封面
市場調查報告書
商品編碼
1779627

超高頻通訊市場(按頻寬、組件、應用和地區):趨勢、競爭格局和預測(2019-2031年)

Super High Frequency Communication Market, By Frequency Range; By Component; By Application; By Region, Global Trend Analysis, Competitive Landscape & Forecast, 2019-2031

出版日期: | 出版商: Blueweave Consulting | 英文 539 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

到2031年,全球超高頻(SHF)通訊市場規模將成長兩倍,達到 93.5億美元

由於軍事和國防部門的需求激增、智慧城市和工業IoT(IIoT)的興起以及 5G、毫米波和衛星連接的持續發展和建設,全球超高頻(SHF)通訊市場蓬勃發展。

在最近的一項研究中,領先的策略諮詢和市場研究公司 BlueWeave Consulting 估計,2024年全球超高頻(SHF)通訊市場價值將達到 31.5億美元。 BlueWeave 預測,從2025年到2031年,全球超高頻(SHF)通訊市場將以 16.8%的年複合成長率擴張,到2031年將達到 93.5億美元。各地區超高頻(SHF)通訊市場的成長是由國防、通訊、航太和衛星服務等關鍵領域對高速、低延遲和安全通訊解決方案日益成長的需求所推動的。 SHF 技術工作在 3 GHz 至 30 GHz頻寬,是雷達系統、5G 網路、衛星網際網路和微波鏈路等應用的基礎。主要成長動力包括 5G 天線的不斷擴展、對低地球軌道(LEO)衛星星系的日益依賴以增強全球寬頻覆蓋範圍(以 OneWeb 和 SpaceX 的Starlink 擴展為例)以及對先進通訊基礎設施的整體需求。Lockheed Martin、Northrop Grumman、Huawei、Ericsson、Qualcomm等主要企業處於技術創新的前沿,開發相位陣列天線、基於人工智慧的最佳化和高頻收發器等先進技術。政府和私人對軍用雷達、衛星連接和智慧通訊系統的大量投資,尤其是在美國、中國、日本和韓國等國家,進一步推動市場擴張,Ericsson與 Verizon 達成的83億美元 5G 基礎設施協議等關鍵夥伴關係關係就證明了這一點。

市場機會:低地球衛星星系

全球低地球軌道(LEO)衛星市場預計將經歷顯著成長,這得益於投資增加、技術進步以及對高畫質視訊會議、遊戲、安全金融交易和遠端資產監控等應用日益成長的需求。主要衛星服務供應商積極發射利用超高頻(SHF)通訊系統的LEO衛星群,以提供高速資料傳輸、增強的安全性和高效的波束覆蓋等優勢。 OneWeb 和 SpaceX 等公司是主要企業。 OneWeb 已根據其「5 到 50」計畫推出了36 顆 LEO 衛星,使衛星總合達到 648 顆。此外,Larsen & Toubro 與印度太空研究組織(ISRO)討論取得製造 LEO 衛星運載火箭的太空技術。國防、電訊、醫療保健、媒體和政府部門對 LEO 衛星日益成長的需求預計將推動 SHF 系統的採用。同時,美國、中國、日本等國的主要通訊業者投資 6.0 GHz 以下和毫米波頻段,以加速 5G 基礎設施的部署。例如,Verizon 與Ericsson簽訂的價值 83億美元的合約目的是部署大規模 MIMO 5G 網路。總體而言,這些發展預計將在預測期內推動全球超高頻(SHF)通訊市場的發展。

地緣政治緊張局勢加劇對全球超高頻(SHF)通訊市場的影響

不斷升級的地緣政治緊張局勢可能會阻礙全球超高頻(SHF)通訊市場的成長。一方面,日益成長的國家安全擔憂和全球不穩定時期往往導致對安全高速通訊系統的需求激增。這導致對關鍵軍事應用的SHF 技術的投資增加,例如先進雷達、監視和加密衛星通訊。然而,國際緊張局勢也可能擾亂複雜的全球供應鏈,延遲關鍵的跨境技術合作,並透過貿易限制和製裁限制基本零件的供應。因此,雖然隨著各國優先考慮戰略自主和彈性通訊基礎設施,SHF 市場有可能在國防領域經歷加速成長,但它也面臨全球夥伴關係和採購流程中的營運挑戰。

北美引領全球SHF通訊市場

受 5G 基礎設施、衛星通訊系統和先進國防技術等大量投資的推動,北美目前佔據全球超高頻(SHF)通訊市場的最大佔有率。主要產業參與者、政府機構和研究機構的存在,以及促進創新和基礎設施擴張的支持性法律規範和策略性官民合作關係,進一步加強了這一優勢。值得注意的是,美國軍費開支不斷增加,2020年成長 4.4%,達到 7,780億美元,加速了高頻技術在雷達、衛星通訊和監視等關鍵應用中的應用。國防、航太、通訊和廣播領域對安全高速通訊的強勁需求持續推動市場成長,鞏固了北美在 SHF通訊的持續領導地位。

競爭格局

全球超高頻(SHF)通訊市場的主要企業包括Saint-Gobain、NEC Corporation、Fujitsu Limited、Intel Corporation、ZTE Corporation、Cobham Limited、Ericsson AB、Huawei Technologies Co.Ltd、Qualcomm Incorporated、The NORDAM Group LLC、Northrop Grumman、Nokia Corporation、Broadcom Inc.、Samsung Electronics Co.Ltd、Hensoldt、JENOPTIK AG、Raycap、General Dynamics Corporation、Astronics Corporation、L3Harris Technologies, Inc.。市場參與者眾多,導致市場競爭激烈,每家公司都在爭取相當大的市場佔有率。這些公司採用各種策略,包括併購、夥伴關係、合資、授權合約和新產品發布,以進一步增加市場佔有率。

本報告透過深入分析,提供了有關全球超高頻(SHF)通訊市場的成長潛力、未來趨勢和促進因素的資訊。報告也涵蓋了影響市場整體規模預測的因素。本報告致力於提供全球超高頻(SHF)通訊市場的最新技術趨勢和產業洞察,以協助決策者做出合理的策略決策。報告還分析了市場的成長動力、挑戰和競爭格局。

目錄

第1章 分析框架

第2章 執行摘要

第3章 全球超高頻(SHF)通訊市場考察

  • 產業價值鏈分析
  • DROC分析
    • 成長動力
      • 軍事和國防需求不斷成長
      • 智慧城市和工業物聯網的採用
      • 擴展 5G、毫米波和衛星連接
    • 抑制因素
      • 技術複雜性與成本障礙
      • 訊號衰減和環境限制
    • 機會
      • 低地球軌道衛星星座
      • 擴大智慧基礎設施
    • 課題
      • 複雜系統整合
      • 頻譜分配和監管障礙
  • 科技進步/最新趨勢
  • 法規結構
  • 波特五力分析

第4章 全球超高頻(SHF)通訊市場:行銷策略

第5章 全球超高頻(SHF)通訊市場:定價分析

第6章 全球超高頻(SHF)通訊市場:區域分析

  • 全球超高頻(SHF)通訊市場:區域分析(2024年)
  • 全球超高頻(SHF)通訊市場:市場魅力分析(2024-2031)

第7章 全球超高頻(SHF)通訊市場概覽

  • 市場規模及預測(2019-2031)
    • 以金額為準
  • 市場佔有率和預測
    • 依頻寬
      • 3~10GHz
      • 10~20GHz
      • 20~30GHz
    • 依組件
      • 天線系統
      • 機罩
      • 接收器和放大器
      • 波導和濾波器
    • 依用途
      • 軍事/國防
      • 通訊
      • 衛星通訊
      • 航空航太
      • 智慧城市/物聯網
    • 依地區
      • 北美洲
      • 歐洲
      • 亞太地區
      • 拉丁美洲
      • 中東和非洲

第8章 北美超高頻(SHF)通訊市場

  • 市場規模及預測(2019-2031)
    • 以金額為準
  • 市場佔有率和預測
    • 依頻寬
    • 依組件
    • 依用途
    • 依國家
      • 美國
      • 加拿大

第9章 歐洲超高頻(SHF)通訊市場

  • 市場規模及預測(2019-2031)
    • 以金額為準
  • 市場佔有率和預測
    • 依頻寬
    • 依組件
    • 依用途
    • 依國家
      • 德國
      • 英國
      • 義大利
      • 法國
      • 西班牙
      • 比利時
      • 俄羅斯
      • 荷蘭
      • 其他歐洲國家

第10章 亞太甚超高頻(SHF)通訊市場

  • 市場規模及預測(2019-2031)
    • 以金額為準
  • 市場佔有率和預測
    • 依頻寬
    • 依組件
    • 依用途
    • 依國家
      • 中國
      • 印度
      • 日本
      • 韓國
      • 澳洲和紐西蘭
      • 印尼
      • 馬來西亞
      • 新加坡
      • 越南
      • 亞太地區其他國家

第11章 拉丁美洲超高頻(SHF)通訊市場

  • 市場規模及預測(2019-2031)
    • 以金額為準
  • 市場佔有率和預測
    • 依頻寬
    • 依組件
    • 依用途
    • 依國家
      • 巴西
      • 墨西哥
      • 阿根廷
      • 秘魯
      • 其他拉丁美洲國家

第12章 中東和非洲超高頻(SHF)通訊市場

  • 市場規模及預測(2019-2031)
    • 以金額為準
  • 市場佔有率和預測
    • 依頻寬
    • 依組件
    • 依用途
    • 依國家
      • 沙烏地阿拉伯
      • 阿拉伯聯合大公國
      • 卡達
      • 科威特
      • 南非
      • 奈及利亞
      • 阿爾及利亞
      • 其他中東和非洲地區

第13章 競爭格局

  • 主要企業及其產品列表
  • 全球超高頻(SHF)通訊公司:市場佔有率分析(2024年)
  • 依業務參數進行競爭基準測試
  • 主要策略現狀(企業合併(M&A)、商業聯盟)

第14章 地緣政治緊張局勢加劇對全球超高頻(SHF)通訊市場的影響

第15章 公司簡介(公司概況、財務矩陣、競爭格局、公司負責人、主要競爭對手、聯絡資訊、策略展望、SWOT分析)

  • Saint-Gobain
  • NEC Corporation
  • Fujitsu Limited
  • Intel Corporation
  • ZTE Corporation
  • Cobham Limited
  • Ericsson AB
  • Huawei Technologies Co., Ltd.
  • Qualcomm Incorporated
  • The NORDAM Group LLC
  • Northrop Grumman
  • Nokia Corporation
  • Broadcom Inc.
  • Samsung Electronics Co., Ltd.
  • Hensoldt
  • JENOPTIK AG
  • Raycap
  • General Dynamics Corporation
  • Astronics Corporation
  • L3Harris Technologies, Inc.
  • 其他主要企業

第16章 主要策略建議

第17章 調查方法

簡介目錄
Product Code: BWC25347

Global Super High Frequency (SHF) Communication Market Zooming 3X to Reach USD 9.35 Billion by 2031

Global Super High Frequency (SHF) Communication Market is flourishing because of a spurring demand from military and defense sector, widespread smart city and Industrial IoT (IIoT) deployments, and the ongoing advancements and buildout of 5G, mmWave, and satellite connectivity.

BlueWeave Consulting, a leading strategic consulting and market research firm, in its recent study, estimated Global Super High Frequency (SHF) Communication Market size at USD 3.15 billion in 2024. During the forecast period between 2025 and 2031, BlueWeave expects Global Super High Frequency (SHF) Communication Market size to expand at a CAGR of 16.8% reaching a value of USD 9.35 billion by 2031. The growth of Super High Frequency (SHF) Communication Market across the regions is propelled by escalating demand for high-speed, low-latency, and secure communication solutions across critical sectors such as defense, telecommunications, aerospace, and satellite services. Operating within the 3 GHz to 30 GHz frequency range, SHF technology is fundamental to applications like radar systems, 5G networks, satellite internet, and microwave links. Key growth catalysts include the increasing deployment of 5G antennas, the growing reliance on Low Earth Orbit (LEO) satellite constellations for enhanced global broadband coverage (exemplified by OneWeb's and SpaceX's Starlink expansions), and the overall demand for advanced communication infrastructure. Leading companies such as Lockheed Martin, Northrop Grumman, Huawei, Ericsson, and Qualcomm are at the forefront of innovation, developing advanced technologies like phased-array antennas, AI-based optimization, and high-frequency transceivers. Substantial government and private investments in military radar, satellite connectivity, and smart communication systems, particularly in countries like the U.S., China, Japan, and South Korea, are further propelling market expansion, as demonstrated by significant partnerships like the USD 8.3 billion Ericsson-Verizon deal for 5G infrastructure.

Opportunity - LEO Satellite Constellations

The global Low Earth Orbit (LEO) satellite market is expected to grow significantly, driven by rising investments, technological progress, and increasing demand for applications such as HD video conferencing, gaming, secure financial transactions, and remote asset monitoring. Major satellite service providers are actively launching LEO constellations that utilize super high frequency (SHF) communication systems, offering advantages like high data transfer speeds, enhanced security, and efficient beam coverage. Companies such as OneWeb and SpaceX are leading the way, with OneWeb launching 36 LEO satellites under its "five to 50" initiative and planning a total of 648 satellites, while SpaceX aimed to deploy 1,500 Starlink satellites. Additionally, Larsen & Toubro is in discussions with ISRO to acquire space technology for building LEO satellite launch vehicles. The increasing need for LEO satellites across defense, telecom, healthcare, media, and government sectors is expected to boost SHF system adoption. Parallelly, leading telecom providers in countries like the United States, China, and Japan, are investing in sub-6.0 GHz and millimeter-wave spectrum, accelerating 5G infrastructure deployment. For example, Verizon's USD 8.3 billion agreement with Ericsson aims to roll out Massive MIMO 5G networks. Collectively, these developments are expected to drive Global SHF Communication Market over the forecast period.

Impact of Escalating Geopolitical Tensions on Global Super High Frequency (SHF) Communication Market

Intensifying geopolitical tensions could disrupt the growth of Global Super High Frequency (SHF) Communication Market. On one hand, heightened national security concerns and the demand for secure, high-speed communication systems often surge during periods of global instability. This directly drives increased investments in SHF technologies for critical military applications such as advanced radar, surveillance, and encrypted satellite communications. However, strained international relations can concurrently disrupt intricate global supply chains, delay vital cross-border technology collaborations, and limit the availability of essential components due to trade restrictions or sanctions. Consequently, while the SHF market may experience accelerated growth in defense sectors as nations prioritize strategic autonomy and resilient communication infrastructure, it also faces operational challenges in global partnerships and procurement processes.

North America Leads Global SHF Communication Market

North America currently holds the largest share of Global Super High Frequency (SHF) Communication Market. The expansion is fueled by significant investments in 5G infrastructure, satellite communication systems, and advanced defense technologies. This dominance is further strengthened by the presence of key industry players, government agencies, and research institutions, alongside supportive regulatory frameworks and strategic public-private partnerships that foster innovation and infrastructure expansion. Notably, increased military spending in the United States, which rose by 4.4% to USD 778 billion in 2020, is accelerating the adoption of high-frequency technologies in critical applications such as radar, SATCOM, and surveillance, while Canada is rapidly emerging as the fastest-growing SHF market within the region. The persistent demand for secure, high-speed communication across defense, aerospace, telecommunications, and broadcasting sectors continues to propel market growth, solidifying North America's sustained leadership in SHF communication.

Competitive Landscape

Major companies in Global Super High Frequency (SHF) Communication Market include Saint-Gobain, NEC Corporation, Fujitsu Limited, Intel Corporation, ZTE Corporation, Cobham Limited, Ericsson AB, Huawei Technologies Co., Ltd, Qualcomm Incorporated, The NORDAM Group LLC, Northrop Grumman, Nokia Corporation, Broadcom Inc., Samsung Electronics Co., Ltd, Hensoldt, JENOPTIK AG, Raycap, General Dynamics Corporation, Astronics Corporation, and L3Harris Technologies, Inc. The presence of high number of companies intensify the market competition as they compete to gain a significant market share. These companies employ various strategies, including mergers and acquisitions, partnerships, joint ventures, license agreements, and new product launches to further enhance their market share.

The in-depth analysis of the report provides information about growth potential, upcoming trends, and Global Super High Frequency (SHF) Communication Market. It also highlights the factors driving forecasts of total market size. The report promises to provide recent technology trends in Global Super High Frequency (SHF) Communication Market and industry insights to help decision-makers make sound strategic decisions. Furthermore, the report also analyzes the growth drivers, challenges, and competitive dynamics of the market.

Table of Contents

1. Research Framework

  • 1.1. Research Objective
  • 1.2. Product Overview
  • 1.3. Market Segmentation

2. Executive Summary

3. Global Super High Frequency (SHF) Communication Market Insights

  • 3.1. End User Value Chain Analysis
  • 3.2. DROC Analysis
    • 3.2.1. Growth Drivers
      • 3.2.1.1. Rising Military & Defense Needs
      • 3.2.1.2. Smart City & IIoT Deployments
      • 3.2.1.3. 5G, mmWave & Satellite Connectivity Expansions
    • 3.2.2. Restraints
      • 3.2.2.1. Technological Complexity & Cost Barriers
      • 3.2.2.2. Signal Attenuation & Environmental Limitations
    • 3.2.3. Opportunities
      • 3.2.3.1. LEO Satellite Constellations
      • 3.2.3.2. Smart Infrastructure Expansion
    • 3.2.4. Challenges
      • 3.2.4.1. Complex System Integration
      • 3.2.4.2. Spectrum Allocation & Regulatory Barriers
  • 3.3. Technological Advancements/Recent Developments
  • 3.4. Regulatory Framework
  • 3.5. Porter's Five Forces Analysis
    • 3.5.1. Bargaining Power of Suppliers
    • 3.5.2. Bargaining Power of Buyers
    • 3.5.3. Threat of New Entrants
    • 3.5.4. Threat of Substitutes
    • 3.5.5. Intensity of Rivalry

4. Global Super High Frequency (SHF) Communication Market: Marketing Strategies

5. Global Super High Frequency (SHF) Communication Market: Pricing Analysis

6. Global Super High Frequency (SHF) Communication Market: Geography Analysis

  • 6.1. Global Super High Frequency (SHF) Communication Market, Geographical Analysis, 2024
  • 6.2. Global Super High Frequency (SHF) Communication, Market Attractiveness Analysis, 2024-2031

7. Global Super High Frequency (SHF) Communication Market Overview

  • 7.1. Market Size & Forecast, 2019-2031
    • 7.1.1. By Value (USD Billion)
  • 7.2. Market Share & Forecast
    • 7.2.1. By Frequency Range
      • 7.2.1.1. 3-10 GHz
      • 7.2.1.2. 10-20 GHz
      • 7.2.1.3. 20-30 GHz
    • 7.2.2. By Component
      • 7.2.2.1. Antenna Systems
      • 7.2.2.2. Radomes
      • 7.2.2.3. Transceivers & Amplifiers
      • 7.2.2.4. Waveguides & Filters
    • 7.2.3. By Application
      • 7.2.3.1. Military & Defense
      • 7.2.3.2. Telecommunications
      • 7.2.3.3. Satellite Communications
      • 7.2.3.4. Aviation & Space
      • 7.2.3.5. Smart Cities & IoT
    • 7.2.4. By Region
      • 7.2.4.1. North America
      • 7.2.4.2. Europe
      • 7.2.4.3. Asia Pacific (APAC)
      • 7.2.4.4. Latin America (LATAM)
      • 7.2.4.5. Middle East and Africa (MEA)

8. North America Super High Frequency (SHF) Communication Market

  • 8.1. Market Size & Forecast, 2019-2031
    • 8.1.1. By Value (USD Billion)
  • 8.2. Market Share & Forecast
    • 8.2.1. By Frequency Range
    • 8.2.2. By Component
    • 8.2.3. By Application
    • 8.2.4. By Country
      • 8.2.4.1. United States
      • 8.2.4.1.1. By Frequency Range
      • 8.2.4.1.2. By Component
      • 8.2.4.1.3. By Application
      • 8.2.4.2. Canada
      • 8.2.4.2.1. By Frequency Range
      • 8.2.4.2.2. By Component
      • 8.2.4.2.3. By Application

9. Europe Super High Frequency (SHF) Communication Market

  • 9.1. Market Size & Forecast, 2019-2031
    • 9.1.1. By Value (USD Billion)
  • 9.2. Market Share & Forecast
    • 9.2.1. By Frequency Range
    • 9.2.2. By Component
    • 9.2.3. By Application
    • 9.2.4. By Country
      • 9.2.4.1. Germany
      • 9.2.4.1.1. By Frequency Range
      • 9.2.4.1.2. By Component
      • 9.2.4.1.3. By Application
      • 9.2.4.2. United Kingdom
      • 9.2.4.2.1. By Frequency Range
      • 9.2.4.2.2. By Component
      • 9.2.4.2.3. By Application
      • 9.2.4.3. Italy
      • 9.2.4.3.1. By Frequency Range
      • 9.2.4.3.2. By Component
      • 9.2.4.3.3. By Application
      • 9.2.4.4. France
      • 9.2.4.4.1. By Frequency Range
      • 9.2.4.4.2. By Component
      • 9.2.4.4.3. By Application
      • 9.2.4.5. Spain
      • 9.2.4.5.1. By Frequency Range
      • 9.2.4.5.2. By Component
      • 9.2.4.5.3. By Application
      • 9.2.4.6. Belgium
      • 9.2.4.6.1. By Frequency Range
      • 9.2.4.6.2. By Component
      • 9.2.4.6.3. By Application
      • 9.2.4.7. Russia
      • 9.2.4.7.1. By Frequency Range
      • 9.2.4.7.2. By Component
      • 9.2.4.7.3. By Application
      • 9.2.4.8. The Netherlands
      • 9.2.4.8.1. By Frequency Range
      • 9.2.4.8.2. By Component
      • 9.2.4.8.3. By Application
      • 9.2.4.9. Rest of Europe
      • 9.2.4.9.1. By Frequency Range
      • 9.2.4.9.2. By Component
      • 9.2.4.9.3. By Application

10. Asia Pacific Super High Frequency (SHF) Communication Market

  • 10.1. Market Size & Forecast, 2019-2031
    • 10.1.1. By Value (USD Billion)
  • 10.2. Market Share & Forecast
    • 10.2.1. By Frequency Range
    • 10.2.2. By Component
    • 10.2.3. By Application
    • 10.2.4. By Country
      • 10.2.4.1. China
      • 10.2.4.1.1. By Frequency Range
      • 10.2.4.1.2. By Component
      • 10.2.4.1.3. By Application
      • 10.2.4.2. India
      • 10.2.4.2.1. By Frequency Range
      • 10.2.4.2.2. By Component
      • 10.2.4.2.3. By Application
      • 10.2.4.3. Japan
      • 10.2.4.3.1. By Frequency Range
      • 10.2.4.3.2. By Component
      • 10.2.4.3.3. By Application
      • 10.2.4.4. South Korea
      • 10.2.4.4.1. By Frequency Range
      • 10.2.4.4.2. By Component
      • 10.2.4.4.3. By Application
      • 10.2.4.5. Australia and New Zealand
      • 10.2.4.5.1. By Frequency Range
      • 10.2.4.5.2. By Component
      • 10.2.4.5.3. By Application
      • 10.2.4.6. Indonesia
      • 10.2.4.6.1. By Frequency Range
      • 10.2.4.6.2. By Component
      • 10.2.4.6.3. By Application
      • 10.2.4.7. Malaysia
      • 10.2.4.7.1. By Frequency Range
      • 10.2.4.7.2. By Component
      • 10.2.4.7.3. By Application
      • 10.2.4.8. Singapore
      • 10.2.4.8.1. By Frequency Range
      • 10.2.4.8.2. By Component
      • 10.2.4.8.3. By Application
      • 10.2.4.9. Vietnam
      • 10.2.4.9.1. By Frequency Range
      • 10.2.4.9.2. By Component
      • 10.2.4.9.3. By Application
      • 10.2.4.10. Rest of APAC
      • 10.2.4.10.1. By Frequency Range
      • 10.2.4.10.2. By Component
      • 10.2.4.10.3. By Application

11. Latin America Super High Frequency (SHF) Communication Market

  • 11.1. Market Size & Forecast, 2019-2031
    • 11.1.1. By Value (USD Billion)
  • 11.2. Market Share & Forecast
    • 11.2.1. By Frequency Range
    • 11.2.2. By Component
    • 11.2.3. By Application
    • 11.2.4. By Country
      • 11.2.4.1. Brazil
      • 11.2.4.1.1. By Frequency Range
      • 11.2.4.1.2. By Component
      • 11.2.4.1.3. By Application
      • 11.2.4.2. Mexico
      • 11.2.4.2.1. By Frequency Range
      • 11.2.4.2.2. By Component
      • 11.2.4.2.3. By Application
      • 11.2.4.3. Argentina
      • 11.2.4.3.1. By Frequency Range
      • 11.2.4.3.2. By Component
      • 11.2.4.3.3. By Application
      • 11.2.4.4. Peru
      • 11.2.4.4.1. By Frequency Range
      • 11.2.4.4.2. By Component
      • 11.2.4.4.3. By Application
      • 11.2.4.5. Rest of LATAM
      • 11.2.4.5.1. By Frequency Range
      • 11.2.4.5.2. By Component
      • 11.2.4.5.3. By Application

12. Middle East and Africa Super High Frequency (SHF) Communication Market

  • 12.1. Market Size & Forecast, 2019-2031
    • 12.1.1. By Value (USD Billion)
  • 12.2. Market Share & Forecast
    • 12.2.1. By Frequency Range
    • 12.2.2. By Component
    • 12.2.3. By Application
    • 12.2.4. By Country
      • 12.2.4.1. Saudi Arabia
      • 12.2.4.1.1. By Frequency Range
      • 12.2.4.1.2. By Component
      • 12.2.4.1.3. By Application
      • 12.2.4.2. UAE
      • 12.2.4.2.1. By Frequency Range
      • 12.2.4.2.2. By Component
      • 12.2.4.2.3. By Application
      • 12.2.4.3. Qatar
      • 12.2.4.3.1. By Frequency Range
      • 12.2.4.3.2. By Component
      • 12.2.4.3.3. By Application
      • 12.2.4.4. Kuwait
      • 12.2.4.4.1. By Frequency Range
      • 12.2.4.4.2. By Component
      • 12.2.4.4.3. By Application
      • 12.2.4.5. South Africa
      • 12.2.4.5.1. By Frequency Range
      • 12.2.4.5.2. By Component
      • 12.2.4.5.3. By Application
      • 12.2.4.6. Nigeria
      • 12.2.4.6.1. By Frequency Range
      • 12.2.4.6.2. By Component
      • 12.2.4.6.3. By Application
      • 12.2.4.7. Algeria
      • 12.2.4.7.1. By Frequency Range
      • 12.2.4.7.2. By Component
      • 12.2.4.7.3. By Application
      • 12.2.4.8. Rest of MEA
      • 12.2.4.8.1. By Frequency Range
      • 12.2.4.8.2. By Component
      • 12.2.4.8.3. By Application

13. Competitive Landscape

  • 13.1. List of Key Players and Their Offerings
  • 13.2. Global Super High Frequency (SHF) Communication Company Market Share Analysis, 2024
  • 13.3. Competitive Benchmarking, By Operating Parameters
  • 13.4. Key Strategic Developments (Mergers, Acquisitions, Partnerships)

14. Impact of Escalating Geopolitical Tensions on Global Super High Frequency (SHF) Communication Market

15. Company Profiles (Company Overview, Financial Matrix, Competitive Landscape, Key Personnel, Key Competitors, Contact Address, Strategic Outlook, SWOT Analysis)

  • 15.1. Saint-Gobain
  • 15.2. NEC Corporation
  • 15.3. Fujitsu Limited
  • 15.4. Intel Corporation
  • 15.5. ZTE Corporation
  • 15.6. Cobham Limited
  • 15.7. Ericsson AB
  • 15.8. Huawei Technologies Co., Ltd.
  • 15.9. Qualcomm Incorporated
  • 15.10. The NORDAM Group LLC
  • 15.11. Northrop Grumman
  • 15.12. Nokia Corporation
  • 15.13. Broadcom Inc.
  • 15.14. Samsung Electronics Co., Ltd.
  • 15.15. Hensoldt
  • 15.16. JENOPTIK AG
  • 15.17. Raycap
  • 15.18. General Dynamics Corporation
  • 15.19. Astronics Corporation
  • 15.20. L3Harris Technologies, Inc.
  • 15.21. Other Prominent Players

16. Key Strategic Recommendations

17. Research Methodology

  • 17.1. Qualitative Research
    • 17.1.1. Primary & Secondary Research
  • 17.2. Quantitative Research
  • 17.3. Market Breakdown & Data Triangulation
    • 17.3.1. Secondary Research
    • 17.3.2. Primary Research
  • 17.4. Breakdown of Primary Research Respondents, By Region
  • 17.5. Assumptions & Limitations

*Financial information of non-listed companies can be provided as per availability.

**The segmentation and the companies are subject to modifications based on in-depth secondary research for the final deliverable