)

13. RESEARCH METHODOLOGY

14. TERMS AND DEFINITIONS

15. REFERENCES

List of Tables

  • Table 1. First and second quantum revolutions
  • Table 2. Applications for Quantum Computing
  • Table 3. Quantum Computing Business Models
  • Table 4. Quantum Computing Investments 2024-2025
  • Table 5. Global government initiatives in quantum technologies
  • Table 6. Quantum computing industry developments 2023-2025
  • Table 7. End Use Markets and Benefits of Quantum Computing
  • Table 8. Business Models in Quantum Computing
  • Table 9. Market challenges in quantum computing
  • Table 10. Quantum computing value chain
  • Table 11. Global market for quantum computing-by category, 2023-2046 (billions USD)
  • Table 12. Global Revenue from Quantum Computing Hardware (Billions USD)
  • Table 13. Quantum Computer Installed Base Forecast (2025-2046)-Units
  • Table 14. Forecast for Installed Base of Quantum Computers by Technology, 2025-2046-Units
  • Table 15. Quantum Computer Pricing Forecast (Millions USD) by system type
  • Table 16. Forecast for Quantum Computer Pricing 2026-2046 by system category
  • Table 17. Forecast for Annual Revenue from Quantum Computer Hardware Sales, 2025-2046 (billions USD)
  • Table 18. Forecast for Annual Revenue from Quantum Computing Hardware Sales (by Technology), 2025-2046
  • Table 19. Install Base of Quantum Computers vs Global Number of Data Centres to 2046
  • Table 20. Forecast for Volume of Quantum Computers Deployed in Data Centres, 2025-2046
  • Table 21. Quantum Computing Approaches
  • Table 22. Quantum Computer Architectures
  • Table 23. Applications for quantum computing
  • Table 24. Comparison of classical versus quantum computing
  • Table 25. Key quantum mechanical phenomena utilized in quantum computing
  • Table 26. Types of quantum computers
  • Table 27.Comparison of Quantum Computer Technologies
  • Table 28. Comparative analysis of quantum computing with classical computing, quantum-inspired computing, and neuromorphic computing
  • Table 29. Different computing paradigms beyond conventional CMOS
  • Table 30. Applications of quantum algorithms
  • Table 31. QML approaches
  • Table 32. Commercial Readiness Level by Technology
  • Table 33. Qubit Performance Benchmarking
  • Table 34. Coherence times for different qubit implementations
  • Table 35. Quantum Computer Benchmarking Metrics
  • Table 36. Logical Qubit Progress
  • Table 37. Superconducting Materials Properties
  • Table 38. Superconducting qubit market players
  • Table 39. Initialization, manipulation and readout for trapped ion quantum computers
  • Table 40. Ion trap market players
  • Table 41. Initialization, manipulation, and readout methods for silicon-spin qubits
  • Table 42. Silicon spin qubits market players
  • Table 43. Initialization, manipulation and readout of topological qubits
  • Table 44. Topological qubits market players
  • Table 45. Pros and cons of photon qubits
  • Table 46. Comparison of photon polarization and squeezed states
  • Table 47. Initialization, manipulation and readout of photonic platform quantum computers
  • Table 48. Photonic qubit market players
  • Table 49. Initialization, manipulation and readout for neutral-atom quantum computers
  • Table 50. Pros and cons of cold atoms quantum computers and simulators
  • Table 51. Neural atom qubit market players
  • Table 52. Initialization, manipulation and readout of Diamond-Defect Spin-Based Computing
  • Table 53. Key materials for developing diamond-defect spin-based quantum computers
  • Table 54. Diamond-defect qubits market players
  • Table 55. Commercial Applications for Quantum Annealing
  • Table 56. Pros and cons of quantum annealers
  • Table 57. Quantum annealers market players
  • Table 58. Quantum Computing Infrastructure Requirements
  • Table 59. Modular vs. Single Core
  • Table 60. Quantum computing software market players
  • Table 61. Markets and applications for quantum computing
  • Table 62. Total Addressable Market (TAM) for Quantum Computing
  • Table 63. Market players in quantum technologies for pharmaceuticals
  • Table 64. Market players in quantum computing for chemicals
  • Table 65. Automotive applications of quantum computing,
  • Table 66. Market players in quantum computing for transportation
  • Table 67. Quantum Computing in Finance
  • Table 68. Market players in quantum computing for financial services
  • Table 69. Automotive Applications of Quantum Computing
  • Table 70. Applications in quantum chemistry and artificial intelligence (AI)
  • Table 71. Market players in quantum chemistry and AI
  • Table 72. Main types of quantum communications
  • Table 73. Applications in quantum communications
  • Table 74. Market players in quantum communications
  • Table 75. Comparison between classical and quantum sensors
  • Table 76. Applications in quantum sensors
  • Table 77. Companies developing high-precision quantum time measurement
  • Table 78. Materials in Quantum Technology
  • Table 79. Superconductor Value Chain in Quantum Technology
  • Table 80. Superconductors in quantum technology
  • Table 81. SNSPD Players companies
  • Table 82. Single Photon Detector Technology Comparison
  • Table 83. Photonics, silicon photonics and optics in quantum technology
  • Table 84. Materials for Quantum Photonic Applications
  • Table 85. Nanomaterials in quantum technology
  • Table 86. Synthetic Diamond Value Chain for Quantum Technology
  • Table 87. Quantum technologies investment funding
  • Table 88. Top funded quantum technology companies

List of Figures

  • Figure 1. Quantum computing development timeline
  • Figure 2. National quantum initiatives and funding 2015-2023
  • Figure 3. Quantum Computing Market Map
  • Figure 4. Roadmap for Quantum Commercial Readiness Level (QCRL) Over Time
  • Figure 5. SWOT analysis for quantum computing
  • Figure 6. Global market for quantum computing-Hardware, Software & Services, 2023-2046 (billions USD)
  • Figure 7. Global Revenue from Quantum Computing Hardware (Billions USD)
  • Figure 8. Quantum Computer Installed Base Forecast (2025-2046)-Units
  • Figure 9. Forecast for Installed Base of Quantum Computers by Technology, 2025-2046-Units
  • Figure 10. Forecast for Annual Revenue from Quantum Computer Hardware Sales, 2025-2046 (billions USD)
  • Figure 11. Forecast for Annual Revenue from Quantum Computing Hardware Sales (by Technology), 2025-2046
  • Figure 12. An early design of an IBM 7-qubit chip based on superconducting technology
  • Figure 13. Various 2D to 3D chips integration techniques into chiplets
  • Figure 14. IBM Q System One quantum computer
  • Figure 15. Unconventional computing approaches
  • Figure 16. 53-qubit Sycamore processor
  • Figure 17. Interior of IBM quantum computing system. The quantum chip is located in the small dark square at center bottom
  • Figure 18. Superconducting quantum computer
  • Figure 19. Superconducting quantum computer schematic
  • Figure 20. Components and materials used in a superconducting qubit
  • Figure 21. Superconducting Hardware Roadmap
  • Figure 22. Superconducting Quantum Hardware Roadmap
  • Figure 23. SWOT analysis for superconducting quantum computers:
  • Figure 24. Ion-trap quantum computer
  • Figure 25. Various ways to trap ions
  • Figure 26. Trapped-Ion Hardware Roadmap
  • Figure 27. Universal Quantum's shuttling ion architecture in their Penning traps
  • Figure 28. Trapped-Ion Quantum Computing Hardware Roadmap
  • Figure 29. SWOT analysis for trapped-ion quantum computing
  • Figure 30. CMOS silicon spin qubit
  • Figure 31. Silicon quantum dot qubits
  • Figure 32. Silicon-Spin Hardware Roadmap
  • Figure 33. SWOT analysis for silicon spin quantum computers
  • Figure 34. Topological Quantum Computing Roadmap
  • Figure 35. Topological Quantum Computing Hardware Roadmap
  • Figure 36. SWOT analysis for topological qubits
  • Figure 37. Photonic Quantum Hardware Roadmap
  • Figure 38. SWOT analysis for photonic quantum computers
  • Figure 39. Neutral atoms (green dots) arranged in various configurations
  • Figure 40. Neutral Atom Hardware Roadmap
  • Figure 41. SWOT analysis for neutral-atom quantum computers
  • Figure 42. NV center components
  • Figure 43. Diamond Defect Supply Chain
  • Figure 44. Diamond Defect Hardware Roadmap
  • Figure 45. SWOT analysis for diamond-defect quantum computers
  • Figure 46. D-Wave quantum annealer
  • Figure 47. Roadmap for Quantum Annealing Hardware
  • Figure 48. SWOT analysis for quantum annealers
  • Figure 49. Quantum software development platforms
  • Figure 50. Tech Giants quantum technologies activities
  • Figure 51. Quantum Technology investment by sector, 2023
  • Figure 52. Quantum computing public and industry funding to mid-2023, millions USD
  • Figure 53. Archer-EPFL spin-resonance circuit
  • Figure 54. IBM Q System One quantum computer
  • Figure 55. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right)
  • Figure 56. Intel Tunnel Falls 12-qubit chip
  • Figure 57. IonQ's ion trap
  • Figure 58. IonQ product portfolio
  • Figure 59. 20-qubit quantum computer
  • Figure 60. Maybell Big Fridge
  • Figure 61. PsiQuantum's modularized quantum computing system networks
  • Figure 62. Conceptual illustration (left) and physical mockup (right, at OIST) of Qubitcore's distributed ion-trap quantum computer, visualizing quantum entanglement via optical fiber links between traps
  • Figure 63. SemiQ first chip prototype
  • Figure 64. Toshiba QKD Development Timeline
  • Figure 65. Toshiba Quantum Key Distribution technology