電動飛機和電動垂直起降飛行器 (eVTOL) 的未來 - 第二版
市場調查報告書
商品編碼
1924856

電動飛機和電動垂直起降飛行器 (eVTOL) 的未來 - 第二版

The Future of Electric Aircraft and eVTOLs - 2nd Edition

出版日期: | 出版商: Berg Insight | 英文 170 Pages | 商品交期: 最快1-2個工作天內

價格

預計 2021 年至 2050 年間,電動飛機和 eVTOL(商用和民用)市場規模將達到 1,000 億歐元至 3,000 億歐元。

本報告深入分析了全球電動飛機和 eVTOL 市場,透過對主要公司高管的訪談、對價值鍊和關鍵應用案例的全面描述、42 家電動飛機、eVTOL 和電力推進系統製造商的概況以及到 2050 年的市場預測,提供了相關見解。

目錄

圖表清單

摘要整理

第一章:引言

  • 航空市場
  • 電動航空概念
  • 飛機和 eVTOL 的發展驅動因素電氣化
    • 降低成本
    • 區域旅行市場
    • 減少排放
    • 降低噪音
    • 改善可及性
    • 經濟發展

第二章 電動飛機/eVTOL

  • 電動飛機
    • 改裝
    • 傳統設計
    • 新型設計
    • 尺寸和航程
    • 電池電動/氫燃料電池/油電混合飛機
  • eVTOL
    • 無翼多旋翼飛行器
    • 升力巡航(固定翼)
    • 傾轉旋翼(螺旋槳)
  • eVTOL風險評估
    • 認證
    • 基礎設施
    • 技術
    • 管理
    • 社會意識

第三章 技術概述

  • 電池電動
  • 氫電
  • 混合動力
  • 機身
  • 通訊技術與自主飛行
    • 導航與通訊系統
    • 物聯網連接
    • 自主飛行路徑

第四章:生態系與監理架構

  • 生態系統
    • 充電
    • 電池動力面臨的挑戰
    • 氫能面臨的挑戰
    • 起降基礎設施 - 垂直起降站點
    • 機場基礎設施
    • 維修、維修和大修 (MRO)
  • 監理框架
    • 認證和標準化
    • 安全
    • 空域管理
    • 永續性

第五章:區域與城市空中交通

  • 區域空中交通 - 市場成長潛力與應用案例
    • 區域空中交通市場將如何發展 - 各種情景
    • 使用者體驗
  • 城市空中交通 - 市場成長潛力與應用案例
    • 城市空中交通市場將如何發展 - 各種情景
    • 使用者體驗
  • 對區域和城市規劃的影響
    • 教育
    • 許可證
    • 短期城市規劃
    • 長期都市規劃
    • 區域規劃
    • 交通規劃與整合

第六章:公司簡介與策略

  • eVTOL(電動垂直起降飛行器)
    • Aerofugia(飛航)
    • AIR(空中交通)
    • Archer(弓箭手)
    • Aridge(小鵬航空航空高鐵)
    • AutoFlight(自動飛行器)
    • CityAirbus NextGen(城市空中巴士下一代)
    • 億航(億航)
    • Eve Air Mobility(易航)
    • Horizo​​n Aircraft(地平線飛機)
    • Jetson(捷信)
    • Job Aviation(喬布航空)
    • LEO Flight(低地球軌道飛行)
    • Lilium(莉莉姆)
    • Pivotal(樞紐)
    • Sambo Motors(桑博汽車)
    • SkyDrive(天空驅動)
    • Skyfly(天空飛行)
    • Supernal(超凡)
    • V-Space(V-Space)
    • Vertical(垂直)航空航天
    • Volocopter
    • Wisk
  • 電動飛機
    • Beta Technologies
    • Bye Aerospace
    • Cosmic Aerospace
    • Electra
    • Electron Aerospace
    • Elysian
    • Eviation Aircraft
    • Heart Aerospace
    • Maeve Aerospace
    • MD Aircraft
    • Pipistrel
    • Vaeridion
    • VoltAero
  • 電動推進系統
    • Ampaire
    • Evolito
    • H55
    • MagniX
    • Safran
    • Wright Electric
    • ZeroAvia

第七章 市場預測與情境分析

  • 市場市場區隔
  • 市場規模
    • 商用電動垂直起降飛行器 (eVTOL)
    • 私人電動垂直起降飛行器 (eVTOL)
    • 1-4座純電動飛機
    • 5-9人座純電池/氫燃料電池/油電混合飛機
    • 10人座以上純電池/氫燃料電池/油電混合飛機
    • 當前電動飛機和電動垂直起降飛行器 (eVTOL) 的非承諾/已確認訂單庫存
    • 物聯網連接
  • 市場價值
    • 電動垂直起降飛行器 (eVTOL) 市場價值
    • 電動飛機市場價值
  • 商業模式與應用案例
  • 結論
  • 縮寫和簡稱列表

How will the market for electric aircraft and eVTOLs evolve in the next 25 years? The total market value of electric aircraft and eVTOLs (commercial and private use) during the time period 2021-2050 is forecasted to reach in the range of Euro 100-300 billion. Get up to date with the latest information about vendors, technology developments, regulations and markets.

Highlights from the report:

  • Insights from numerous executive interviews with market leading companies.
  • Comprehensive description of the electric aircraft and eVTOL value chain and key use cases.
  • Analysis of the ground infrastructure needed and how eVTOLs will be handled in the airspace.
  • In-depth analysis of market trends and key developments.
  • Profiles of 42 electric aircraft, eVTOL and electric propulsion system manufacturers.
  • Summary of the certification process and handling of safety concerns.
  • Market forecasts and scenario analysis lasting until 2050.

Table of Contents

Table of Contents

List of Figures

Executive Summary

1 Introduction

  • 1.1 The aviation market
  • 1.2 The concept of electric aviation
  • 1.3 Drivers behind the electrification of aircraft and eVTOLs
    • 1.3.1 Reduced costs
    • 1.3.2 Regional travel market
    • 1.3.3 Emissions reductions
    • 1.3.4 Noise reductions
    • 1.3.5 Increased accessibility
    • 1.3.6 Economic development

2 Electric Aircraft and eVTOLs

  • 2.1 Electric aircraft
    • 2.1.1 Retrofit
    • 2.1.2 Traditional design
    • 2.1.3 New design
    • 2.1.4 Size versus range
    • 2.1.5 Battery-electric, hydrogen-electric versus hybrid-electric aircraft
  • 2.2 eVTOLs
    • 2.2.1 Wingless multicopter
    • 2.2.2 Lift-and-cruise (fixed wing)
    • 2.2.3 Tilted wing and/or propellers
  • 2.3 Risk assessment regarding eVTOLs
    • 2.3.1 Certification
    • 2.3.2 Infrastructure
    • 2.3.3 Technology
    • 2.3.4 Operations
    • 2.3.5 Public awareness

3 Technology Overview

  • 3.1 Battery-electric
  • 3.2 Hydrogen-electric
  • 3.3 Hybrid-electric
  • 3.4 Airframes
  • 3.5 Communications technology and autonomous flight
    • 3.5.1 Navigation and communications systems
    • 3.5.2 IoT connectivity
    • 3.5.3 A possible pathway to autonomous flights

4 Ecosystem and Regulatory Framework

  • 4.1 Ecosystem
    • 4.1.1 Charging
    • 4.1.2 Battery power challenges
    • 4.1.3 Hydrogen power challenges
    • 4.1.4 Take-off and landing infrastructure - vertiports
    • 4.1.5 Airport infrastructure
    • 4.1.6 MRO
  • 4.2 Regulatory framework
    • 4.2.1 Certification and standardisation
    • 4.2.2 Safety
    • 4.2.3 Airspace management
    • 4.2.4 Sustainability

5 Regional and Urban Air Mobility

  • 5.1 Regional Air Mobility - possible market development and use cases
    • 5.1.1 How will the RAM market evolve - different scenarios
    • 5.1.2 User experience
  • 5.2 Urban Air Mobility - possible market development and use cases
    • 5.2.1 How will the UAM market evolve - different scenarios
    • 5.2.2 User experience
  • 5.3 Implications for regional and city planning
    • 5.3.1 Education
    • 5.3.2 Permits
    • 5.3.3 Short-term city planning
    • 5.3.4 Long-term city planning
    • 5.3.5 Regional planning
    • 5.3.6 Transport planning and integration

6 Company Profiles and Strategies

  • 6.1 eVTOLs
    • 6.1.1 Aerofugia
    • 6.1.2 AIR
    • 6.1.3 Archer
    • 6.1.4 Aridge (XPeng AeroHT)
    • 6.1.5 AutoFlight
    • 6.1.6 CityAirbus NextGen
    • 6.1.7 EHang
    • 6.1.8 Eve Air Mobility
    • 6.1.9 Horizon Aircraft
    • 6.1.10 Jetson
    • 6.1.11 Joby Aviation
    • 6.1.12 LEO Flight
    • 6.1.13 Lilium
    • 6.1.14 Pivotal
    • 6.1.15 Sambo Motors
    • 6.1.16 SkyDrive
    • 6.1.17 Skyfly
    • 6.1.18 Supernal
    • 6.1.19 V-Space
    • 6.1.20 Vertical Aerospace
    • 6.1.21 Volocopter
    • 6.1.22 Wisk
  • 6.2 Electric aircraft
    • 6.2.1 Beta Technologies
    • 6.2.2 Bye Aerospace
    • 6.2.3 Cosmic Aerospace
    • 6.2.4 Electra
    • 6.2.5 Electron Aerospace
    • 6.2.6 Elysian
    • 6.2.7 Eviation Aircraft
    • 6.2.8 Heart Aerospace
    • 6.2.9 Maeve Aerospace
    • 6.2.10 MD Aircraft
    • 6.2.11 Pipistrel
    • 6.2.12 Vaeridion
    • 6.2.13 VoltAero
  • 6.3 Electric propulsion systems
    • 6.3.1 Ampaire
    • 6.3.2 Evolito
    • 6.3.3 H55
    • 6.3.4 MagniX
    • 6.3.5 Safran
    • 6.3.6 Wright Electric
    • 6.3.7 ZeroAvia

7 Market Forecasts and Scenarios

  • 7.1 Market segmentation
  • 7.2 Market size
    • 7.2.1 Commercial eVTOLs
    • 7.2.2 Privately owned eVTOLs
    • 7.2.3 Battery-electric aircraft with 1-4 passenger seats
    • 7.2.4 Battery, hydrogen and hybrid-electric aircraft with 5-9 passenger seats
    • 7.2.5 Battery, hydrogen and hybrid-electric aircraft with 10 or more passenger seats
    • 7.2.6 The current non-binding and firm order stock of electric aircraft and eVTOLs
    • 7.2.7 IoT connectivity
  • 7.3 Market value
    • 7.3.1 Market value of eVTOLs
    • 7.3.2 Market value of electric aircraft
  • 7.4 Business models and use cases
  • 7.5 Concluding remarks
  • List of Acronyms and Abbreviations

List of Figures

  • Figure 1.1: IATA strategy towards net zero
  • Figure 2.1: Example of a retrofit design
  • Figure 2.2: Example of a traditional design
  • Figure 2.3: Example of a new design
  • Figure 2.4: Linear and nodal transportation networks
  • Figure 2.5: Example of wingless multicopter design
  • Figure 2.6: Example of lift-and-cruise design
  • Figure 2.7: Example of tilted propeller design
  • Figure 3.1: Schematic of the main propulsion technologies
  • Figure 3.2: Schematic of energy efficiency for electric and fuel cell propulsion
  • Figure 4.1: The ecosystem of advanced air mobility
  • Figure 4.2: Examples of vertiport designs
  • Figure 4.3: Commercial certification of electric aircraft (forecast)
  • Figure 4.4: Commercial certification of piloted eVTOLs (forecast)
  • Figure 4.5: Sensor technologies to be used for eVTOLs
  • Figure 4.6: eVTOL control centre
  • Figure 5.1: Potential market for different aircraft types
  • Figure 5.2: Commercial implementation steps
  • Figure 5.3: Examples of potential eVTOL use cases
  • Figure 6.1: The number of global eVTOL concepts
  • Figure 6.2: Aerofugia - AE200-100 specifications
  • Figure 6.3: AIR - AIR One for personal use specifications
  • Figure 6.4: A prototype of AIR's two-seat eVTOL for personal use
  • Figure 6.5: Archer - Midnight specifications
  • Figure 6.6: Aridge's Land Aircraft Carrier comprising a land vehicle and an eVTOL
  • Figure 6.7: AutoFlight - V2000EM Prosperity specifications
  • Figure 6.8: EHang - EH216-S and VT35 specifications
  • Figure 6.9: Eve Air Mobility - Eve-100 specifications
  • Figure 6.10: Horizon Aircraft - Cavorite X7 specifications
  • Figure 6.11: Horizon Aircraft's hybrid-electric VTOL with a fan-in-wing design
  • Figure 6.12: Jetson - Jetson ONE specifications
  • Figure 6.13: Joby - S4 specifications
  • Figure 6.14: LEO Flight - JetBike specifications
  • Figure 6.15: Pivotal - Helix specifications
  • Figure 6.16: Pivotal's Helix one-seat eVTOL for personal use
  • Figure 6.17: Sambo Motors - B-33x specifications
  • Figure 6.18: SkyDrive - SD-05 specifications
  • Figure 6.19: Skyfly - Axe specifications
  • Figure 6.20: Supernal - S-A2 specifications
  • Figure 6.21: V-Space - VS-210, VS-300 and VS-500 specifications
  • Figure 6.22: Vertical Aerospace - Valo specifications
  • Figure 6.23: Vertical Aerospace's Valo eVTOL with four passenger seats
  • Figure 6.24: Volocopter - VoloCity and VoloXPro specifications
  • Figure 6.25: Wisk - Generation 6 specifications
  • Figure 6.26: Beta Technologies - Alia CX300 CTOL specifications
  • Figure 6.27: Beta Technologies - Alia A250 VTOL specifications
  • Figure 6.28: Beta Technologies - H500A and V600A electric engine specifications
  • Figure 6.29: Beta Technologies' A250 VTOL in the front and two AX300 CTOLs in the back
  • Figure 6.30: Bye Aerospace - eFlyer 2 specifications
  • Figure 6.31: Bye Aerospace's two-seat electric aircraft
  • Figure 6.32: Electra - EL9 specifications
  • Figure 6.33: Electra's EL9 hybrid-electric aircraft with nine passenger seats
  • Figure 6.34: Electron Aerospace - Electron 5 specifications
  • Figure 6.35: Eviation Aircraft - Alice specifications
  • Figure 6.36: Heart Aerospace - ES-30 specifications
  • Figure 6.37: Maeve Aerospace - MJ500 specifications
  • Figure 6.38: Maeve Aerospace's MJ500 hybrid-electric regional aircraft
  • Figure 6.39: MD Aircraft - MDA1 eViator specifications
  • Figure 6.40: Pipistrel - Velis Electro specifications
  • Figure 6.41: Pipistrel's Velis Electro aircraft with two seats
  • Figure 6.42: Vaeridion - Microliner specifications
  • Figure 6.43: VoltAero - Cassio 330 specifications
  • Figure 6.44: Evolito - Electric motor specifications
  • Figure 6.45: MagniX - EPUs and battery specifications
  • Figure 6.46: Safran - Electric engine specifications
  • Figure 6.47: ZeroAvia - Hydrogen-electric powertrain specifications
  • Figure 7.1: Electric passenger aircraft timeline
  • Figure 7.2: Passenger eVTOL timeline
  • Figure 7.3: Shipments of commercial eVTOLs (2021-2050)
  • Figure 7.4: Shipments of privately owned eVTOLs (2021-2050)
  • Figure 7.5: Shipments of electric aircraft with 1-4 passenger seats (2021-2050)
  • Figure 7.6: Shipments of electric aircraft with 5-9 passenger seats (2021-2050)
  • Figure 7.7: Shipments of electric aircraft with 10 or more passenger seats (2021-2050)
  • Figure 7.8: Connected vehicles in commercial and private use (World 2025-2050)
  • Figure 7.9: Commercial eVTOL market value (2021-2050)
  • Figure 7.10: Private eVTOL market value (2021-2050)
  • Figure 7.11: Market value of electric aircraft with 1-4 passenger seats (2021-2050)
  • Figure 7.12: Market value of electric aircraft with 5-9 passenger seats (2021-2050)
  • Figure 7.13: Market value of electric aircraft with 10 or more passenger seats (2021-2050)
  • Figure 7.14: Use case: eVTOL vertiport in a small city
  • Figure 7.15: Use case: eVTOL vertiport in a dense urban area
  • Figure 7.16: Use case: Regional airport/airfield - an initial scenario