先進塑膠回收再利用的全球市場(2026年~2040年)
市場調查報告書
商品編碼
1660101

先進塑膠回收再利用的全球市場(2026年~2040年)

The Global Advanced Plastics Recycling Market 2026-2040

出版日期: | 出版商: Future Markets, Inc. | 英文 409 Pages, 117 Tables, 54 Figures | 訂單完成後即時交付

價格

在監管壓力、環保要求和技術突破的推動下,全球廢棄物管理格局正在發生重大變化。歐盟 (EU) 規定,到 2030 年,10% 的包裝材料必須來自再生材料,因此,創新回收解決方案的緊迫性比以往任何時候都更加迫切。這個監管框架只是全球循環經濟原則發展的一個方面,世界各國政府正在實施日益嚴格的政策,以應對日益嚴重的塑膠垃圾危機。

考慮到塑膠產量的不斷增長,市場成長軌跡尤其引人注目。預計未來 35 年塑膠產量將增加兩倍,塑膠垃圾管理課題將呈指數級增長。因此,快速且有效率地擴展先進的回收技術既是前所未有的機遇,也是迫切的需求。

全球先進塑膠回收市場正在多個細分領域強勁擴張。中國大規模進入先進回收領域,標誌著該產業發展的重要里程碑。新建於廣東省揭陽的工廠採用廣東東嶽化工科技股份有限公司自主研發的單段深度催化裂解技術,年處理能力超過20萬噸。

機械回收的限制為先進的化學回收技術帶來了巨大的機會。機械回收最適用於高品質、分類相對乾淨的廢棄物,但也面臨結構性限制,例如合適的原料有限以及材料特性限制了終端市場的應用。相較之下,先進回收不僅擴大了可回收塑料的種類,還能生產具有特定分子量分佈和共聚單體的塑料,適用於軟包裝等高價值應用。

推動市場成長的因素很多。政府的舉措和對塑膠回收的大力投資正在推動對塑膠化學回收的需求。此外,消費品和包裝行業向可回收和可持續材料的轉變預計將促進市場成長。

憑藉先進技術,到2030年,每年可處理多達1500萬噸的塑膠垃圾。預計該產業將在解決全球塑膠垃圾問題中發揮關鍵作用,同時透過將廢棄物轉化為新產品的寶貴原料,創造巨大的經濟價值。

本報告探討了全球先進塑膠回收市場,提供了有關新興技術、市場動態、競爭格局和策略機會的資訊。報告還提供了對市場推動因素的關鍵見解,包括嚴格的監管政策、企業永續發展計畫、技術進步以及全球主要地區循環經濟的實施。

目錄

第1章 回收技術的分類

第2章 調查手法

第3章 簡介

  • 全球塑膠生產
  • 塑膠的重要性
  • 塑膠使用相關問題
  • 生物為基礎或可再生的塑膠
  • 生物分解性的堆肥化可能的塑膠
  • 塑膠污染
  • 政策和法規
  • 循環型經濟
  • 塑膠回收再利用
  • 生命週期評估

第4章 先進塑膠回收再利用市場

  • 市場促進因素和趨勢
  • 市場課題與阻礙因素
  • 產業新聞,資金籌措,開發(2020年~2025年)
  • 處理能力
  • 全球聚合物需求:各回收技術(2022年~2040年)
  • 全球聚合物需求:各回收技術,各地區(2022年~2040年)
  • 化學再生的塑膠製品
  • 市場地圖
  • 價值鏈
  • 先進的塑膠回收再利用流程的生命週期評估(LCA)
  • 回收塑膠的產量比率和成本

第5章 先進塑膠回收再利用技術

  • 用途
  • 聚合物廢棄物化學回收和先進機械回收的現有和新興技術
  • 熱處理流程
  • 溶劑為基礎的回收技術
  • 其他的先進塑膠回收再利用技術
  • 熱硬化性材料的先進的回收
  • 傳統的回收方法的比較
  • 新的先進的機械技術
  • 對環境的影響的評估
  • 新技術

第6章 材料分析

  • 塑膠
  • 金屬
  • 基底金屬
  • 稀土元素元素
  • 電子廢棄物
  • 紡織品
  • 合成纖維

第7章 最終產品的分析

  • 化學原料
  • 燃料
  • 原料
  • 能量產品

第8章 企業簡介(企業191公司的簡介)

第9章 詞彙表

第10章 參考文獻

The advanced plastics recycling market stands at an inflection point, driven by regulatory pressures, environmental imperatives, and technological breakthroughs that are reshaping the global waste management landscape. With the European Union mandating that 10% of packaging materials must come from recycled sources by 2030, the urgency for innovative recycling solutions has never been greater. This regulatory framework represents just one facet of a broader global movement toward circular economy principles, as governments worldwide implement increasingly stringent policies to address the mounting plastic waste crisis.

The market's growth trajectory is particularly compelling when viewed against the backdrop of escalating plastic production. With plastic manufacturing projected to potentially triple over the next 35 years, the challenge of managing plastic waste will intensify exponentially. This creates both an unprecedented opportunity and an existential necessity for advanced recycling technologies to scale rapidly and efficiently.

The global advanced plastics recycling market demonstrates robust expansion across multiple segments. China's entry into large-scale advanced recycling marks a significant milestone in the industry's evolution. The new facility in Jieyang, Guangdong province, with its capacity to process over 200,000 tonnes per year using proprietary one-step deep catalytic cracking technology developed by Guangdong Dongyue Chemical Technology, represents the kind of technological breakthrough needed to address the scale of the challenge.

The limitations of mechanical recycling have created substantial opportunities for advanced chemical recycling technologies. Mechanical recycling is most effective with high-quality, relatively clean sorted waste; it faces structural limitations such as limited pools of appropriate feedstock and resulting material properties that limit end-market applications. In contrast, advanced recycling can not only expand the types of plastics that are recyclable but also produce plastics that have tailored molecular weight distributions and comonomers that are suited for high-value applications, such as flexible packaging for food.

Several key factors are propelling market growth. Government initiatives toward recycling of plastics coupled with high investments is likely to propel demand for chemical recycling of plastics. Additionally, the shift of consumer goods and packaging industries toward recyclable and sustainable materials is expected to augment the market growth.

With advanced technologies potentially processing up to 15 million tons of additional plastic waste annually by 2030, the industry is positioned to play a crucial role in addressing the global plastic waste challenge while creating substantial economic value through the transformation of waste streams into valuable feedstock for new products.

"The Global Advanced Plastics Recycling Market 2026-2040" provides definitive analysis of the advanced plastics recycling sector, covering emerging technologies, market dynamics, competitive landscapes, and strategic opportunities through 2040. As plastic production continues its exponential growth trajectory, the urgency for sustainable waste management solutions has never been greater. Advanced plastics recycling technologies-including chemical recycling, pyrolysis, gasification, depolymerization, and dissolution processes-are revolutionizing how the industry approaches plastic waste streams that were previously considered non-recyclable. This report delivers critical insights into market drivers including stringent regulatory policies, corporate sustainability initiatives, technological advancements, and circular economy adoption across key global regions.

The market analysis encompasses detailed examination of thermal processes, solvent-based recycling technologies, chemical depolymerization methods, and emerging technologies such as AI-driven sorting optimization, robotics integration, and novel catalyst development. With over 190 company profiles spanning the entire value chain from technology developers to end-product manufacturers, this report provides unparalleled competitive intelligence for strategic decision-making.

Regional analysis covers Europe, North America, South America, Asia, Oceania, and Africa, with polymer-specific demand forecasts for polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), nylon, and other specialized materials. The report includes comprehensive capacity projections, technology comparisons, cost analyses, and sustainability metrics essential for investment planning and market entry strategies.

Report contents include:

  • Classification of recycling technologies and comprehensive research methodology
  • Global plastics production trends, environmental impact assessment, and policy landscape
  • Bio-based and biodegradable plastics market integration with recycling ecosystems
  • Circular economy frameworks and plastic waste management systems
  • Advanced vs. mechanical recycling comparison with life cycle assessments
  • Environmental concerns and regulatory compliance requirements driving market expansion
  • Corporate sustainability initiatives and extended producer responsibility programs
  • Technological advancement analysis including breakthrough innovations and patent landscapes
  • Market challenges including high initial investment costs and technical implementation barriers
  • Infrastructure limitations, supply chain complexities, and cost competitiveness analysis
  • Comprehensive industry news, funding developments, and merger & acquisition activity (2020-2025)
  • Global capacity analysis by technology type with current and planned facility databases
  • Regional polymer demand forecasts segmented by recycling technology (2022-2040)
  • Market mapping and value chain analysis from feedstock to end products
  • Pricing analysis and yield optimization strategies for chemical recycling technologies
  • Technology Analysis
    • Thermal processes: pyrolysis (catalytic and non-catalytic), gasification, and steam cracking technologies
    • Solvent-based recycling: dissolution, delamination, and polymer-specific solvent systems
    • Chemical depolymerization: hydrolysis, enzymolysis, methanolysis, glycolysis, and aminolysis processes
    • Emerging technologies: hydrothermal liquefaction, microwave-assisted pyrolysis, plasma processing
    • Advanced thermoset recycling and carbon fiber recovery technologies
  • Materials & End Products Analysis
    • Comprehensive analysis of plastic types: PE, PP, PET, PS, PVC, PC, ABS, and mixed plastic streams
    • Metals recovery including precious metals, base metals, and rare earth elements
    • Electronic waste processing for circuit boards, batteries, displays, and components
    • Textile recycling for natural and synthetic fibers with advanced recovery technologies
    • Chemical feedstocks, fuels, raw materials, and energy products from recycling processes
  • Technology Comparison & Environmental Impact
    • Advanced vs. traditional recycling methods with energy efficiency comparisons
    • Quality of output analysis and cost-benefit assessments
    • Carbon footprint analysis and waste reduction potential evaluation
    • Sustainability metrics and environmental impact assessments
    • Emerging AI, machine learning, and robotics applications in recycling operations
  • Competitive Intelligence
    • SWOT analysis for major technology categories and market segments
    • Innovation pipeline analysis and technology readiness levels
    • Commercial development timelines and scale-up challenges
    • Investment requirements and economic viability assessments
    • Market entry strategies and partnership opportunities
  • Company Profiles. Comprehensive profiles of 191 leading companies shaping the advanced plastics recycling landscape, covering products/technology, funding, TRL, collaborations etc. Companies profiled include Aduro Clean Technologies, Advanced Plastic Purification International (APPI), Aeternal Upcycling, Agilyx, Alpha Recyclage Composites, Alterra Energy, Ambercycle, Anellotech, Anhui Oursun Resource Technology, APChemi, Aquafil, ARCUS Greencycling, Arkema, Axens, BASF, Bcircular, BioBTX, Biofabrik Technologies, Birch Biosciences, Blest, Blue Cycle, BlueAlp Technology, Borealis, Boston Materials, Braven Environmental, Breaking, Brightmark, Cadel Deinking, Carbios, Carboliq, Carbon Fiber Recycling, Cassandra Oil, CIRC, Chian Tianying, Chevron Phillips Chemical, Clariter, Clean Energy Enterprises, Clean Planet Energy, Corsair Group International, Covestro, CreaCycle, CuRe Technology, Cyclic Materials, Cyclize, DeepTech Recycling, DePoly, Dow Chemical Company, DyeRecycle, Eastman Chemical Company, Eco Fuel Technology, Ecopek, Ecoplasteam, Eeden, Emery Oleochemicals, Encina Development Group, Enerkem, Enespa, Enval, Environmental Solutions (Asia), Epoch Biodesign, Equipolymers, ESTER Biotech, Evonik Industries, Evoralis, Evrnu, Extracthive, ExxonMobil, Fairmat, Fulcrum BioEnergy, Futerro, Freepoint Eco-Systems, Fych Technologies, Garbo, GreenMantra Technologies, Greyparrot, Gr3n, Guangdong Dongyue Chemical Technology, Handerek Technologies, Hanwha Solutions, Honeywell, Hyundai Chemical, Impact Recycling, Indaver, InEnTec, INEOS Styrolution, Infinited Fiber Company, Ioncell, Ioniqa Technologies, Itero Technologies, Jeplan, JFE Chemical Corporation, Kaneka Corporation, Khepra, Klean Industries, Lanzatech, Licella, Loop Industries, LOTTE Chemical, Lummus Technology, LyondellBasell Industries, MacroCycle Technologies, Metaspectral, Mint Innovation, Microwave Chemical, Mitsubishi Chemical, MolyWorks Materials, Mote, Mura Technology, Nanya Plastics Corporation, NatureWorks, Neste, New Hope Energy, Nexus Circular, Next Generation Group (NGR), Novoloop, Olefy Technologies, OMV, and more....

TABLE OF CONTENTS

1. CLASSIFICATION OF RECYCLING TECHNOLOGIES

2. RESEARCH METHODOLOGY

3. INTRODUCTION

  • 3.1. Global production of plastics
  • 3.2. The importance of plastic
  • 3.3. Issues with plastics use
  • 3.4. Bio-based or renewable plastics
    • 3.4.1. Drop-in bio-based plastics
    • 3.4.2. Novel bio-based plastics
  • 3.5. Biodegradable and compostable plastics
    • 3.5.1. Biodegradability
    • 3.5.2. Compostability
  • 3.6. Plastic pollution
  • 3.7. Policy and regulations
  • 3.8. The circular economy
  • 3.9. Plastic recycling
    • 3.9.1. Mechanical recycling
      • 3.9.1.1. Closed-loop mechanical recycling
      • 3.9.1.2. Open-loop mechanical recycling
      • 3.9.1.3. Polymer types, use, and recovery
    • 3.9.2. Advanced recycling (molecular recycling, chemical recycling)
      • 3.9.2.1. Main streams of plastic waste
      • 3.9.2.2. Comparison of mechanical and advanced chemical recycling
  • 3.10. Life cycle assessment

4. THE ADVANCED PLASTICS RECYCLING MARKET

  • 4.1. Market drivers and trends
    • 4.1.1. Growing Environmental Concerns
    • 4.1.2. Stringent Regulatory Policies
    • 4.1.3. Corporate Sustainability Initiatives
    • 4.1.4. Technological Advancements
    • 4.1.5. Circular Economy Adoption
  • 4.2. Market Challenges and Restraints
    • 4.2.1. High Initial Investment Costs
    • 4.2.2. Technical Challenges
    • 4.2.3. Infrastructure Limitations
    • 4.2.4. Technological Barriers
    • 4.2.5. Supply Chain Complexities
    • 4.2.6. Cost Competitiveness
  • 4.3. Industry news, funding and developments 2020-2025
  • 4.4. Capacities
  • 4.5. Global polymer demand 2022-2040, segmented by recycling technology
    • 4.5.1. PE
    • 4.5.2. PP
    • 4.5.3. PET
    • 4.5.4. PS
    • 4.5.5. Nylon
    • 4.5.6. Others
  • 4.6. Global polymer demand 2022-2040, segmented by recycling technology, by region
    • 4.6.1. Europe
    • 4.6.2. North America
    • 4.6.3. South America
    • 4.6.4. Asia
    • 4.6.5. Oceania
    • 4.6.6. Africa
  • 4.7. Chemically recycled plastic products
  • 4.8. Market map
  • 4.9. Value chain
  • 4.10. Life Cycle Assessments (LCA) of advanced plastics recycling processes
    • 4.10.1. PE
    • 4.10.2. PP
    • 4.10.3. PET
  • 4.11. Recycled plastic yield and cost
    • 4.11.1. Plastic yield of each chemical recycling technologies
    • 4.11.2. Prices

5. ADVANCED PLASTICS RECYCLING TECHNOLOGIES

  • 5.1. Applications
  • 5.2. Current and Emerging Technologies for Chemical and Advanced Mechanical Recycling of Polymer Waste
  • 5.3. Thermal Processes
    • 5.3.1. Pyrolysis
      • 5.3.1.1. Technical Process and Variations
      • 5.3.1.2. Non-catalytic
      • 5.3.1.3. Catalytic
      • 5.3.1.4. Steam Cracking of Polymer Waste
        • 5.3.1.4.1. Technology Overview
        • 5.3.1.4.2. Process Conditions and Product Yields
        • 5.3.1.4.3. Integration with Refineries
        • 5.3.1.4.4. Commercial Applications
        • 5.3.1.4.5. Polystyrene pyrolysis
        • 5.3.1.4.6. Pyrolysis for production of bio fuel
        • 5.3.1.4.7. Used tires pyrolysis
          • 5.3.1.4.7.1. Conversion to biofuel
        • 5.3.1.4.8. Co-pyrolysis of biomass and plastic wastes
      • 5.3.1.5. Commercial Development and Investment
      • 5.3.1.6. Challenges and Considerations
      • 5.3.1.7. SWOT analysis
      • 5.3.1.8. Companies and capacities
    • 5.3.2. Gasification
      • 5.3.2.1. Technology overview
        • 5.3.2.1.1. Syngas conversion to methanol
        • 5.3.2.1.2. Biomass gasification and syngas fermentation
        • 5.3.2.1.3. Biomass gasification and syngas thermochemical conversion
      • 5.3.2.2. Applications and Potential
      • 5.3.2.3. Multilayer Packaging
      • 5.3.2.4. SWOT analysis
      • 5.3.2.5. Companies and capacities (current and planned)
  • 5.4. Solvent-Based Recycling Technologies
    • 5.4.1. Dissolution
      • 5.4.1.1. Technology overview
      • 5.4.1.2. Selective Dissolution and Precipitation
      • 5.4.1.3. Supercritical Fluid Technologies
      • 5.4.1.4. Advanced Solvent Systems for Mixed Plastics
      • 5.4.1.5. Switchable Solvent Technologies
      • 5.4.1.6. SWOT analysis
      • 5.4.1.7. Companies and capacities (current and planned)
    • 5.4.2. Delamination Technologies for Multilayer Packaging
      • 5.4.2.1. Technical Approaches
      • 5.4.2.2. Switchable Hydrophilicity Solvents (SHS)
      • 5.4.2.3. Chemical Recycling of "Polyal" (Polyethylene-Aluminum Composites)
      • 5.4.2.4. Delamination Process for Carton Packages
      • 5.4.2.5. Aluminum Recovery Methods
      • 5.4.2.6. Polyethylene Purification and Recycling
      • 5.4.2.7. Economic and Environmental Benefits
      • 5.4.2.8. Novel Approaches
    • 5.4.3. Solvent-Based Plastic Recycling
      • 5.4.3.1. Solvent Selection and Classification
        • 5.4.3.1.1. Conventional Organic Solvents
        • 5.4.3.1.2. Ionic Liquids
        • 5.4.3.1.3. Supercritical Fluids
        • 5.4.3.1.4. Deep Eutectic Solvents (DES)
      • 5.4.3.2. Polymer-Specific Solvent Recycling
        • 5.4.3.2.1. Polyolefin Dissolution Systems
        • 5.4.3.2.2. Polystyrene Solvent Recovery
        • 5.4.3.2.3. PET and Polyester Solvolysis
        • 5.4.3.2.4. Mixed Polymer Stream Processing
      • 5.4.3.3. Solvent Recovery and Recycling Systems
        • 5.4.3.3.1. Distillation and Purification
        • 5.4.3.3.2. Membrane Separation Technologies
        • 5.4.3.3.3. Economic Optimization
      • 5.4.3.4. Environmental Considerations
        • 5.4.3.4.1. Solvent Emissions Control
        • 5.4.3.4.2. Waste Stream Management
        • 5.4.3.4.3. Life Cycle Assessment of Solvent Systems
      • 5.4.3.5. Commercial Development and Scale-Up
        • 5.4.3.5.1. Pilot and Demonstration Plants
        • 5.4.3.5.2. Industrial Implementation Challenges
        • 5.4.3.5.3. Economic Viability Assessment
    • 5.4.4. Chemical Depolymerisation
      • 5.4.4.1. Hydrolysis
        • 5.4.4.1.1. Technology overview
        • 5.4.4.1.2. SWOT analysis
      • 5.4.4.2. Enzymolysis
        • 5.4.4.2.1. Technology overview
        • 5.4.4.2.2. SWOT analysis
      • 5.4.4.3. Methanolysis
        • 5.4.4.3.1. Technology overview
        • 5.4.4.3.2. SWOT analysis
      • 5.4.4.4. Glycolysis
        • 5.4.4.4.1. Technology overview
        • 5.4.4.4.2. SWOT analysis
      • 5.4.4.5. Aminolysis
        • 5.4.4.5.1. Technology overview
        • 5.4.4.5.2. SWOT analysis
      • 5.4.4.6. Companies and capacities (current and planned)
  • 5.5. Other advanced plastics recycling technologies
    • 5.5.1. Hydrothermal Liquefaction (HTL)
      • 5.5.1.1. Technical Mechanisms
      • 5.5.1.2. Performance and Application
      • 5.5.1.3. Commercial Development
      • 5.5.1.4. Hydrothermal Liquefaction Targeting Multilayer Packaging Waste
    • 5.5.2. Pyrolysis with in-line reforming
    • 5.5.3. Microwave-assisted pyrolysis
    • 5.5.4. Plasma pyrolysis
    • 5.5.5. Plasma gasification
    • 5.5.6. Carbon fiber recycling
      • 5.5.6.1. Processes
      • 5.5.6.2. Companies
  • 5.6. Advanced recycling of thermoset materials
    • 5.6.1. Thermal recycling
      • 5.6.1.1. Energy Recovery Combustion
      • 5.6.1.2. Anaerobic Digestion
      • 5.6.1.3. Pyrolysis Processing
      • 5.6.1.4. Microwave Pyrolysis
    • 5.6.2. Solvolysis
    • 5.6.3. Catalyzed Glycolysis
    • 5.6.4. Alcoholysis and Hydrolysis
    • 5.6.5. Ionic liquids
    • 5.6.6. Supercritical fluids
    • 5.6.7. Plasma
    • 5.6.8. Chemical Vapor Infiltration (CVI)
    • 5.6.9. Companies
  • 5.7. Comparison with Traditional Recycling Methods
    • 5.7.1. Mechanical Recycling Limitations
    • 5.7.2. Energy Efficiency Comparison
    • 5.7.3. Quality of Output Comparison
    • 5.7.4. Cost Analysis
  • 5.8. Emerging Advanced Mechanical Technologies
    • 5.8.1. Chemical Upcycling Integration
    • 5.8.2. Computational Modelling
    • 5.8.3. Hybrid Approaches
  • 5.9. Environmental Impact Assessment
    • 5.9.1. Carbon Footprint Analysis
    • 5.9.2. Energy Consumption Assessment
    • 5.9.3. Waste Reduction Potential
      • 5.9.3.1. Wastewater
      • 5.9.3.2. Atmospheric Emissions
      • 5.9.3.3. Catalyst and Media Waste
      • 5.9.3.4. Maintenance and Cleaning Waste
      • 5.9.3.5. Waste Management Approaches
      • 5.9.3.6. Regulatory Considerations and Classification
      • 5.9.3.7. Comparative Waste Production
      • 5.9.3.8. Environmental Impact and Future Directions
    • 5.9.4. Sustainability Metrics
  • 5.10. Emerging Technologies
    • 5.10.1. AI and Machine Learning Applications
      • 5.10.1.1. Sorting Optimization
      • 5.10.1.2. Process Control
      • 5.10.1.3. Quality Prediction
      • 5.10.1.4. Maintenance Prediction
    • 5.10.2. Robotics in Sorting
      • 5.10.2.1. Vision Systems
      • 5.10.2.2. Picking Mechanisms
      • 5.10.2.3. Control Systems
      • 5.10.2.4. Integration Methods
    • 5.10.3. Novel Catalyst Development
      • 5.10.3.1. Nano-catalysts
      • 5.10.3.2. Bio-catalysts
      • 5.10.3.3. Hybrid Catalysts

6. MATERIALS ANALYSIS

  • 6.1. Plastics
    • 6.1.1. Polyethylene (PE)
      • 6.1.1.1. HDPE Analysis
      • 6.1.1.2. LLDPE Analysis
      • 6.1.1.3. Recovery Methods
    • 6.1.2. Polypropylene (PP)
      • 6.1.2.1. Homopolymer
      • 6.1.2.2. Copolymer
      • 6.1.2.3. Processing Methods
      • 6.1.2.4. Quality Grades
    • 6.1.3. Polyethylene Terephthalate (PET)
      • 6.1.3.1. Bottle Grade
      • 6.1.3.2. Fiber Grade
      • 6.1.3.3. Film Grade
      • 6.1.3.4. Recovery Technologies
    • 6.1.4. Polystyrene (PS)
      • 6.1.4.1. General Purpose PS
      • 6.1.4.2. High Impact PS
      • 6.1.4.3. Expanded PS
      • 6.1.4.4. Processing Methods
    • 6.1.5. Other Plastics
      • 6.1.5.1. PVC
      • 6.1.5.2. PC
      • 6.1.5.3. ABS
      • 6.1.5.4. Mixed Plastics
  • 6.2. Metals
    • 6.2.1. Precious Metals
      • 6.2.1.1. Gold
      • 6.2.1.2. Silver
      • 6.2.1.3. Platinum Group Metals
      • 6.2.1.4. Recovery Methods
  • 6.3. Base Metals
    • 6.3.1. Copper
    • 6.3.2. Aluminium
    • 6.3.3. Steel
    • 6.3.4. Processing Technologies
  • 6.4. Rare Earth Elements
    • 6.4.1. Light REEs
    • 6.4.2. Heavy REEs
    • 6.4.3. Extraction Methods
  • 6.5. Electronic Waste
    • 6.5.1. Circuit Boards
      • 6.5.1.1. PCB Types
      • 6.5.1.2. Component Separation
      • 6.5.1.3. Metal Recovery
      • 6.5.1.4. Waste Management
    • 6.5.2. Batteries
      • 6.5.2.1. Lithium-ion
      • 6.5.2.2. Lead-acid
      • 6.5.2.3. Nickel-based
      • 6.5.2.4. Recovery Processes
    • 6.5.3. Displays
      • 6.5.3.1. LCD
      • 6.5.3.2. LED
      • 6.5.3.3. OLED
      • 6.5.3.4. Material Recovery
    • 6.5.4. Other Components
      • 6.5.4.1. Capacitors
      • 6.5.4.2. Resistors
      • 6.5.4.3. Semiconductors
      • 6.5.4.4. Connectors
  • 6.6. Textiles
    • 6.6.1. Natural Fibers
    • 6.6.2. Cotton
    • 6.6.3. Wool
    • 6.6.4. Silk
    • 6.6.5. Processing Methods
  • 6.7. Synthetic Fibers
    • 6.7.1. Polyester
    • 6.7.2. Nylon
    • 6.7.3. Acrylic
    • 6.7.4. Recovery Technologies

7. END PRODUCT ANALYSIS

  • 7.1. Chemical Feedstocks
    • 7.1.1. Monomers
    • 7.1.2. Oligomers
    • 7.1.3. Specialty Chemicals
  • 7.2. Fuels
    • 7.2.1. Diesel
    • 7.2.2. Gasoline
    • 7.2.3. Synthetic Gas
  • 7.3. Raw Materials
    • 7.3.1. Recycled Plastics
    • 7.3.2. Recovered Metals
    • 7.3.3. Other Materials
  • 7.4. Energy Products
    • 7.4.1. Electricity
    • 7.4.2. Heat
    • 7.4.3. Biofuels

8. COMPANY PROFILES (191 company profiles)

9. GLOSSARY OF TERMS

10. REFERENCES

List of Tables

  • Table 1. Types of recycling
  • Table 2. Issues related to the use of plastics
  • Table 3. Type of biodegradation
  • Table 4. Overview of the recycling technologies
  • Table 5. Polymer types, use, and recovery
  • Table 6. Composition of plastic waste streams
  • Table 7. Comparison of mechanical and advanced chemical recycling
  • Table 8. Life cycle assessment of virgin plastic production, mechanical recycling and chemical recycling
  • Table 9. Life cycle assessment of chemical recycling technologies (pyrolysis, gasification, depolymerization and dissolution)
  • Table 10. Market drivers and trends in the advanced plastics recycling market
  • Table 11. Global regulations driving plastics recycling
  • Table 12. Corporate Sustainability Initiatives
  • Table 13. Technological Advancements
  • Table 14. Technical Challenges
  • Table 15. Technological Barriers
  • Table 16. Cost Competitiveness Analysis
  • Table 17. Advanced plastics recycling industry news, funding and developments 2020-2025
  • Table 18. Advanced plastics recycling capacities, by technology
  • Table 19. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes)
  • Table 20. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes)
  • Table 21. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes)
  • Table 22. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes)
  • Table 23. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes)
  • Table 24. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes)*
  • Table 25. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes)
  • Table 26. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes)
  • Table 27. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes)
  • Table 28. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes)
  • Table 29. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes)
  • Table 30. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes)
  • Table 31. Example chemically recycled plastic products
  • Table 32. Life Cycle Assessments (LCA) of Advanced plastics recycling Processes
  • Table 33. Life cycle assessment of mechanically versus chemically recycling polyethylene (PE)
  • Table 34. Life cycle assessment of mechanically versus chemically recycling polypropylene (PP)
  • Table 35. Life cycle assessment of mechanically versus chemically recycling polyethylene terephthalate (PET)
  • Table 36. Plastic yield of each chemical recycling technologies
  • Table 37. Chemically recycled plastics prices in USD
  • Table 38. Applications of chemically recycled materials
  • Table 39. Current and Emerging Technologies for Chemical and Advanced Mechanical Recycling of Polymer Waste
  • Table 40. Pyrolysis Technology Comparison for Multilayer Packaging Processing
  • Table 41. Summary of non-catalytic pyrolysis technologies
  • Table 42. Summary of catalytic pyrolysis technologies
  • Table 43. Steam Cracking Technology Specifications for Polymer Waste Processing
  • Table 44. Product Yields and Quality Specifications for Polymer Waste Steam Cracking
  • Table 45. Refinery Integration Requirements for Polymer Waste Steam Cracking
  • Table 46. Commercial Steam Cracking Applications for Polymer Waste Processing
  • Table 47. Summary of pyrolysis technique under different operating conditions
  • Table 48. Biomass materials and their bio-oil yield
  • Table 49. Biofuel production cost from the biomass pyrolysis process
  • Table 50. Pyrolysis companies and plant capacities, current and planned
  • Table 51. Summary of gasification technologies
  • Table 52. Gasification Technology Specifications for Multilayer Packaging Waste
  • Table 53. Advanced recycling (Gasification) companies
  • Table 54. Summary of dissolution technologies
  • Table 55. Dissolution Technology Performance for Multilayer Packaging Recycling
  • Table 56. Switchable Solvent Technologies
  • Table 57. Advanced recycling (Dissolution) companies
  • Table 58. Delamination Method Performance for Multilayer Packaging Separation
  • Table 59. Aluminum Recovery Methods
  • Table 60. Economic and Environmental Benefits of Delamination Technologies
  • Table 61. Novel Approaches in Delamination Technologies - Comprehensive Analysis
  • Table 62. Primary Solvent Categories and Applications
  • Table 63. Process Economics and Operating Parameters
  • Table 64. Solvent Recovery and Recycling Systems
  • Table 65. Polyolefin Dissolution Systems
  • Table 66. Solvent System Performance Comparison
  • Table 67. Membrane separation technologies
  • Table 68. Life cycle assessment (LCA) of solvent systems
  • Table 69. Commercial Development and Scale-Up
  • Table 70. Pilot and Demonstration Plants
  • Table 71. Industrial Implementation Challenges
  • Table 72. Technical Implementation Barriers
  • Table 73. Economic Implementation Barriers
  • Table 74. Economic Viability Assessment
  • Table 75. Technology-Specific Economics
  • Table 76. Depolymerisation processes for PET, PU, PC and PA, products and yields
  • Table 77. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 78. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 79. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 80. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 81. Summary of aminolysis technologies
  • Table 82. Advanced recycling (Depolymerisation) companies and capacities (current and planned)
  • Table 83. Hydrothermal Liquefaction Operating Parameters for Multilayer Packaging
  • Table 84. Overview of Pyrolysis with in-line reforming for advanced chemical recycling
  • Table 85. Overview of microwave-assisted pyrolysis for advanced chemical recycling
  • Table 86. Overview of plasma pyrolysis for advanced chemical recycling
  • Table 87. Overview of plasma gasification for advanced chemical recycling
  • Table 88. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages
  • Table 89. Retention rate of tensile properties of recovered carbon fibres by different recycling processes
  • Table 90. Recycled carbon fiber producers, technology and capacity
  • Table 91. Advanced Recycling Technologies for Specialized Packaging Applications
  • Table 92. Current thermoset recycling routes
  • Table 93. Companies developing advanced thermoset recycing routes
  • Table 94. Comparison of Advanced Chemical Recycling with Traditional Recycling Methods
  • Table 95. Energy Efficiency Comparison: Advanced Chemical Recycling vs. Mechanical Recycling
  • Table 96. Quality of Output Comparison
  • Table 97. Cost Analysis of advanced plastic recycling versus traditional recycling methods
  • Table 98. Carbon Footprint Analysis
  • Table 99. Energy Consumption Assessment
  • Table 100. Sustainability Metrics
  • Table 101. AI and Machine Learning Applications
  • Table 102. Types of Nano-catalysts
  • Table 103. Types of bio-catalysts
  • Table 104. Advanced polyethylene recovery methods
  • Table 105. Polypropylene processing methods for chemical recycling
  • Table 106. PP Quality Grades from Chemical Recycling
  • Table 107. Advanced PET recovery technologies
  • Table 108. Advanced chemical recycling of metals
  • Table 109. Precious metals recovery methods
  • Table 110. Advanced processing technologies for base metal recycling
  • Table 111. Rare Earth Elements Extraction Methods
  • Table 112. Recovery Processes for Batteries
  • Table 113. Advanced technologies for materials recovery in displays
  • Table 114. Processing Methods for Natural Fiber Recycling
  • Table 115. Recovery Technologies for Synthetic Fibers
  • Table 116. Monomers from chemical recycling
  • Table 117. Oligomers from advanced recycling

List of Figures

  • Figure 1. Global plastics production 1950-2021, millions of tonnes
  • Figure 2. Coca-Cola PlantBottle-R
  • Figure 3. Interrelationship between conventional, bio-based and biodegradable plastics
  • Figure 4. Global production, use, and fate of polymer resins, synthetic fibers, and additives
  • Figure 5. The circular plastic economy
  • Figure 6. Current management systems for waste plastics
  • Figure 7. Overview of the different circular pathways for plastics
  • Figure 8. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes)
  • Figure 9. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes)
  • Figure 10. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes)
  • Figure 11. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes)
  • Figure 12. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes)
  • Figure 13. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes)
  • Figure 14. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes)
  • Figure 15. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes)
  • Figure 16. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes)
  • Figure 17. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes)
  • Figure 18. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes)
  • Figure 19. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes)
  • Figure 20. Market map for advanced plastics recycling
  • Figure 21. Value chain for advanced plastics recycling market
  • Figure 22. Schematic layout of a pyrolysis plant
  • Figure 23. Waste plastic production pathways to (A) diesel and (B) gasoline
  • Figure 24. Schematic for Pyrolysis of Scrap Tires
  • Figure 25. Used tires conversion process
  • Figure 26. SWOT analysis-pyrolysis for advanced recycling
  • Figure 27. Total syngas market by product in MM Nm3/h of Syngas
  • Figure 28. Overview of biogas utilization
  • Figure 29. Biogas and biomethane pathways
  • Figure 30. SWOT analysis-gasification for advanced recycling
  • Figure 31. SWOT analysis-dissoluton for advanced recycling
  • Figure 32. Products obtained through the different solvolysis pathways of PET, PU, and PA
  • Figure 33. SWOT analysis-Hydrolysis for advanced chemical recycling
  • Figure 34. SWOT analysis-Enzymolysis for advanced chemical recycling
  • Figure 35. SWOT analysis-Methanolysis for advanced chemical recycling
  • Figure 36. SWOT analysis-Glycolysis for advanced chemical recycling
  • Figure 37. SWOT analysis-Aminolysis for advanced chemical recycling
  • Figure 38. Alterra's Akron Plant in Ohio
  • Figure 39. ChemCyclingTM prototypes
  • Figure 40. ChemCycling circle by BASF
  • Figure 41. Recycled carbon fibers obtained through the R3FIBER process
  • Figure 42. Cassandra Oil process
  • Figure 43. CuRe Technology process
  • Figure 44. MoReTec
  • Figure 45. Chemical decomposition process of polyurethane foam
  • Figure 46. OMV ReOil process
  • Figure 47. Schematic Process of Plastic Energy's TAC Chemical Recycling
  • Figure 48. Easy-tear film material from recycled material
  • Figure 49. Polyester fabric made from recycled monomers
  • Figure 50. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right)
  • Figure 51. Teijin Frontier Co., Ltd. Depolymerisation process
  • Figure 52. The Velocys process
  • Figure 53. The Proesa-R Process
  • Figure 54. Worn Again products